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Abstract

The peaks over random threshold (PORT) methodology and the Pareto probabil-
ity weighted moments (PPWM) of largest observations are used to build a class of
location-invariant estimators of the extreme value index (EVI), the primary parameter
in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators,
the so-called PORT PPWM EVlI-estimators, is derived, and an alternative class of
location-invariant EVI-estimators, the generalized Pareto probability weighted moments
(GPPWM) EVlI-estimators is considered as an alternative. These two classes of estima-
tors, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator
and a recent class of minimum variance reduced bias estimators are compared for finite
samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of
the tuning parameters under play is put forward and applied to simulated and real

data sets.
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1 Introduction, preliminaries and scope of the paper

The extreme value index (EVI) is the parameter v € R in the general extreme value distri-
bution function (d.f.)

BV, (1) = exp(—(1 +~2)~7), 14~z >0, ?f v #0, )

exp(— exp(—x)), r € R, if v=0.

The EV,, d.f. appears as the limiting d.f., whenever such a non-degenerate limit exists, of
the suitably linearly normalised maximum X,,.,, of any random sample, X, = (X, ..., X,,),
from either independent, identically distributed (i.i.d.) or even stationary weakly dependent
random variables (r.v.’s) from an underlying model F. When such a non-degenerate limit
exists, we say that F'is in the maz-domain of attraction of the d.f. in (1) and use the notation
F € Dyy(EV,). Let us further denote by (X, < --- < X,,.,,) the sample of ascending order

statistics (0.s.’s) associated to the available random sample X, .

1.1 Heavy tails and first-order conditions

We shall now consider heavy right-tails, i.e. a positive EVI, in (1). Then, as first proved
by Gnedenko (1943), the right-tail function is of regular variation with an index of regular

variation equal to —1/7, i.e.

F e DM(EV7)7>0 =: DX/I = DX/HI «— F:=1-F¢ Rv_l/ﬂf, (2)

where the notation RV, stands for the class of reqularly varying functions at infinity with
an index of regular variation equal to a € R, i.e. positive measurable functions g such that
tlim g(tx)/g(t) = x%, for all z > 0.

—00

With the notation
Ult)y:=F~(1-1/t), t>1 and  F(y):=inf{z: F(z) >y}, (3)

for the generalized inverse function of the d.f. F', condition (2) is equivalent to saying that
U € RV, (de Haan, 1984), i.e. we often assume the validity of the so-called first-order
condition,

FeDj, <= FeRV_, <= UERV,. (4)



1.2 The estimators under study and a second-order condition

One of the first classes of semi-parametric estimators of a positive EVI was considered in
Hill (1975). Hill’s estimators are based on the log-excesses over an 0.s. X,,_.,, and have the

functional form
L
AL =ARX,) = . > Xy vt - Xy g}, k=12 ,n—1 (5)
i=1

Consistency is achieved in the whole DL provided that X,,_;., is an intermediate o.s., i.e.
we need to have

k=k,— oo and k/n— 0, asn — oc. (6)

We shall also consider the Pareto probability weighted moments (PPWM) EVI-estimators,
recently introduced in Caeiro and Gomes (2011) and revisited in Caeiro et al. (2012). They
are valid for heavy right-tails with v < 1, compare favourably with the Hill estimator, in

(5), for a wide variety of underlying models F', and are given by

ay(k; X))
APPWM — 2PPWM(y y._ | _ a1 (k; X,

n

with

= (i) X,
a,(k; X)) = a, (k) ::Ez(ﬁ ﬁ r=0,1.
i=1 n—k:mn

Again, consistency is achieved under the first-order framework in (4) and intermediate k-

values, i.e. whenever (6) holds.

In order to derive the asymptotic normality of the estimators either in (5) or in (7),
it is convenient to slightly restrict the class DLH, assuming the validity of a second-order
condition either on F, in (2), or on U, in (3). We then guarantee the existence of a function

A(t), going to zero as t — oo, such that

1 —1 — 71 2=l if p <0,
lim nU(te) —InU(t) —vyInzx _ =, if p ®
=00 Alt) Inz, if p=0,

where p < 0 is a second-order parameter, which measures the rate of convergence in the first-
order condition, in (4). For such a class of models, we use the notation Dj\_/l\Q' If the limit in
the left hand side of Eq. (8) exists, it is necessarily of the above mentioned type and |A| € RV,
(Geluk and de Haan, 1987). If we assume the validity of the second-order framework in (8),



the aforementioned EVI-estimators are asymptotically normal, provided that vVEA(n/k) —
A, finite, as n — oo, with A given in (8). Indeed, if we denote 4}, either the Hill estimator
in (5) or the PPWM estimator in (7), we have, with Zp asymptotically standard normal and
for adequate (bs, 0,) € (R, R*), the validity of the asymptotic distributional representation

At L v+ 0 Zp VE+be A(n/E)(1+0,(1)), as n— oo, 9)

In this paper, we shall often further assume that p < 0, in (8), and we shall use the following
parameterization in (v, 3, p) € (RT,R — {0}, R7),

A(t) = 2517 (10)
for the function A, in (8). This is equivalent to say that
U(t)zC(l—l—fyﬁtp/p—i-o(t”)), as t — oo.

Further note that the classes of estimators, either in (5) or in (7), are scale-invariant but
not location-invariant, as often desired, and this contrarily to the PORT-Hill estimators,
introduced in Araijo Santos et al. (2006) and further studied in Gomes et al. (2008a), with
PORT standing for peaks over random thresholds. The class of PORT-Hill estimators is
based on a sample of excesses over a random threshold X, .., n, := |[ng| + 1, where |z]

denotes, as usual, the integer part of x, i.e. it is based on
K%Q) = (Xnn - an:na cee 7an+l:n - an:n)- (11)

We can have 0 < ¢ < 1, for d.f.’s with finite or infinite left endpoint =, := inf{z : F(x) > 0}
(the random threshold is then any empirical quantile), and 0 < ¢ < 1, for d.f.’s with finite
left endpoint z,. (the random threshold can also be the minimum). Other results on PORT
EVI-estimation can be found in Fraga Alves et al. (2009) and Gomes et al. (2011, 2012a,
2013). Such a methodology leads to location-invariant estimation, and the unshifted model
Fy, underlying the r.v. Xy, plays thus a central and prominent role. In what follows, we use
the notation x, = F; (q) for the g-quantile of the d.f. F,. Then (see van der Vaart, 1998,
p.308, among others), and for X —~ Fy,

Xogn = Xg=F (@) =U(1/(1—¢q)) for 0<g<1 (F(0)==.). (12)

In this article, just as already initiated in Gomes et al. (2012a), we consider the application

of the PORT methodology to the PPWM EVI-estimators, in (7), deriving the so-called
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PORT-PPWM estimators. They have the same functional form of the PPWM estimators in
(7), but with the original sample X, replaced everywhere by the sample of excesses X ff), in

(11). Consequently, such estimators are given by the functional equation,

Ao 1= LM (XD), (13)
with 4PPWM(X ) and X'@ given in (7) and (11), respectively. These estimators are now
invariant for both changes of location and scale, and depend on this tuning parameter q,
which only influences the asymptotic bias of fyP PWM “in (7), making this new class highly
flexible, and able to compare favourably with the generalized Pareto probability weighted
moment estimators (GPPWM), for a large variety of underlying models F' in the max-domain
of attraction of the EV d.f., in (1). These GPPWM EVI-estimators have been studied in de

Haan and Ferreira (2006), are also scale and location invariant and are given by

207 (k)

~GPPWM 1

,y n 1 - A K A s ) (14)
& as(k) — 2aj (k)

with k=1,2,...,n—1, v <1, and

k . ld
1
&*(k) = d: k X E Z < > n i+1ln Xn—k:n)a r = 07 L.

See also Caeiro and Gomes (2011), for an asymptotic comparison at optimal levels of the

PPWM and GPPWM EVlI-estimators, in (7) and (14), respectively.

1.3 Scope of the article

In Section 2, the asymptotic properties of the PORT-PPWM EVI-estimators, in (13), are
derived. In Section 3, to obtain the behaviour of these estimators for finite samples, a large-
scale Monte-Carlo simulation is performed and some overall conclusions are drawn. Section
4 is dedicated to a bootstrap data-driven choice of the tuning parameters under play. After
a brief review of the role of the bootstrap methodology in the estimation of optimal sample
fractions, we provide a double-bootstrap algorithm for the adaptive EVI-estimation through
the PORT-PPWM estimators, also valid, with slight modifications, for the Hill and the
GPPWM EVlI-estimators. We further computationally validate this bootstrap data-driven
estimation algorithm, and we apply it to simulated EV and Student’s-t samples and to a

real data set in the field of finance.



2 Asymptotic properties of the EVI-estimators

We first state well-known results in the field of statistics of extremes, related to the asymp-
totic behaviour of the Hill and the PPWM EVI-estimators. The notation N'(u, 0?) is used

for a normal r.v. with mean p and variance o2.

Theorem 1 (de Haan and Peng, 1998). Under the second-order framework in (8), i.e. when-
ever working in Dj\r/qu and for intermediate k, i.e. if (6) holds, the asymptotic distributional

representation of %y',, in (5), is given in (9), with

and Z = Vk (Zle E;/k — 1), with {E;} i.i.d. standard exponential r.v.’s. Consequently,
if we choose k such that 'k A(n/k) — A, finite and not necessarily null, then, as n — oo,

VEGE, —9) =5 N (A ,by,02) .

A“H’ " H

Theorem 2 (Caeiro and Gomes, 2011). In DLD, i.e. under the second order framework in

(8), with 0 < v < 1/2, and for intermediate k such that vk A(n/k) — X\, finite, we can

guarantee the asymptotic normality of 45 "™ and &,SEPWM, in (7) and (14), respectively.
Indeed, with e denoting either PPWM or GPPWM, the distributional representation in (9)

holds, with

2 ra=yme-7 . (1-7)2=-9)
et (1-29)3=2y)7 T (1= =p)2=7—p)
and
52 _ 1=+ =-72=-7)" _ (V) bprwa
GPPWM (1 _ 2,7)(3 _ 27) ’ GPPWM * ~y .
Consequently,

\/E(%,n—v> —5 N (Ab,,07) .

n—o0

Remark 1. Note again that o> < o2, for all v > 0. The other way round, b, > b
for ally < 1/2, with b, =b

PPWM

only if p=0. As can be seen in Caeiro and Gomes (2011),

PPWM

&};EWM can asymptotically outperform ?,I;In at optimal levels in the sense of minimal root

mean square error (RMSE), in a wide and relevant region of the (v, p)-plane.



2.1 Asymptotic behaviour of PORT-PPWM EVI-estimators

Note first that if there is a possible shift s in the model, i.e. if the d.f. F'(x) = Fy(x) = F(x; )
depends on (z,s) through the difference = — s, the parameter p, as well as the A-function,

in (8), depend on such a shift s, i.e. p = ps, A = A;, and

(vs/Us(t), =), if v+po<0 A s#0,
(As(®), ps) = § (Ao(t) +75/Us(t),p0), if y+po=0 A s#0,
(Ao(t), po), otherwise.

To study the asymptotic properties of the PORT-PPWM EVI-estimators, it is convenient
to study first the behaviour of the statistics,
k N
1 (4 Xn—i—i—l:n - Xn n
(k) =23 (+ >0, 15

q-

fOI‘X:X()/“Fo.

It is also worth noting that, as already detected in Fraga Alves et al. (2009) for invariant
versions of the mixed moment EVI-estimator, due to the fact that X|,q41.,m — Uo(1/(1 — q))
=0,(1/y/n), the EVI-estimator &EEWMM, in (13), has exactly the same asymptotic be-
haviour of the estimator defined as 4, "™, in (7), but with X, _; 1., replaced everywhere
by Xy—iv1n — Uo(1/(1 —q)), 1 < i < n. The same comment applies to @Q,(k;q), in (15),
where X, ., can be replaced by x, = Up(1/(1 — q)), already defined in (12). The asymptotic
behaviour of the statistics @, (k; ¢), in (15), comes then straightforwardly from the behaviour
of the non-shifted statistics, studied in Caeiro and Gomes (2011), as stated in the following

proposition.

Proposition 1. Under the second order framework in (8), and for intermediate k, i.e.
whenever (6) holds, we can guarantee the asymptotic normality of Q. (k;q), in (15). Indeed,
we can write, forr >~y —1/2,
d 1 Or — (r Ag(n/k)(1 4+ 0,(1
Q(kiq) & ——— + IE) o(n/k)( p( )
L+r—v Vi (I+r=7)1+r—7—po)
TXq(1 + 0p(1))
(L+7)(1+7r—7)Us(n/k)’

where W,gr) 18 an asymptotically standard normal r.v., and

(16)

2
2 gl
= . 17
or (I4+r—")2(1+2r —2v) (17)




Proof. Since Up(X;.,,) 4 Yin, where Y is a standard Pareto r.v., with d.f. Fy(y) =1— 1/y,
y>1 Y iv1n/Yokn 4 Yi—it1.%, under the second order framework in (8), and thinking on
the fact that we are now working with s = 0 due to the location invariance property of the

statistics in (15), we can write

U322 on)

Xn—i+1:n d Yn—kn

Xn—k:n UO(Y :n) ( F +1.k) + 0< —k: )( + Op( ))
Next, with the notation x, = Uy(1/(1 — q)), already introduced in (12),

Xn—i+1:n — Xq o Xn—z'+1:n (1 - Xq/Xn—i-i—l:n)

Xn—k:n — Xq B Xn—k:n 1— Xq/Xn—k:n

Xn—i—i—l:n Xq Xq
=—|1— ——"— 1 1 1
ank:n < anz#l:n * ank:n< N Op( ))

Xn—i-‘,—l:n ( Xq ( Xn—k:n ) )
=—(1+ 1———— ) (1+o0,(1 .
Xn—k:n Xn—k:n Xn—i+1:n ( p( ))

Consequently,

Q) £ 1S (5) Ohcsenr (14 5% (Vi) (1400

2 (1) Ohsnnn == L) 14 0,(1)

— p
03 (1) v )%g(l_;y =11+ 0,(1)

Iy (1 - E) Wﬁ%_ L Ag(n/)(1 + 0,(1)).

Since

k N T
1 1 P p
- 1——) Y (Y —-1) — ,
( ) o (Y= 1) (I+r—y)(1+r—7—0p)

equation (16) follows. Moreover, o2 is given in (17), a result already proved in Caeiro and

Gomes (2011). u

We next state the main theoretical result in this paper, related with the shift invariant
version of the EVI-estimators in (7), i.e. the estimators in (13). The asymptotic variance
of ﬁ,izWMlq is kept at the same level of the PPWM-estimator ﬁEEWM, but the dominant
component of bias changes only in a few cases, as already detected in Aratijo Santos et al.
(2006) for PORT-Hill and PORT-moment EVI-estimators, and in Fraga Alves et al. (2009),

for similar location-invariant versions of the mixed-moment EVI-estimators.



Theorem 3. Under the second order framework in (8), with 0 < v < 1/2, and for interme-
diate k, i.e. if (6) holds, the asymptotic bias of the PORT-PPWM EVI-estimators, in (13),
1s going to be ruled by

YXq/Uo(2), if v+po<0AX;#0,
B(t) = § Ao(t) +vxqg/Uo(t), if v+po=0Ax,#0,
Ap(t), otherwise,

with x, defined in (12). If we assume that V'k Ag(n/k) — X, and/or Vk/Ug(n/k) — X,

finite, as n — oo

~PPWM d
vk (’Vk,n 7 7) 7H_O>O N (bPPWM“P O-lzPWM) )
where
«/(1—7)(2—7)qu ; 0 0
) U Zf 7+p0< /\Xq7é )
bPPWI\/I‘q —= %2(2_7) )\A + w;*“/)XqAU’ Zf f}/ —.I— po g O’

12— A

T=7—p0)(Z—7—p0) otherwise.

A

Proof. We can write,

?PPWM|q 1 <Q0(k’§ q) _ 1) -1
w Qi(k; q)
with @Q,(k;q) » = 0,1, defined in (15). Using (16) with » = 1 and Taylor’s expansion

(1+2) ' =1—2+o0(z),as x — 0, we get

@it £ 2 - ) {1 - BT - AR (1) - g

Using again the previous Taylor expansion, and with 7, := (1 +r —v)o,, r =0, 1,

(B8 -1) £ 0-nf- B2 @ o)

B (2—7)A0(n//€) (1+0p(1)) _ M(1+op(l))}.

(1=7—=p0)(2—=7—po) 2Uo(n/k)
Consequently,
JPPWM|g d (1=72=7)/_ 0 — /M)
Viem = 7 Tr (00Wk oW, )
(1 =9)(2—=7)A(n/k) (1 =72 = 7)xq
1 1 1 1
07—y oI gy o)
and the result in the theorem follows. H



3 Simulated behaviour of the EVI estimators.

In this section, we have enlarged the multi-sample Monte-Carlo simulation in Gomes et al.
(2012a), proceeding with the implementation of a multi-sample simulation experiment of
size 5000 x 20, to obtain the distributional behaviour of the EVI estimators 4, 45",
&ISEWM‘Q and AZTPWM in (5), (7), (13) and (14), respectively, for the following underlying

parents in the scope of Theorem 3,
1. Student’s-t, with v =3,4 (v =1/v, p = —2/v),

2. Fréchet(y) parents X, with d.f. F(z) = exp(—2~7), 2 > 0, v > 0, with v = 0.25
(p = —1). We have further considered the shifted Fréchet models Y = X — 0.5 and
Y =X -1, with p=—y = —-0.25,

3. Burr(vy,p) parents X, with d.f. F(z) = 1 — (1 + 27?/")Y?, 2 > 0, now for (v, p) €
{0.25} x{—0.25, —0.5, —1, —2}. Similarly to what we have done for the Fréchet parents,
we have now considered the shifted Burr models Y = X — 0.5 and Y = X — 1, also
with p = —y = —0.25,

4. EV(~) parents, with d.f. in (1), with v = 0.25 (p = —y = —0.25).

We have further considered the following two parents with v = 1/2, both out of the scope
of Theorem 3:

5. Student’s-t, with v =2 (v = 0.5, p = —1) degrees of freedom;

6. EV(vy) models with v = 0.5 (p = —y = —0.5).

For comparison, we also picture the same characteristics for a minimum-variance reduced-
bias (MVRB) estimator, denoted CH, with CH standing for corrected-Hill. The MVRB

estimator considered is the one introduced in Caeiro et al. (2005), given by
Tiom (B, 9) = A (1 = B/R) /(1 = p)), (18)

with (B , p) adequate estimators of the vector of ‘scale’ and ‘shape’ second-order parameters
(B,p) in (10). We have again used the class of [-estimators in Gomes and Martins (2002)
and the simplest class of p-estimators in Fraga Alves et al. (2003). In the simulations, given a

sample, X, , and since all simulated models under study are such that |p| < 1, the case where
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alternatives to the Hill EVI-estimator are welcome due to the high bias of Hill’s estimators
for moderate up to large values of k, we shall essentially work with the tuning parameter

7 = 0 in the simplest class of p-estimators in Fraga Alves et al. (2003), given by

37 (k:X,) — 1)
Wi (kX)) - 3

pr(k) = pr(k; X,,) == min (0, (19)

and dependent on the statistics

( W x 1) - (12 (5 /2
(D kx,0) "~ (2 #:%,)/2) i 0,

(M,ﬁ” (k;gn)/z) T (Mff” (k;Kn)/6)
n(MV (k:X,)) =4 In (M7 (k:X,,)/2)

L %IH<M7(L2)(k%Xn)/2)—%ln(Mff’)(k;Xn)/G)’ f =0

where
k

. 1 .
M (ks X,) = 2> X iinn = X, j=1,2,3.

i=1
As already suggested in previous papers, we have here decided for the computation of p, (k)
at k = ky, given by

ki = [n'"¢], €=0.001, (20)

the threshold used in Caeiro et al. (2005) and Gomes and Pestana (2007). Interesting al-
ternative classes of p-estimators have recently been introduced in Goegebeur et al. (2008,
2010), Ciuperca and Mercadier (2010) and Caeiro and Gomes (2012a,b).

For the estimation of the scale second-order parameter /3, in (10), and again on the basis

of a sample X, , we shall here consider

sy a e v (B da(k) Do(k) — Dy(k)
Balk) = Bp(k: X,,) = (‘) dp(k) Dp(k) — Dap(k)’

21
: (21)
dependent on the estimator p = po(ki; X,,), suggested before and where, for any a < 0,

—Q

1 k i —« 1 k 2 . Xn—iJrl:n
0= 3 (5) e = g3 (5) v v ()

with U;, 1 <1 <k, the scaled log-spacings associated with X,,. Details on the distributional
behaviour of the estimator in (21) can be found in Gomes and Martins (2002) and more
recently in Gomes et al. (2008b) and Caeiro et al. (2009). Alternative estimators of § can
be found in Caeiro and Gomes (2006), Gomes et al. (2010) and Caeiro and Gomes (2012c).
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For other possible reliable estimation methods of (3, p), see the algorithms in Gomes and
Pestana (2007) and in Gomes et al. (2008b). Recent overviews of statistics of univariate

extremes can be found in Beirlant et al. (2012) and Scarrot and McDonald (2012).

3.1 Simulated mean values and RMSEs of the EVI-estimators

To illustrate the finite sample behaviour of the EVI estimators as functions of k, the number
of top 0.s.’s used, we next present the simulated mean value (E) and RMSE patterns of &,Ij’n,
&,EEWM, ’?,SEPWM, W,SE and ’Ay,iiwwq, for a few values of ¢, usually only the one leading to
minimal RMSE among the values considered from ¢ = 0 until ¢ = 0.4, with step 0.05. The
illustration is done for a sample size n = 1000 and for some of the aforementioned models.
For simplicity, we shall denote the EVI estimators in (5), (7) and (18), respectively by H(0),
P(0) and CH(0), whenever dealing with an unshifted model (s = 0) and by H(s), P(s) and
CH(s), whenever dealing with a s-shifted parent. The PORT-PPWM EVI-estimators in (13)
are location invariant, i.e. independent on any shift s imposed to the data, but depend on the

tuning parameter ¢ and will be generally denoted by P|q. The location-invariant GPPWM
EVI-estimators in (14) will be denoted GP.

For models with an infinite left endpoint, like the Student-t,, and particularly when v is
small, we should pay special attention to the choice of ¢q. Indeed, when ¢ approaches 0, and
surely due to a closeness to inconsistency, the minimum RMSE is attained at k close to n—1.
Figure 1 is related to a Student-t3 underlying parent. It is clear the non-consistency of P|0,
the PORT-PPWM estimator associated to a shift induced by the minimum of the sample.
For ¢ = 0.05, we are led to a minimum RMSE reasonably close to £k = n — 1, and with a
pattern reasonably above the RMSE of the PPWM EVI-estimator for moderate k-values,
including the one that leads to the minimum RMSE of the PPWM EVI-estimator. Even
for ¢ = 0.1, we are led to the same type of RMSE pattern, as a function of k. We would
thus advise the choice of P|0.2. Then, at the optimal level for the PPWM EVI-estimation,
the RMSE of PPWM]|0.2 is below the RMSE of PPWM. A similar comment applies to all
other simulated Student-t, random samples. The value of ¢ depends on v, as can be seen in
Figure 2, related to a Student ¢, parent. Here the best performance is achieved by P|0.1 if we
take into account the RMSE criterion, but the highest relative efficiency (REFF) is obtained
throuhgh P|0.05. Figure 3 is related to a Student-t, underlying parent, a model out of the
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scope of Theorem 3. Then, even for ¢ = 0.1, we are led to a minimum RMSE quite close to
k =n — 1. Following the same kind of reasoning, we would thus advise the choice of P|0.4,

despite of the fact that then the PORT-PPWM does not beat the CH EVI-estimator.

0.4

El] RMSE] ]

03] |

0.2 1

0.1 1\

" plogs”
o LPl02 HTT’“I'O:i ‘
0 200 400 600 800

Figure 1: E and RMSE patterns of the EVI-estimators under study for a Student-t,, underlying
parent with v =3 (y =1/r =0.333,p = —2/v = —0.666).

RMSE]I.]

0 200 400 600

0 200 400 600

Figure 2: E and RMSE patterns of the EVI-estimators under study for a Student-t,, underlying
parent with v =4 (y=1/v =0.25,p = —-2/v = —0.5).

We next present Figures 4 and 5, with the sample paths of the different EVI-estimators,
when the underlying parent is an EV(y), with v = 0.25 and v = 0.5, respectively. Despite

13



RMSE] ]
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Pl104 0.1
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Figure 3: E and RMSE patterns of the EVI-estimators under study for a Student-t,, underlying
parent with v =2 (y=1/v =0.5,p = -2/v = —1).

of the fact that this second model is out of scope of Theorem 3, the best performance has in

both cases been achieved by P|0.

E[] RMSE][ ]
0.6
H(0) P(0) CH(0)
0.4
P10
/ op —
{
[
0 k 0 : ‘ k
0 200 400 600 0 200 400 600

Figure 4: E and RMSE patterns of the EVI-estimators under study for an EV () underlying parent
with v = 0.25 (p = —y = —0.25).

In Figure 6, we present sample paths associated to unshifted and shifted (s = —1) Fréchet
parents with v = 0.25. Note that when we are dealing with the unshifted parent, and due
to the fact that the support is [0,00), we cannot improve the performance of the PPWM
EVI-estimator when we use the PORT-PPWM methodology. But when we have a shifted
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Figure 5: E and RMSE patterns of the EVI-estimators under study for an EV(7)

underlying parent with v = 0.5 (p = —y = —0.5).

Fréchet parent the location-invariant PPWM(0) EVI-estimator outperforms not only the Hill
but also the CH EVI-estimators.

- E[.] P RMSE[.] pc-1
: 0.3
CH(-1)
0.2
0.30 0)
|
CH(0) 0.1 GP
P —
Xg\t e Y PlO PO
00 L : — k o ‘ ‘ ‘ CHO) | ,
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 6: E and RMSE patterns of the EVI-estimators under study for unshifted (s = 0) and
shifted (s = 1) Fréchet underlying parent with v = 0.25

Among the Burr(vy, p), we present Figure 7 where p = —y = —0.25, to show that for
these models the PPWM estimators are never able to beat the GPPWM, even when we have
shifted Burr data. However, this does not happen when we have v # —p, as can be seen in

Figure 8.
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Figure 7: E and RMSE patterns of the EVI-estimators under study for a Burr(vy, p) underlying
parent with (v, p) = (0.25, —0.25).
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Figure 8: E and RMSE patterns of the EVI-estimators under study for a Burr(y, p) underlying
parent with (v, p) = (0.25, —1).

3.1.1 Finite sample behaviour of the EVI-estimators at simulated optimal levels

In Table 1, we present for the EV parents the simulated mean values of the above men-
tioned EVI-estimators, generally denoted Ej,, at their simulated optimal levels kyg :=
arg mingy RMSE(Eg ). In Table 2, we present, or each model and up to the second last row,
the simulated relative efficiencies (REFF) of Eg,,, comparatively with the Hill estimator,

whenever computed at their simulated optimal levels, i.e., the simulated values of

RMSE(Hy,,,n)  RMSE(Hy)

bl = RN ISE(Eryp)  RMSE(Eq)
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In the last row, we present the simulated value of RMSE(HO), so that we can easily recover

the RMSE of the other estimators. In all tables the “best” values are written in bold.

Table 1: Simulated mean values of the semi-parametric EVI-estimators under consideration, at

their simulated optimal levels for underlying EV parents.

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

EV(y) parent, v = 0.25

H
PPWM
GPPWM
PPWM|0
PPWM]|0.1
CH

0.427 & 0.0012
0.344 + 0.0008
0.018 = 0.0027
0.322 + 0.0013
0.329 + 0.0016
0.382 =+ 0.0027

0.392 + 0.0026
0.331 £ 0.0013
0.102 £ 0.0015
0.315 + 0.0008
0.323 £ 0.0011
0.372 £ 0.0021

0.365 £ 0.0019
0.323 £ 0.0009
0.160 £ 0.0007
0.308 + 0.0005
0.316 £ 0.0008
0.353 £ 0.0014

0.348 £ 0.0012
0.318 £ 0.0008
0.186 £ 0.0008
0.302 + 0.0006
0.311 +£ 0.0007
0.342 £ 0.0017

0.335 £ 0.0013
0.313 £ 0.0007
0.203 +£ 0.0009
0.297 + 0.0005
0.306 + 0.0005
0.330 £ 0.0008

0.321 £ 0.0010
0.305 £ 0.0006
0.219 + 0.0004
0.289 + 0.0003
0.299 + 0.0005
0.317 £ 0.0008

EV(v) parent, v = 0.5

H
PPWM
GPPWM
PPWM|0
PPWM/0.1
CH

0.654 £ 0.0032
0.553 £ 0.0009
0.282 £ 0.0035
0.544 + 0.0008
0.548 £ 0.0008
0.637 £ 0.0037

0.624 £ 0.0033
0.549 £ 0.0009
0.371 £ 0.0010
0.540 + 0.0006
0.545 +£ 0.0005
0.619 £ 0.0032

0.596 £ 0.0011
0.545 £ 0.0005
0.419 £ 0.0007
0.536 + 0.0004
0.541 +£ 0.0005
0.595 £ 0.0021

0.579 £ 0.0011
0.542 £ 0.0006
0.441 £ 0.0006
0.533 + 0.0005
0.538 £ 0.0005
0.579 £ 0.0020

0.565 £ 0.0010
0.539 £ 0.0005
0.456 + 0.0005
0.530 + 0.0004
0.535 + 0.0005
0.565 £ 0.0011

0.551 £ 0.0010
0.535 £ 0.0004
0.469 =+ 0.0003
0.525 + 0.0003
0.531 + 0.0003
0.551 £ 0.0010

Table 2: Simulated values

for underlying EV parents.

of the REFF,y (from first to sixth row of each entry)

and RMSE(H,)

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

EV(y) parent, v = 0.25

PPWM
GPPWM
PPWM|0

PPWM]|0.1
CH

1.550 £ 0.0069
0.779 £0.0110
2.020 + 0.0082
1.778 £0.0073
1.328 +0.0108

1.435 + 0.0063
0.988 £ 0.0070
1.909 + 0.0077
1.645 £ 0.0062
1.237 4+ 0.0056

1.321 +0.0051
1.207 £ 0.0075
1.817 + 0.0062
1.521 £ 0.0049
1.171 4+ 0.0042

1.262 4+ 0.0050
1.382 4+ 0.0081
1.774 + 0.0066
1.455 £ 0.0061
1.130 + 0.0031

1.212 4+ 0.0050
1.565 + 0.0094
1.741 + 0.0057
1.402 £ 0.0048
1.101 £ 0.0021

1.172 £ 0.0031
1.833 £ 0.0124
1.721 + 0.0060
1.358 4 0.0034
1.072 4 0.0020

RMSE(H)

0.246 £ 0.3905

0.200 £ 0.3126

0.157 £ 0.2504

0.133 £ 0.2150

0.113 £ 0.1865

0.092 £ 0.1557

EV(v) parent, v = 0.5

PPWM
GPPWM
PPWM|0

PPWM]|0.1
CH

1.985 4 0.0081
0.836 £0.0124
2.416 +0.0110
2.208 £ 0.0091
1.492 £ 0.0258

1.757 £0.0078
1.024 4+ 0.0081
2.193 +0.0108
1.965 £ 0.0091
1.501 £ 0.0097

1.526 £ 0.0079
1.154 & 0.0067
1.976 +0.0111
1.722 & 0.0092
1.476 £ 0.0059

1.395 4 0.0078
1.219 + 0.0062
1.862 +0.0123
1.586 £ 0.0100
1.452 4 0.0059

1.289 + 0.0078
1.278 & 0.0080
1.772 £ 0.0128
1.475 & 0.0095
1.417 4 0.0057

1.188 £ 0.0079
1.351 4+ 0.0087
1.700 + 0.0102
1.373 £ 0.0080
1.359 £+ 0.0052

RMSE(Ho)

0.256 £ 0.3846

0.202 £ 0.3086

0.151 £ 0.2508

0.122 £ 0.2197

0.100 £ 0.1939

0.077 £ 0.1656

Table 3 and Table 4 are similar to Table 1 and Table 2, respectively, but for Student
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underlying parents. And a similar comment applies to all other pairs of tables. We have
always restricted the choice of the optimal k to values smaller than or equal to the number of
positive elements in the original sample. Table 5 and Table 6 are associated with unshifted
and shifted Fréchet models, and finally, Table 7 and Table 8 are associated with unshifted
and shifted Burr models. Note that the GPPWM and the PORT-PPWM EVI-estimators
are invariant for changes in location. Consequently their mean values at optimal levels
are the same as for the unshifted model. However, due to high increase in the RMSE at
optimal levels of the Hill EVI-estimator, their efficiencies increase proportionally to such a

new RMSE(H,).

3.2 Some overall comments

We think sensible to provide the following comments, which in a certain sense justify some

of the parents chosen in this section.

e For all models with a left endpoint greater than or equal to zero, the PORT-PPWM
EVI-estimators cannot improve the performance of A¥PWM in (7), as had already
happened with the PORT-Hill estimators when compared with the Hill estimator H
(see Figures 6, 7 and 8. However, if we induce a shift in the model, things change

drastically and the PORT-PPWM provide an interesting estimation procedure, as can

be seen in the aforementioned figures.

e The PORT-PPWM estimators can even outperform the MVRB-estimator under con-
sideration (see Figure 2 and Figure 5, associated with a Sudent-t4 and an EV(0.5)

underlying parent, respectively).

e For models with a left endpoint equal to infinity, like the Student model, the value
q = 0 should be discarded due to inconsistency (see the patterns of PPWM]|0 in Figure
2, and Gomes et al., 2008a, for further details on the subject).

e We can often find a value of ¢ that provides the best estimator of 7, regarding for
instance minimum RMSE, through the use of the new class of estimators &,EEWMM, in

(13), like the value ¢ = 0.1, in Figure 2, and the value ¢ = 0, in Figure 5.

e An adaptive choice of k and ¢ is thus an important topic, to be dealt with in Section
4, where we consider again the use of a double bootstrap methodology, similar to the

one used in Gomes and Oliveira (2001), among others, for classical EVI-estimation, in
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Table 3: Simulated mean values of the semi-parametric EVI-estimators under consideration, at

their simulated optimal levels for underlying Student-t, parents.

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

Student-t4 parent (v = 0.25)

H
PPWM
GPPWM
PPWM|0
PPWM|0.05
PPWM/0.1
PPWM]|0.25
CH

0.361 £ 0.0009
0.310 £ 0.0018
—0.240 £ 0.0022
0.234 £ 0.0004
0.235 £ 0.0013
0.265 + 0.0005
0.288 £ 0.0011
0.311 £ 0.0023

0.339 £ 0.0026
0.305 £ 0.0012
—0.090 £ 0.0016
0.242 + 0.0004
0.242 + 0.0009
0.257 + 0.0002
0.282 £ 0.0006
0.310 £ 0.0009

0.317 £ 0.0016
0.298 £ 0.0005
0.028 £ 0.0011
0.196 £0.0004
0.249 + 0.0005
0.256 =+ 0.0001
0.274 £ 0.0004
0.301 £ 0.0013

0.306 £ 0.0013
0.292 £ 0.0005
0.083 £ 0.0009
0.167 £ 0.0003
0.251 + 0.0001
0.254 £ 0.0001
0.269 £ 0.0002
0.294 £ 0.0008

0.296 + 0.0009
0.287 + 0.0004
0.122 +0.0013
0.142 + 0.0003
0.250 + 0.0001
0.252 + 0.0001
0.265 £ 0.0002
0.288 £ 0.0006

0.286 £ 0.0007
0.280 + 0.0003
0.157 £ 0.0008
0.114 + 0.0002
0.250 + 0.0001
0.251 + 0.0000
0.260 £ 0.0001
0.281 £ 0.0004

Student-t3 parent (y = 0.3(3))

H
PPWM
GPPWM
PPWM|0
PPWM]|0.05
PPWM]|0.1
PPWM]|0.15
PPWM]|0.2
CH

0.439 £ 0.0030
0.385 £ 0.0009
—0.123 £ 0.0018
0.151 £ 0.0004
0.255 £ 0.0004
0.299 =+ 0.0008
0.332 +0.0010
0.355 £ 0.0006
0.362 £ 0.0035

0.417 £0.0019
0.381 £ 0.0008
0.023 £ 0.0014
0.142 £ 0.0007
0.261 £ 0.0006
0.310 £ 0.0009
0.344 + 0.0004
0.350 £ 0.0003
0.377 £0.0013

0.396 £ 0.0019
0.375 £ 0.0007
0.135 £ 0.0012
0.139 £ 0.0009
0.265 £ 0.0004
0.319 £ 0.0007
0.339 + 0.0001
0.345 £ 0.0003
0.370 £ 0.0008

0.385 £ 0.0011
0.371 £ 0.0006
0.187 £ 0.0010
0.137 £ 0.0007
0.268 £ 0.0003
0.323 £ 0.0004
0.337 £ 0.0001
0.341 £ 0.0001
0.364 £ 0.0008

0.375 £ 0.0009
0.366 £ 0.0004
0.224 £ 0.0013
0.135 £ 0.0007
0.269 + 0.0002
0.326 £ 0.0003
0.335 £ 0.0001
0.338 £ 0.0001
0.359 + 0.0006

0.365 £ 0.0007
0.360 £ 0.0004
0.257 £ 0.0007
0.135 £ 0.0007
0.271 £ 0.0001
0.329 +£ 0.0002
0.334 £ 0.0001
0.336 £ 0.0001
0.354 £ 0.0003

Student-t2 parent (y = 0.5)

H
PPWM
GPPWM
PPWM|0
PPWM|0.25
PPWM|0.3
PPWM|0.35
PPWM|0.4
CH

0.602 £ 0.0039
0.541 £ 0.0006
0.093 £ 0.0028
0.194 £ 0.0009
0.465 £ 0.0021
0.491 + 0.0025
0.516 £ 0.0029
0.533 £ 0.0012
0.464 £ 0.0123

0.577 £ 0.0027
0.536 £ 0.0006
0.231 £ 0.0011
0.189 £ 0.0009
0.485 +0.0011
0.515 £ 0.0013
0.524 £ 0.0004
0.528 £ 0.0005
0.506 £ 0.0020

0.556 £ 0.0011
0.531 £ 0.0004
0.332 £ 0.0013
0.186 £ 0.0011
0.502 + 0.0007
0.514 £ 0.0002
0.518 £ 0.0002
0.523 £ 0.0003
0.512 £ 0.0001

0.544 £ 0.0008
0.526 £ 0.0003
0.379 £ 0.0010
0.184 £ 0.0009
0.506 + 0.0002
0.510 £ 0.0002
0.514 £ 0.0002
0.518 £ 0.0002
0.507 £ 0.0006

0.536 £ 0.0010
0.521 £ 0.0002
0.409 + 0.0006
0.180 + 0.0007
0.503 + 0.0001
0.506 + 0.0001
0.510 + 0.0001
0.514 + 0.0001
0.504 + 0.0006

0.526 £ 0.0005
0.514 £ 0.0002
0.435 +£ 0.0006
0.172 + 0.0006
0.502 + 0.0001
0.503 + 0.0001
0.505 + 0.0001
0.508 + 0.0002
0.502 £ 0.0003

Gomes et al. (2012b), for reduced-bias estimation and in Brilhante et al. (2013), for a

mean-of-order-p EVI-estimator. Such methods, despite of computationally intensive,

can indeed provide reliable data-driven choices of the tuning parameters under play.
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Table 4: Simulated values of the REFF, (from first to seventh row of each entry) and RMSE(Hy)

for underlying Student-t, parents.

[ n=100 n = 200 n =500 n = 1000 n = 2000 n = 5000
Student-t4 parent (y = 0.25)

PPWM 1.470 £ 0.0076 1.362 £ 0.0059 1.257 £ 0.0061 1.201 £ 0.0045 1.159 £ 0.0045 1.120 4+ 0.0035
GPPWM 0.318 + 0.0026 0.364 + 0.0028 0.402 + 0.0027 0.424 + 0.0016 0.443 + 0.0028 0.461 + 0.0027
PPWM|0 2.712 +0.0214 2.224 +0.0191 1.414 £ 0.0085 0.906 £ 0.0044 0.608 £ 0.0037 0.385 £ 0.0013

PPWM|0.05 3.594 +0.0505 4.169 +0.0441 5.106 £0.0382 5.863 £0.0294 6.746 +0.0426 8.205 + 0.0483

PPWM]|0.1 3.293 +0.0183 3.476 + 0.0222 3.890 £ 0.0281 4.343 £ 0.0252 4.924 + 0.0287 5.928 4+ 0.0366

PPWM|0.25 2.150 + 0.0095 2.092 + 0.0092 2.080 + 0.0130 2.120 £ 0.0105 2.193 £+ 0.0096 2.350 + 0.0100

CH 1.435 £+ 0.0468 1.398 £+ 0.0084 1.362 £ 0.0053 1.322 £ 0.0056 1.283 £ 0.0057 1.236 £ 0.0048

RMSE(Hy) 0.183 + 0.5264 0.143 £ 0.4352 0.106 £ 0.3562 0.085 £ 0.3117 0.070 £ 0.2753 0.054 £ 0.2366
Student-t3 parent (y = 0.3(3))

PPWM 1.561 £ 0.0067 1.412 £ 0.0080 1.271 £ 0.0087 1.200 £ 0.0063 1.149 £+ 0.0063 1.104 4+ 0.0048
GPPWM 0.345 + 0.0024 0.391 + 0.0028 0.431 £ 0.0028 0.453 £ 0.0030 0.470 £ 0.0030 0.486 £ 0.0032
PPWM|0 0.983 £ 0.0053 0.705 £ 0.0044 0.501 £ 0.0030 0.393 £ 0.0023 0.314 £ 0.0019 0.233 £ 0.0013

PPWM|0.05 1.898 £+ 0.0132 1.720 £ 0.0137 1.438 £0.0113 1.227 £ 0.0075 1.029 £ 0.0060 0.803 £ 0.041
PPWM]|0.1 2.585 + 0.0290 2.871£0.0411 3.305 +0.0466 3.769 £0.0355 4.285+ 0.0425 5.207 + 0.0608
PPWM|0.15 2.831 +0.0270 3.011 +0.0239  3.235 £ 0.0024 3.526 £ 0.0216 3.916 £ 0.0260 4.576 £ 0.0226
PPWM]|0.2 2.589 + 0.0151 2.560 + 0.0199 2.643 +£0.0194 2.804 £ 0.0175 3.043 £ 0.0188 3.489 + 0.0131
CH 1.433 £0.0416 1.511 £ 0.0088 1.551 £ 0.0084 1.571 £ 0.0066 1.569 £ 0.0070 1.537 £ 0.0067
RMSE(Hy) 0.189 + 0.0513 0.145 + 0.0422 0.106 £ 0.0344 0.084 £ 0.0299 0.067 £ 0.0263 0.050 £ 0.0223
Student-t> parent (v = 0.5)

PPWM 1.789 £ 0.0094 1.570 £ 0.0088 1.383 £+ 0.0086 1.299 £+ 0.0058 1.269 £+ 0.0058 1.271 4+ 0.0056
GPPWM 0.404 + 0.0047 0.454 £ 0.0025 0.488 £ 0.0027 0.503 £ 0.0038 0.517 £ 0.0031 0.519 £ 0.0030
PPWM|0 0.605 + 0.0037 0.451 £ 0.0024 0.317 £ 0.0016 0.246 £ 0.0015 0.192 + 0.0008 0.138 £ 0.0006

PPWM|0.25 1.971 £ 0.0352 2.088 £0.0197 2.280+0.0161 2.371+0.0097 2.533+0.0135 2.814 +0.0141
PPWM|0.3 2.106 £0.0326  2.112 +0.0131 2.034 £ 0.0135 2.048 4+ 0.0087 2.152 +0.0113 2.354 +0.0114
PPWM|0.35 2.109 + 0.0204 1.941 £ 0.0107 1.813 £0.0118 1.786 £ 0.0076 1.839 £ 0.0093 1.968 + 0.0093
PPWM|0.4 2.000 + 0.0105 1.792 £ 0.0100 1.636 £ 0.0103 1.581 £ 0.0066 1.595 £ 0.0075 1.666 £ 0.0073

CH 0.980 + 0.1394 1.418 £0.0172 1.706 £ 0.0152 1.944 £0.0162 2.227 +0.0179 2.641 +0.0218
RMSE(Hy) 0.203 + 0.4920 0.153 + 0.4029 0.108 £ 0.3264 0.084 + 0.2827 0.065 + 0.2467 0.047 £ 0.2091

4 Adaptive estimation of the EVI

With E denoting the mean value operator, a possible substitute for the MSE of any classical

EVl-estimator 4}, is, cf. equation (9),

AMSE(3;,) = E(0u Zi/VE +bs A(n/k))" = 02 /k + 2 42 52 (n/k)*,

20



Table 5: Simulated mean values of the semi-parametric EVI-estimators under consideration, at

their simulated optimal levels for unshifted and shifted Fréchet underlying parents

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

Fréchet parent (y = 0.25,s =0)

H
PPWM
GPPWM
PPWM]|0
PPWM]|0.1
PPWM]|0.25
CH

0.272 £ 0.0007
0.273 £ 0.0004
0.022 £ 0.0020
0.322 £ 0.0013
0.329 £ 0.0016
0.332 £0.0010
0.245 £ 0.0007

0.271 £ 0.0007
0.269 £ 0.0002
0.101 £ 0.0016
0.315 £ 0.0008
0.323 £ 0.0011
0.327 £ 0.0009
0.247 £ 0.0099

0.262 £ 0.0004
0.262 £ 0.0001
0.186 £ 0.0008
0.302 +£ 0.0006
0.311 £ 0.0007
0.315 £ 0.0008
0.250 £ 0.0002

0.260 £ 0.0002
0.260 £ 0.0001
0.203 £ 0.0009
0.297 £ 0.0005
0.39 &+ 0.0005
0.310 £ 0.0006
0.250 £ 0.0001

0.257 £ 0.0001
0.257 £ 0.0001
0.219 £ 0.0004
0.290 £ 0.0003
0.2986 + 0.0005
0.302 £ 0.0006
0.250 £ 0.0001

0.257 £ 0.0001
0.256 £ 0.0001
0.219 £ 0.0004
0.269 £ 0.0002
0.270 £ 0.0004
0.270 £ 0.0004
0.270 £ 0.0004

Fréchet parent (y = 0.25,s = —0.5)

PPWM
CH

0.427 £ 0.0012
0.344 £ 0.0008
0.382 £ 0.0027

0.392 + 0.0026
0.331 +£0.0013
0.372 + 0.0021

0.365 £ 0.0019
0.323 £ 0.0009
0.353 £ 0.0014

0.348 £ 0.0012
0.318 £ 0.0008
0.342 £ 0.0017

0.335 £ 0.0013
0.313 £ 0.0007
0.330 £ 0.0008

0.321 £ 0.0010
0.305 + 0.0006
0.317 £ 0.0008

Table 6: Simulated values of the REFF, (from first to seventh row of each entry) and RMSE(Hy)

for unshifted and shifted Fréchet underlying parents

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

Fréchet parent (y = 0.25,s =0)

PPWM
GPPWM
PPWM]|0

PPWM]|0.1
PPWM]|0.25
CH

1.109 £ 0.0052
0.178 £0.0014
0.434 £ 0.0026
0.382 £ 0.0024
0.352 £ 0.0023
1.257 +0.0072

1.075 £+ 0.0064
0.201 £ 0.0017
0.388 £ 0.0032
0.335 £ 0.0026
0.308 £ 0.0024
1.238 +0.1605

1.035 4+ 0.0035
0.238 £ 0.0011
0.305 £ 0.0017
0.250 £ 0.0015
0.229 £ 0.0014
1.460 + 0.0078

1.023 + 0.0034
0.248 £ 0.0019
0.275 £ 0.0014
0.222 £ 0.0012
0.203 £ 0.0011
1.574 +0.0123

1.018 + 0.0034
0.260 £ 0.0018
0.244 £ 0.0011
0.192 £ 0.0010
0.176 £ 0.0010
1.795 + 0.0097

1.093 £+ 0.0039
0.260 £ 0.0018
0.309 £ 0.0015
0.256 £ 0.0013
0.238 £0.0013
1.955 + 0.0001

RMSE(Hy)

0.053 £0.3784

0.041 £ 0.3125

0.023 £ 0.2150

0.018 £ 0.1865

0.013 £ 0.1557

0.013 £0.1456

Fréchet parent (y = 0.25,s = —0.5)

PPWM
GPPWM
PPWM|0

PPWM/0.1

PPWM|0.25

CH

1.550 £ 0.0069
0.829 £ 0.0066
2.020 +0.0119
1.778 £0.0111
1.638 £ 0.0107
1.328 +0.0108

1.435 4+ 0.0063
0.988 £ 0.0085
1.909 + 0.0155
1.645 £ 0.0130
1.514 £0.0120
1.237 £ 0.0057

1.321 £0.0051
1.637 £0.0078
2.100 +0.0117
1.723 £0.0103
1.579 £ 0.0096
1.171 4+ 0.0042

1.262 £ 0.0050
1.839 £0.0138
2.046 +0.0108
1.648 £ 0.0088
1.508 £ 0.0082
1.130 £ 0.0031

1.212 £ 0.0050
1.836 £ 0.0157
2.107 + 0.0097
1.662 £ 0.0090
1.520 £ 0.0090
1.101 £+ 0.0021

1.172 £0.0031
1.833 £0.0129
2.185 +0.0104
1.806 £ 0.0095
1.679 £ 0.0095
1.072 £ 0.0020

RMSE(Hy)

0.246 £ 0.3905

0.200 £ 0.3126

0.157 £ 0.2504

0.133 £0.2150

0.113 £0.1865

0.092 £ 0.1557

depending on n and k, and with AMSE standing for asymptotic mean square error. We get

(Dekkers and de Haan, 1993)

kojge (n) = arg mkin AMSE (7 ,,)

((=2p) B2 1252 n2;/102)*1/ 17200 — k3 (n) (1 + o(1)).
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Table 7: Simulated mean values of the semi-parametric EVI-estimators under consideration, at

their simulated optimal levels for unshifted and shifted Burr underlying parents

[ n=100 n =200 n =500 n = 1000 n = 2000 n = 5000
BURR(y =0.25,p = —0.25,5 = 0)
H 0.419+0.0024  0.390+0.0028  0.365+0.0018  0.348+0.0016  0.335+0.0012  0.320 = 0.0011
PPWM 0.33040.0010  0.330+0.0011  0.323+0.0013  0.318+0.0009  0.313+0.0008  0.305 = 0.0005
GPPWM || 0.182+0.0006 0.217 +0.0006 0.237 +0.0005 0.243 +0.0002  0.247 +0.0001  0.249 + 0.0002
PPWM|0 0.340 £0.0010  0.3314+0.0011  0.324+0.0013  0.318+0.0009  0.313+0.0008  0.305 = 0.0005
PPWM[0.1 || 0.344+0.0010  0.33340.0014 0.324+0.0013  0.319+0.0010  0.313+0.0008  0.306 = 0.0005
PPWM[0.25 || 0.353+£0.0010  0.33340.0009 0.326+0.0013  0.320+0.0010  0.315+0.0007  0.307 = 0.0006
CH 0.406+0.0030  0.382+£0.0017  0.360 +0.0017  0.345+0.0018  0.333+0.0013  0.319 % 0.0009
BURR(y = 0.25,p = —0.25,5 = —0.5)
H 0.595+0.0071  0.515+0.0012  0.420+0.0023  0.390 +0.0029  0.370 +£0.0020  0.347 = 0.0015
PPWM 0.307+0.0073  0.392+£0.0010  0.341+0.0012  0.331+0.0009  0.326 £0.0009  0.318 % 0.0007
CH 0.302+0.0076  0.387+£0.0061  0.386+0.0022  0.374+0.0023  0.360+0.0020  0.344 % 0.0015
BURR(y = 0.25,p = —0.5,5 = 0)
H 0.324+0.0022 0311400012 0.297+0.0010  0.289 & 0.0006  0.283 +0.0007  0.275 =+ 0.0006
PPWM 0.300 + 0.0006  0.291 +0.0005 0.287 +0.0006 0.282 +0.0004 0.278 +0.0003  0.273 + 0.0002
GPPWM || —0.073+0.0016 0.025+0.0015 0.101+0.0010  0.138+0.0009  0.164 & 0.0007  0.187 % 0.0008
PPWM]|0 0.303+0.0000  0.207+0.0004 0.289+0.0006  0.283+0.0004  0.279+0.0003  0.273 % 0.0002
PPWM|0.1 || 0.311+£0.0010  0.307-£0.0008 0.299 +0.0008  0.204+0.0005  0.289+0.0004  0.283 % 0.0003
PPWM|0.25 || 0.320+0.0011  0.314+0.0008  0.306 £0.0009  0.301 +0.0007  0.2050.0005  0.289 = 0.0003
CH 0.307+0.0012  0.207+0.0010 0.288+0.0007 0.283+0.0004  0.278 +£0.0005  0.272 % 0.0004
BURR(y = 0.25,p = —0.5,5 = —0.5)
H 0.386+0.0025  0.360+£0.0024  0.338+0.0014  0.324+0.0014  0.314£0.0013  0.301 % 0.0008
PPWM 0.326+0.0013  0.318+£0.0011  0.310+0.0009  0.305=0.0007  0.300 & 0.0006  0.293 % 0.0004
CH 0.349+0.0023  0.340+0.0015 0.327+0.0014  0.317+0.0010  0.308+0.0010  0.298 % 0.0007

For the Hill estimator, we have, in (9), 0, = v and b, = 1/(1 — p). Consequently, with
(3, p) any consistent estimator of the vector (8, p) of second-order parameters, (22) justifies

asymptotically the estimator

~

Kot o= (1= p)Pn 2 (=2p67) 1. (23)

Moreover, provided that vk (n/k)? — ), finite, and with by, = 1+ 8(n/k)?/(1 — p),
\/E{%Iin/v — byn,p} is approximately A(0,1). We may then get approximate 100(1 — a)%
confidence intervals (CI’s) for v,

g Vi

bk,n,p + flfa/2/\/E’ bk,n,p - 51704/2/\/%

, (24)

22



Table 8: Simulated values of the REFF,; (from first to seventh row of each entry) and RMSE(Hy)

for unshifted and shifted Burr underlying parents

n = 100

n = 200

n = 500

n = 1000

n = 2000

n = 5000

BURR(y = 0.25, p = —0.25,s = 0)

PPWM
GPPWM
PPWM|0

PPWM]|0.1
PPWM]|0.25
CH

1.517 + 0.0061
1.642 4 0.0118
1.514 + 0.0061
1.483 + 0.0060
1.428 + 0.0058
1.148 + 0.0049

1.413 + 0.0057
2.055 + 0.0136
1.411 + 0.0057
1.385 + 0.0057
1.341 + 0.0059
1.118 + 0.0026

1.314 + 0.0061
2.676 + 0.0155
1.314 + 0.0061
1.290 4 0.0062
1.249 4 0.0064
1.088 + 0.0025

1.256 + 0.0045
3.244 4 0.0174
1.256 4 0.0050
1.233 4 0.0050
1.194 4 0.0050
1.069 + 0.0023

1.212 + 0.0045
3.945 + 0.0249
1.212 + 0.0045
1.190 4 0.0045
1.152 + 0.0044
1.057 4 0.0018

1.166 + 0.0045
5.099 + 0.0343
1.166 4 0.0045
1.144 + 0.0045
1.107 4 0.0044
1.042 £ 0.0012

RMSE(Ho)

0.237 £ 0.2639

0.196 £ 0.2142

0.155 £ 0.1672

0.131 £0.1397

0.112 £ 0.1172

0.092 £ 0.0931

BURR(y

=0.25p=—-0.255=—0.5)

PPWM
GPPWM
PPWM|0

PPWM]|0.1
PPWM]|0.25
CH

1.837 £ 0.1695
2.851 +0.0205
2.629 £ 0.0106
2.576 £ 0.0104
2.480 £ 0.0101
1.100 £+ 0.1911

1.706 + 0.0054
3.512 +0.0233
2.411 + 0.0097
2.367 £ 0.0097
2.292 + 0.0101
1.107 £ 0.1808

1.521 4+ 0.0067
4.124 + 0.0239
2.025 + 0.0095
1.988 + 0.0095
1.926 + 0.0098
1.264 £ 0.0092

1.417 £+ 0.0060
4.860 + 0.0260
1.881 + 0.0075
1.847 £ 0.0075
1.789 £ 0.0075
1.195 £ 0.0078

1.334 + 0.0060
5.768 + 0.0364
1.772 + 0.0065
1.739 £ 0.0065
1.684 £+ 0.0064
1.146 £+ 0.0036

1.255 4+ 0.0044
7.310 + 0.0049
1.671 £ 0.0060
1.640 £ 0.0062
1.588 £ 0.0064
1.100 £ 0.0030

RMSE(Ho)

0.412 £ 0.5130

0.334 £ 0.5092

0.239 £ 0.3007

0.197 £ 0.2315

0.164 £ 0.1864

0.132 £0.1442

BURR(y =0.25,p = —0.5,5s =0)

PPWM
GPPWM
PPWM|0

PPWM/0.1

PPWM|0.25

CH

1.299 £ 0.0050
0.312 £ 0.0020
1.223 £ 0.0052
1.048 £ 0.0054
0.927 £ 0.0052
1.422 + 0.0066

1.230 4+ 0.0051
0.350 £ 0.0030
1.173 £0.0051
0.978 £ 0.0054
0.850 £ 0.0056
1.383 + 0.0065

1.168 + 0.0053
0.391 £ 0.0027
1.130 £ 0.0052
0.909 + 0.0046
0.788 £ 0.0043
1.337 + 0.0052

1.134 £ 0.0039
0.415 £ 0.0023
1.105 £ 0.0040
0.866 £ 0.0034
0.744 £ 0.0034
1.300 + 0.0057

1.106 £ 0.0039
0.434 £ 0.0026
1.084 £ 0.0038
0.828 £ 0.0031
0.705 £ 0.0028
1.262 + 0.0045

1.085 £ 0.0037
0.456 £ 0.0034
1.070 £ 0.0036
0.789 £ 0.0029
0.665 £ 0.0028
1.230 + 0.0048

RMSE(Ho)

0.119 £ 0.4294

0.095 £ 0.3625

0.072 £ 0.2983

0.059 £ 0.2617

0.048 £ 0.2316

0.038 +0.1.994

BURR(y = 0.25,p = —0.5,s = —0.5)

PPWM
GPPWM
PPWM|0

PPWM]|0.1
PPWM]|0.25
CH

1.486 + 0.0056
0.537 & 0.0035
2.105 = 0.0090
1.803 + 0.0094
1.597 + 0.0090
1.354 + 0.0109

1.379 £ 0.0056
0.606 £ 0.0052
2.034 +0.0089
1.695 £ 0.0094
1.488 + 0.0097
1.290 £ 0.0055

1.277 + 0.0054
0.689 4 0.0047
1.988 + 0.0091
1.599 4 0.0080
1.387 £ 0.0075
1.229 4 0.0033

1.223 + 0.0045
0.744 + 0.0041
1.982 + 0.0072
1.553 4 0.0062
1.335 4 0.0061
1.186 4 0.0045

1.179 £ 0.0045
0.796 & 0.0048
1.986 £ 0.0069
1.516 = 0.0057
1.292 + 0.0051
1.150 £ 0.0038

1.138 £ 0.0042
0.859 & 0.0064
2.017 + 0.0068
1.487 + 0.0054
1.254 + 0.0053
1.113 = 0.0030

RMSE(Hy)

0.206 + 0.4335

0.165 £ 0.3625

0.127 £ 0.2983

0.106 £ 0.2617

0.089 £ 0.2316

0.071 £ 0.1994

where &, is the p-quantile of a A(0,1) d.f. If A = 0, we need to replace in (24) the bias
summand B(n/k)?/(1 — p) by 0, i.e. we should consider by, , = 1, in (24).

The same does not happen with the PPWM and PORT-PPWM EVI-estimators, with an

asymptotic variance (o

PPWM|q

23

) and a dominant component of bias (b

PPWM\q)

dependent on 7.




In this situation, it is sensible to use the bootstrap methodology for the adaptive PPWM and
PORT-PPWM EVlI-estimation. Just as in Gomes and Oliveira (2001), for the estimation
of v through the Hill estimator, in Gomes et al. (2009, 2012b), for adaptive reduced-bias
estimation and in Brilhante et al. (2012) for a MOP EVI-estimation, let us consider the
auxiliary statistic,

Tk.,n = /?ik/%,n - ’%:,n7 k= 27 s, L. (25)

On the basis of results similar to the ones in Gomes et al. (2000) and Gomes and Oliveira
(2001), we can get, for the auxiliary statistic 7}, in (25), the asymptotic distributional

representation,

Tiw = 00 Qi/VE+be (22— 1) A(n/k) + 0,(A(n/k)),
with @ asymptotically standard normal, and (bs,0,) given in (9). The AMSE of Ty, is
thus minimal at a level ks (n) such that vk A(n/k) — N # 0, i.e. alevel of the type of
the one in (22), with b, replaced by be(2” — 1), and we consequently have

Fojge (1) = ko () (1 = 2) 7% (1+ o(1)).

Then, given the sample X, = (Xi,...,X,) from an unknown model F', consider for any
ny = O(n'~°), with 0 < € < 1, the bootstrap sample X, = (X7,..., X} ), from the model
Fr(xz) = 23" I1x,<a), the empirical d.f. associated with the original sample X,,. Next,
associate to that bootstrap sample the corresponding bootstrap auxiliary statistic, denoted
T3 ny» 1 < k1 < ni. Then, with the obvious notation kg, (n1) = argming, AMSE(T} ,.,),
ko (na)/kopr(n) = (nl/n)_% (I + o(1)). Consequently, for another sample size ny =

|n?/n], we have ,
(k3|:r(n1))

kSIT(TLQ)

We are now able to estimate kg(n), on the basis of any estimate p of p. With l%gT denoting

= kor(n)(14+0(1)), as n — oo.

*

the sample counterpart of kj,, and taking into account (22), we can build the kq-estimate,

S B 2
. . 1—2°) =2 (kX (n
ko, = ko (n;ny) := min (n— 1, L( - ) 5 ( o v) J + 1), (26)
ko (Ini/n) +1)
and the y-estimate
ﬁ/; = ﬁ/;(na 77/1) = ﬁ/ica*(n;nl),n' (27>
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4.1 An algorithm for the adaptive EVI-estimation

Now, and with %,EEWM defined in (7), the algorithm is the following:

1. Given a sample (21, x9,...,x,), compute, for tuning parameters 7 = 0 and 7 = 1, the

observed values of p,(k) in (19).

2. Consider {p-(k)} i, with IC = ([n%9], [n?9]), compute their median, denoted 7,,
and compute I := >, - (p-(k) — n.)°, 7 = 0,1. Next choose the tuning parameter
7 = 01if Iy < I; otherwise, choose 7" = 1 and compute p = p,« = p«(ky1), with ky
given in (20).

SPPWM 1o 9

3. Compute 7, ,n—1.

4. Next, consider the set {n;} of the m values in N' = ([n% |, [n%]) with n% = o(n),
1=1,2, 0, <05, say 6, =0.95 and 6, = 0.999. For j from 1 until m do:

4.1 Compute ng; = |ni;/n] + 1.

*

4.2 For [ from 1 until B, generate independently B bootstrap samples (z7,...,z} )

» Mg

* * * * 3 3
and (xl,...,xmj,xmjﬂ, e ,xm],), of sizes ng; and nyj;, respectively, from the
empirical d.f. Fy(r) = -> ", Iix,<s} associated with the observed sample

(1, .., Tp).

4.3 Denoting Ty, the bootstrap counterpart of Tj/;"™, defined in (25), obtain, for
1 <1< B, tg,, 1 <k<mny and ty, . 1 <k <ny the observed values of
the statistics T,:"m_j, 1 =1,2. For k =2,...,n;; — 1, compute

MSE*(nyj, k (28)

knz], )

||Mm

and obtain l%aT(nij) 1= arg miny <x<p,,, MSE"(n4;, k), i = 1, 2.

5. Obtain j* := arg min; < j<,, MSE*(ny;, 12:3|T(n1j))

6. Compute the threshold estimate ko, = kbPWM in (26) using l%aT(nij*), i=1,2.

7. Obtain PPWM* = 4PPWM = 4PPWM (., ) o= Yioo.m» lready provided in (27).
A similar procedure can be used for the bootstrap data-driven estimation for the Hill esti-
mator, in (5) and for the GPPWM estimator, in (14). Note also that bootstrap confidence

intervals are easily associated with the estimates presented, through the replication of steps

from 4. up to 7. of this algorithm r; times.
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Remark 2. Notice that the bootstrap mean square error of the auziliary statistic, Ty,
defined in (25), tends do decrease as my increases. That tendency is usually affected by
several peaks due to the effect of the random re-sampling. The adaptive choice of j in STEP
5. may not be the best one, but at least it helps us to avoid values of ny with a large
MSE*(n4j, k). In practical applications we advise a sensitwity analysis of the performance

of the methodology to the choice of the sample size ny.

4.2 Application to simulated samples

We now consider the performance of the Algorithm in Section 4.1 to the analysis of three

simulated samples, of size n = 1000, from the models EV(0.2), EV(0.4) and Student’s-

ts, generated from different seeds. We have selected the EVI-estimators 3;!,, Jon "\ and

‘yPPWM‘q, g = 0, 0.1 and 0.25, in (5), (7) and (13), respectively. Since Student’s-t3 has

k.n
an infinite left endpoint, the EVI estimator &:zwwo was excluded for the corresponding

samples. Figure 10 presents the EVI-estimates, as a function of k, associated to %’In, /V\,EI:LWM

and &EEWMM. Notice that the PPWM and PPWM]|q have a much smooth sample path and
we have always a high positive bias, due to the fact that we are considering models with a

second order parameter p, in (8), close to 0 (|p| < 1).

0.40 ' 0.50
0.50 +
0.35 1 0.45 4
0.30 0457 0.40
0.25 1 0.40 0.35 1
T

0.20 | 0.35 0.30
0.15 + ‘ 0.25 4

| —_ H§0§ —— P|0.25 P|O 0.30 1 — H§0§ —— P|0.25 P|O —_ Héog — P|0.25
0.10 4 — pP(0) — Pjlo1 — pP(0) — POl 0.20 4 — pPl0) — POl
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0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 9: Adaptive bootstrap estimates of the EVI for one sample of size n = 1000 of the
models EV(0.2) (left), EV(0.4) (center) and Student’s-t3 (right).

The above mentioned Algorithm was applied with 8;,=0.95, #,=1 and B = 400 bootstrap
samples. In Table 9 we present the values of RMSE" := \/MSE*(nlj*, /%aT(nlj*)), with j*
given in STEP 5, ko, in STEP 6 and Y. in STEP 7. The best adaptive EVI-estimates, in

the sense of minimal squared bias, are presented in bold. This data analysis leads us to
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the conclusion that the lowest bias in the EVI-estimation is obtained with the PPWM|q
estimators. For EV parents, the parameter ¢ = 0 appears to be the best choice. Moreover,
relying on the observed results for the EVI-estimates for Student’s-t3 sample, it is sensible
to discard small values of ¢, probably due to the fact that the PPWM]|0 is inconsistent.
In Figures 10-12 we further provide the same simulated quantities, but as function of the
sub-sample size ny. The bootstrap Hill estimates are indeed much more unstable than the
same estimates for PPWM and PPWM|q. For the PPWM and PPWM|q estimators, the

bootstrap methodology is very resistant to the choice of n;.

Table 9: Adaptive bootstrap estimates of the RMSE of the auxiliary statistic 7, the

optimal level, /%0*, and the EVI, 4,, for the three samples under study.
| | H PPWM PPWMj0 PPWM[0.I PPWM[0.25

EV(v) sample, v = 0.2

RMSE* || 1.074  0.375 0.313 0.348 0.361
ko 16 21 27 23 22
oA 0.332  0.304 0.250 0.277 0.290

EV(v) sample, v = 0.4

RMSE* || 0.999  0.825 0.435 0.612 0.732
ko- 61 69 90 77 74
R 0.554  0.454 0.413 0.433 0.446

Student-t; sample (y = 0.3(3))

RMSE* || 0.978  0.664 — 0.221 0.366
ko 51 22 — 98 85
R 0.451  0.354 — 0.269 0.322

4.3 Small scale simulation study

In this section, we have implemented a small Monte Carlo simulation, to obtain the distri-

butional behaviour of the adaptive EVI-estimation through the EVI-estimators ?,Ijn, W};EWM

and ’y,iiWM‘q in (5), (7) and (13), respectively. Due to the time intensive nature of the
adaptive algorithm, we have restricted the study to 100 runs, samples of size n = 100, 200,

500 and 1000 and to the following underlying parents:
1. Student’s ¢, with v = 2, 3 and 4 degrees of freedom (v = 0.25, p = —0.5);
2. EV d.f, in (1), with v = 0.2, 0.4 and 0.6.
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Figure 10: Adaptive bootstrap estimates of the RMSE of the auxiliary statistic 7T}, as
function of ny, for the three samples of the models EV(0.2) (left), £V (0.4) (center) and

Student’s-t3 (right).
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Figure 11: Adaptive bootstrap estimates of the optimal level, 12:0*, as function of nq, for the

three samples of the models £V (0.2) (left), EV(0.4) (center) and Student’s-t3 (right).
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Figure 12: Adaptive bootstrap estimates of the EVI, 4., as function of ny, for the three
samples of the models EV'(0.2) (left), EV(0.4) (center) and Student’s-t3 (right).

Notice that both Student-to and EV(0.6) d.f.’s have v >= 0.5 and are out of the scope of

Theorem 3. The simulated mean values and RMSE are presented in Table 10. The smallest
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squared bias and RMSE are written in bold. As expected, the adaptive bootstrap algorithm
performs worse with the Hill estimator. The smallest RMSE is almost always provided by the
PPWM]|q estimators. Regarding squared bias, the smallest values are achieved by PPWM]|q
estimators, for EV and Student’s-t5 parents and by PPWM estimators for Student’s-t3 and

t4 parents.

4.4 A case study

We shall finally consider an illustration of the performance of the algorithm is Section 4.1,
with the n = 2049 daily negative log returns, —100In(z;/x;_1), from the Euro-Swiss Franc
exchange rate, from January 4, 1999 till December 29, 2006. In Figure 13, we picture, at the
left, the values of the negative log returns. At the right, we present, a normal Q-Q plot of the
data. The graphical analysis lead us to a immediate conclusion that the underlying model
has heavier tails than the normal distribution. For this type of data, Student-t, with v > 0 or
Skew—t, are possible candidates for the underlying model of the data. The probable infinite
left endpoint led us to make use of the PORT-PPWM EVI-estimator with only ¢ = 0.25.

21 2
1 14
%3 5
g o0 ¢ o
g g
&
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_2 - _2 -
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2000 2002 2004 2006 -3 -2 -1 0 1 2 3

date Theoretical Quantiles

Figure 13: Daily negative log-returns (left) and corresponding Normal QQ Plot (right)

In Figure 14 (left) we present the EVI-estimates, as function of k, provided by H, PPWM
and PPWM]|0.25. The application of the algorithm led us to p = —0.675 and to the estimates
provided in Table 11. The EVI bootstrap estimates 47 and 4YPWM are very close and both
slightly larger that ’yf PWMI0.25 1) Figure 14, we picture at the right, as a function of the sub-

sample size nq, ranging from |n%% | until n,., where n . denotes the number of positive values
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Table 10: Simulated mean values / RMSE of the bootstrap adaptive EVI-estimators for
underlying EV and Student ¢, parents.

| n| H | PPWM | PPWMjo | PPWM0.I | PPWM|0.25 |
EV(y) parent, v = 0.2
100 | 0.417 / 0.293 | 0.358 / 0.223 | 0.302 / 0.153 | 0.313 / 0.173 | 0.308 / 0.168
200 | 0.343 / 0.219 | 0.301 / 0.170 | 0.279 / 0.124 | 0.318 / 0.163 | 0.287 / 0.159
500 | 0.341 / 0.191 | 0.284 / 0.145 | 0.262 / 0.110 | 0.281 / 0.125 | 0.294 / 0.138
1000 | 0.350 / 0.188 | 0.283 / 0.134 | 0.255 / 0.086 | 0.250 / 0.108 | 0.296 / 0.125
EV(v) parent, v = 0.4
100 | 0.571 / 0.307 | 0.472 / 0.209 | 0.431 / 0.150 | 0.436 / 0.172 | 0.417 / 0.157
200 | 0.504 / 0.220 | 0.429 / 0.164 | 0.406 / 0.131 | 0.451 / 0.153 | 0.402 / 0.164
500 | 0.510 / 0.193 | 0.411 / 0.154 | 0.415 /0.121 | 0.414 / 0.133 | 0.421 / 0.134
1000 | 0.516 / 0.176 | 0.424 / 0.137 | 0.411 / 0.095 | 0.380 / 0.137 | 0.447 / 0.093
EV, parent, v = 0.6
100 | 0.745 / 0.340 | 0.593 / 0.204 | 0.553 / 0.184 | 0.565 / 0.193 | 0.532 / 0.189
200 | 0.681 / 0.244 | 0.548 / 0.185 | 0.558 / 0.148 | 0.580 / 0.164 | 0.527 / 0.197
500 | 0.667 / 0.188 | 0.548 / 0.187 | 0.570 / 0.145 | 0.564 / 0.137 | 0.555 / 0.157
1000 | 0.705 / 0.166 | 0.568 / 0.164 | 0.574 / 0.117 | 0.535 / 0.177 | 0.597 / 0.086
Student ¢4 parent (y = 0.25)
100 | 0.359 / 0.192 | 0.320 / 0.147 | —— / —— | 0.210 / 0.100 | 0.256 / 0.108
200 | 0.338 / 0.210 | 0.278 / 0.128 | —— / —— | 0.216 / 0.085 | 0.242 / 0.102
500 | 0.344 / 0.142 | 0.276 / 0.103 | — / —— | 0.214 / 0.065 | 0.255 / 0.068
1000 | 0.329 / 0.106 | 0.280 / 0.089 | —— / —— | 0.223 / 0.056 | 0.248 / 0.073
Student t¢3; parent (v = 0.3(3))
100 | 0.397 / 0.212 | 0.359 / 0.169 | —— / —— | 0.264 / 0.120 | 0.275 / 0.137
200 | 0.374/ 0.169 | 0.323 / 0.142 | —— / —— | 0.265 / 0.099 | 0.295 / 0.115
500 | 0.400 / 0.144 | 0.332 / 0.133 | —— / —— | 0.263 / 0.091 | 0.321 / 0.059
1000 | 0.401 / 0.100 | 0.346 / 0.094 | —— / —— | 0.274 / 0.077 | 0.307 / 0.070
Student ¢, parent (y = 0.5)
100 | 0.597 / 0.240 | 0.509 / 0.185 | —— / —— | 0.364 / 0.186 | 0.395 / 0.204
200 | 0.566 / 0.191 | 0.475 / 0.154 | —— / —— | 0.351 / 0.175 | 0.410 / 0.153
500 | 0.549 / 0.126 | 0.493 / 0.141 | — / —— | 0.365 / 0.150 | 0.421 / 0.133
1000 | 0.539 / 0.112 | 0.472/ 0.130 | —— / —— | 0.370 / 0.138 | 0.446 / 0.091
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of the sample. The EVI-estimates 4 and 4P¥WM have some volatility, while 4. are

almost independent of the choice of the sub-sample size n;.
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Figure 14: EVI-estimates for the daily negative log returns data, as a function of k (left)

and adaptive EVI-estimates as function of the sub-sample size n;.

Table 11: Adaptive bootstrap estimates of the optimal level, 1%0*, and the EVI, 4,, for the

negative log returns data.

H PPWM PPWM |0.25
ki | 40 48 67
4% | 0264  0.268 0.230
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