Publications

Export 41 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Rebelo, Hugo Bento, and Corneliu Cismasiu. "A Comparison between Three Air Blast Simulation Techniques in LS-DYNA." 11th European LS-DYNA Conference 2017. Salzburg, Austria: DYNAMORE, 2017.
Joaquim, Ana, Corneliu Cismasiu, Filipe Santos, and Elsa Caetano. "Estimation of the tensile force in the stay-cables of Salgueiro Maia Bridge using ambient vibration tests." ISDAC2017 - International Symposium on the Dynamics and Aerodynamics of Cables. Porto: FEUP, 2017. artigo_isdac_v5_ec.pdf
Cristina, C., M. Pop, C. Cismasiu, J. Timea, and A. Popa. "Seismic retrofiting of an existing steel structure." 17th International Multidisciplinary Scientific GeoConference SGEM 2017. Albena; Bulgaria 2017.
Rebelo, Hugo Miguel Bento, Corneliu Cismasiu, Válter José Guia da Lúcio, Manuel Tomás Marques Souto do Gonçalves, Gabriel Jesus de Gomes, and José Pedro Fernandes Basto. "Numerical Simulation of Blast Effects on Fibre Grout Strengthened RC Panels." International Conference on Structural and Mechanical Engineering for Security and Prevention 2017. Prague, Czech Republic 2017.
Rebelo, Hugo Bento, Corneliu Cismaşiu, Válter J. G. Lúcio, Manuel T. M. S. Gonçalves, Gabriel J. Gomes, and José P. F. Basto. "Numerical Simulation of Blast Effects on Fibre Grout Strengthened RC Panels." Structural and Mechanical Engineering for Security and Prevention. Vol. 755. Key Engineering Materials, 755. Trans Tech Publications, 2017. 18-30. Abstract

The present paper aims to examine the potential of the Applied Element Method (AEM) in simulating the blast effects in RC panels. The numerical estimates are compared with the results obtained in an experimental campaign designed to investigate the effectiveness of fibre grout for strengthening full scale RC panels by comparing the effects that a similar blast load produces in a reference and the strengthened panel. First, a numerical model of the reference specimen was created in the software Extreme Loading for Structures and calibrated to match the experimental results. With no further calibration, the fibre reinforced grout strengthening was added and the resulting numerical model subjected to the same blast load. The experimental blast effects on both reference and strengthened panels, despite the lack of high speed measurement equipment (pressure, strains and displacements sensors), compare well with the numerical estimates in terms of residual and maximum displacements, showing that, once calibrated, the AEM numerical models can be successfully used to simulate blast effects in RC panels.

Cismasiu, C., A. P. Ramos, I. D. Moldovan, D. F. Ferreira, and J. B. Filho. "Applied element method simulation of experimental failure modes in RC shear walls." Computers and Concrete. 19.4 (2017): 365-374.
2016
Rebelo, Hugo, Gabriel Gomes, and Corneliu Cismasiu. "Simulação Numérica do Efeito de Explosivos em Painéis de Betão Armado Reforçados com Argamassas Armadas." BE2016. FCTUC 2016.
Santos, F., C. Cismasiu, R. Perdigão, V. Bernardo, J. Sampayo, P. Candeias, A. Costa, A. Carvalho, and L. Guerreiro COMPORTAMENTO SÍSMICO DE LIGAÇÕES EM PASSADIÇOS PRÉ-FABRICADOS. 10º Congresso Nacional de Sismologia e Engenharia Sísmica. Ponta Delgada, 2016.artigosismica2016_submetido.docx
Amarante dos Santos, Filipe, Corneliu Cismasiu, and Chiara Bedon. "Smart glazed cable facade subjected to a blast loading." Proceedings of the Institution of Civil Engineers - Structures and Buildings. 3.169 (2016): 223-232.
Amarante dos Santos, Filipe, and Corneliu Cismaşiu. "Adaptive underslung beam using shape-memory alloys for frequency-tuning." Journal of Intelligent Material Systems and Structures (2016). AbstractWebsite

The present article addresses the study of an adaptive-passive beam structure with a shape-memory alloy based actuator. In order to mitigate adverse dynamic effects resulting from externally induced vibrations, the structure is able to automatically tune its natural frequency to avoid resonance. The adaptive-passive beam configuration is based on an underslung cable-stayed girder concept. Its frequency tuning is achieved by temperature modulation of the shape-memory alloy elements through a closed-loop control process based on a proportional-integral-derivative algorithm. The effectiveness of the proposed control solution is substantiated by numerical simulations and experimental tests on a small-scale prototype. The validated numerical model enables the simulation of the proposed control approach in a real-scale footbridge, subjected to a prescribed pedestrian loading. The results are very encouraging and show that, by activating the shape-memory alloy elements, the system is able to successfully shift its natural frequency and to mitigate the effects of induced vibrations.

2015
Bedon, Chiara, Filipe Santos, Claudio Amadio, and Corneliu Cismasiu. "Passive and active control systems for adaptive glazing systems and envelopes." European COST Action TU1403 "Adaptive facades network" Industry Workshop. Delft, The Netherlands 2015.
Amarante dos Santos, Filipe, Corneliu Cismasiu, and Chiara Bedon. "Smart glazed cable façade subjected to a blast loading." Proceedings of the Institution of Civil Engineers-Structures and Buildings (2015): 1-10. Abstract

This paper investigates the dynamic behaviour of cable-supported glazing façades
subjected to medium-level air blast loads. Preliminary numerical studies are carried-out in
SAP2000 by means of a geometrically refined and simplified lumped-mass finite-element
numerical model, in order to assess the major effects of the design blast load in the main
façade components. As shown, both the glass panels and the cable system are able to
properly accommodate the incoming impulsive loads, typically involving extreme ...

2014
Cismasiu, Corneliu, Filipe Amarante P. dos Santos, and Ana I. M. Rodrigues. "Experimental and FE updating techniques for the unseating vulnerability assessment of a footbridge structure." The 4th International Conference on Dynamics, Vibration and Control. Shanghai, China: Shanghai Institute of Applied Mathematics and Mechanics, 2014. icdvc_2014.pdf
Cismaşiu, C., A. Narciso, and F. Amarante dos Santos. "Experimental Dynamic Characterization and Finite Element Updating of a Footbridge Structure." Journal of Performance of Constructed Facilities.10.1061/(ASCE)CF.1943-5509.0000615 (2014).Website
dos Santos, Filipe Amarante P., Corneliu Cismasiu, Pedro F. Gonçalves, and Mauricio Gamboa-Marrufo. "Smart glass facade subjected to wind loadings." Structures and Buildings. 167.12 (2014): 1-10.
Bernardo, Vasco, André Oliveira, Filipe Amarante dos Santos, and Corneliu Cismasiu Vulnerabilidade e reforço sísmico de uma passagem superior pedonal pré-fabricada. 5as Jornadas Portuguesas de Engenharia de Estruturas. Lisboa, 2014.artigo_jpee2014.pdf
2013
Cismasiu, Corneliu, and Filipe Pimentel Amarante dos Santos. "Shape Memory Alloys in Structural Vibration Control. Research at UNIC/DEC/FCT/UNL." International Conference "Tradition and Innovation". 60 Years of Civil Engineering Higher Education in Transilvania. Cluj-Napoca, Romania: UTCN, 2013. c60.pdf
dos Santos, Amarante F. P., and C. Cismasiu. "Bridge Hinge-Restrainers Built up of NITI Superelastic Shape-Memory Alloys." New Trends in Smart Technologies . Eds. Christian Boller, and Hartmut Janocha. Saarbrücken: Fraunhofer Verlag, 2013. 195-203.
and Amarante dos Santos, F. P. and Cismaşiu, Pamies Teixeira C. J. "Semi-active vibration control device based on superelastic NiTi wires." Structural Control and Health Monitoring. 20 (2013): 890-902.Website
2012
Cismasiu, C., and Amarante F. P. dos Santos. "Towards a semi-active vibration control solution based on superelastic shape memory alloys." 15th WCEE. Lisbon, Portugal 2012. 2012_wcee_0379.pdf
2011
dos Santos, Amarante F. P., and C. Cismasiu. "Bridge hinge-restrainers built up of NiTi superelastic shape-memory alloys." Smart Structures and Materials (SMART'11). 5th ECCOMAS Thematic Conference on Smart Structures and Materials SMART'11. Saarbrücken, Germany 2011. Abstractsantos_2011.pdf

n/a

de Freitas, J., I. Moldovan, and C. Cismaşiu. "Hybrid-Trefftz displacement element for poroelastic media." Computational Mechanics (2011): 1-15. AbstractWebsite

The elastodynamic response of saturated poroelastic media is modelled approximating independently the solid and seepage displacements in the domain and the force and pressure components on the boundary of the element. The domain and boundary approximation bases are used to enforce on average the dynamic equilibrium and the displacement continuity conditions, respectively. The resulting solving system is Hermitian, except for the damping term, and its coefficients are defined by boundary integral expressions as a Trefftz basis is used to set up the domain approximation. This basis is taken from the solution set of the governing differential equation and models the free-field elastodynamic response of the medium. This option justifies the relatively high levels of performance that are illustrated with the time domain analysis of unbounded domains.

2010
by Cismasiu, Edited Corneliu Shape Memory Alloys. Scyio, 2010.Website
Cismasiu, Corneliu, and Filipe Amarante Dos P. Santos. "Shape Memory Alloys." Ed. Book Corneliu edited by: Cismasiu. ISBN: 978-953-307-106-0. Croatia: Scyio, Publishing, 2010. 127-154. Abstract
n/a
dos Santos, Amarante F. P., and C. Cismasiu. "Comparison Between Two SMA Constitutive Models for Seismic Applications." Journal of Vibration and Control. 16 (2010): 897-914. AbstractWebsite

This paper analyses and compares the dynamic behavior of superelastic shape memory alloy (SMA) systems based on two different constitutive models. The first model, although being able to describe the response of the material to complex uniaxial loading histories, is temperature and rate independent. Thesecond model couples the mechanical and kinetic laws of the material with a balance equation considering the thermal effects. After numerical validation and calibration, the behavior of these two models is tested in single degree of freedom dynamic systems, with SMAs acting as restoring elements. Different dynamic loads are considered, including artificially generated seismic actions, in a numerical model of a railway viaduct. Finally, it is shown that, in spite of its simplicity, the temperature- and rate-independent modelproduces a set of very satisfying results. This, together with its robustness and straightforward computational implementation, yields a very appealing numerical tool to simulate superelastic passive control applications.