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Abstract. The numerical analysis of the wave propagation problem, from elastic to 
electromagnetic waves, is often faced with the problem of dealing with unbounded media. 
Since the domain of finite-difference and finite element methods must be itself finite, various 
truncation techniques have been proposed over the last decades, such as absorbing boundary 
conditions (Lysmer and Kuhlemeyer [1]), infinite elements (Bettess [2]) and absorbing 
boundary layers (such as the Perfectly Matched Layer, or PML, introduced by Bérenger [3]).

In this paper, the Caughey Absorbing Layer Method (CALM), proposed by Semblat et al.
[4], is implemented in the commercial finite element software Ansys, using an implicit 
dynamics formulation. It is tested for one- and two-dimensional problems and its efficiency is 
compared with that of the Lysmer-Kuhlemeyer absorbing boundaries. The dependency on 
material parameters, loss factor and load frequency is also tested. 

To mitigate the problem of wave reflection at the interface between the medium of interest 
and the absorbing layer, different variations of damping along the layer’s length are tested and 
their efficiency compared. 

By analysing the maximum displacement and the L2-norm of the displacement field, the
implementation of the CALM in Ansys is shown to be effective at mitigating the problem of 
spurious wave reflection at the boundaries. Their performance is clearly superior to the 
Lysmer absorbing boundary conditions, but at a greater computational cost due to the 
additional degrees of freedom. 

The quadratic variation of the Rayleigh damping has proved to be the most effective, and 
an estimate of the optimum loss factor as a function of the length of the layer in relation to the 
wavelength to absorb was proposed. Although the optimal damping is frequency dependent, it 
was shown to work well even if the frequency is overestimated or greatly underestimated. 
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1 INTRODUCTION 
One of the most significant drawbacks in the numerical study of elastic wave propagation 

in solids, particularly when using the finite element (FE) method (Hughes [5]), is the 
difficulty to simulate a semi-infinite or unbounded domain. 

This is the case in the analysis of soil vibrations: although the area of interest may be 
relatively small, it is neither confined to a closed space nor isolated from the surrounding soil. 
This means that simply modelling the area of interest without special considerations will 
result in spurious reflections of the elastic waves at the boundaries of the model. These 
reflections will become superimposed with the actual solution, making it inaccurate. 

In an analytical analysis, it is common to admit the soil as a semi-infinite medium. This 
approach was employed by Boussinesq, who studied the stresses on the soil due to a static 
load (see Karol [6]). Since this is not possible in standard FE formulation, other approaches
must be employed to simulate such an unbounded domain. 

1.1 Infinite media truncation techniques 
The main approaches to the problem of infinite and semi-infinite media truncation are: (i) 

local absorbing boundary conditions (Lysmer and Kuhlemeyer [1]); (ii) the boundary element 
method (Banerjee and Butterfield [7]); (iii) the infinite element method (Bettess [2]); (iv) 
absorbing layers, including Perfectly Matched Layers (PML, Bérenger [3]) and the Caughey 
Absorbing Layer Method (CALM, Semblat et al. [4]).

The local absorbing boundary conditions are among the simpler methods, but may lead to 
instabilities when there are discontinuities in the boundary (such as layers with different 
mechanical properties) and to rigid body motion. The rate of absorption depends on the angle
of incidence of the wave, and is usually tuned to perfectly absorb only at a normal angle. 

The boundary element method changes the nature of the numerical problem, from a 
volume discretisation to a boundary discretisation. Although it is very robust, the 
computational cost is much higher than traditional FE – for many problems where the surface 
to volume ratio is high, the boundary method may be less efficient than volume-discretisation 
methods (see Katsikadelis [8]).

The infinite element method is closer to the traditional FE approach. Essentially, it consists 
in modelling the interior domain with conventional finite elements, and using elements with a 
special shape function at the infinite boundary. These special shape functions grow without 
bound as the coordinate approaches infinity, therefore simulating an infinite element. 
Unfortunately, it is still not the norm for commercial FE software to include this formulation. 

Absorbing layer methods have been widely used since the introduction of the PML by 
Bérenger [3], but the author reports previous work on other absorbing layers (see Holland and 
Williams [9]). In essence, the absorbing layer method applies a layer of material with some 
damping capability at the boundaries of the medium of interest. Waves behave normally 
inside the medium, but decay as they travel inside the absorbing layer, attenuating or 
preventing reflections at the boundaries of the model. However, some reflection is expected to 
occur at the interface between the normal medium and the absorbing layers. 

The PML in particular can be implemented with a complex coordinate stretching (see 
Chew and Weedon [10]). The analytical formulation does not introduce reflections at the 
interface between the two materials (hence perfectly matched), but this property is partially 
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lost after discretisation. The main drawback of the PML is that its implementation is not 
straightforward, particularly in the time domain – it requires a split-field formulation or 
convolution operations. This makes it difficult to use in FE commercial software. 

The CALM, on the other hand, is not perfectly matched, but much simpler to implement. 
The absorbing layer has the mechanical properties of the medium of interest, but exhibits 
Caughey (or Rayleight) damping tuned to ensure that the rate of absorption for the desired 
frequency is above an arbitrary value. It has the advantage of being intrinsically multi-
directional, unlike local absorbing boundaries and the PML. Since it only requires 
manipulation of the FE damping matrix, it is easily implemented in FE commercial software. 

1.2 Case study 
In the present paper, the authors implement the Rayleigh formulation of the CALM in the 

commercial FE software Ansys, using implicit time integration, for one- and two-dimensional 
problems. Its performance is compared with that of the Lysmer-Kuhlemeyer local absorbing 
boundary condition by means of the maximum relative displacement and the L2-norm of the
displacement field. The CALM is shown to be clearly superior, but at a greater computational 
cost due to the additional degrees of freedom. 

To mitigate the reflections at the interface between the medium of interest and the 
absorbing layer, different variations of damping along the layer’s length are tested and their 
efficiency compared. Unlike the results obtained by Semblat et al. [4], the higher order 
polynomial variation lead to better absorption in the case study. This is accordance with what 
was observed for the PML and other absorbing layers (see Festa and Nielsen [11] and Oskooi 
and Johnson [12]). As a result, an estimate of the optimum loss factor for the quadratic 
variation as a function of the length of the layer in relation to the wavelength is proposed. 

The dependency on material parameters, loss factor and load frequency is also tested. 
Although the optimal damping is frequency dependent, the method is shown to work well 
even if the frequency is overestimated or greatly underestimated. 

2 THE CAUGHEY ABSORBING LAYER METHOD 
The method proposed by Jean-François Semblat et al. [4] was to employ absorbing layers 

with multi-direction attenuating properties. Simplicity of the formulation was an important 
factor for its development. 

The chosen approach is to define a finite elastic medium with an absorbing layer at its 
boundaries. This absorbing layer is modelled with the same element technology and material 
properties as the interior of the medium of interest, but it includes damping properties that 
greatly reduced spurious wave reflections occur at the boundaries. 

To ensure that the absorbing layer exhibits the desired properties, some considerations 
about the damping parameters to employ must be made. 

2.1 The Rayleigh damping formulation 
One of the simplest ways to define damping in FE analysis is to consider the Rayleigh 

formulation [13]: the damping matrix (C) is assumed to be a linear combination of the 
stiffness (K) and mass (M) matrixes: 
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  C M K (1) 

α and β are known as the Rayleigh coefficients. 
This approach is convenient because it can be easily computed, since FE methods already 

require the assembly of the mass and stiffness matrices. 
It is well known [14] that the loss factor (η, the ratio of energy dissipated to the energy 

stored in the system for every oscillation) is approximately double the damping ratio (ζ, the 
ratio of the damping coefficient to the critical damping coefficient), which, for Rayleigh 
damping, relates to the frequency of excitation (ω) and to the Rayleigh coefficients: 

2       (2) 

Therefore, the loss factor will be minimum when the frequency of excitation is 

0d
d
 
 
   (3) 

Since this is the minimum absorption possible, in theory if the Rayleigh coefficients is 
defined to get a desired loss factor ηmin for a certain frequency ωr, all excitations will be 
damped at least as much as the value defined. As the frequency of excitation moves away 
from ωr, the more the damping will be felt. 

The desired Rayleigh coefficients can be obtained from equations (2) and (3): 

2
2

min min r

min rr

      
    

      
(4) 

It is straightforward to apply these conclusions to the absorbing layers in study: to define 
Rayleigh damping for those layers, the coefficients to adopt can be calculated using equation 
(4), by defining the minimum loss factor as a desired value of absorption and the target 
frequency as the expected frequency of excitation for the problem at hand. 

2.2 Limitations 
In theory this methodology should work with any kind of dynamic analysis, both for time 

and frequency domain – the use of Rayleigh damping, a particular case of Caughey damping, 
ensures that the system has classical normal modes, as proved by Caughey and O’Kelly [15].

Preliminary tests have shown that the explicit central difference time integration method 
used by the LS-Dyna module of the Ansys software [16] requires an unreasonable 
computational cost to solve this problem – the time-step is five to six orders of magnitude 
lower than what is recommended for the same problem without the desired damping. 

This limitation is confirmed by the authors in their own FE implementation, using both the 
LS-Dyna the Verlet [17] integration methods – either the time-step has to be extremely small, 
or the loss factor has to be reduced to a value that makes it unsuitable to the purpose at hand. 

All models are therefore implemented in Ansys’ implicit dynamics module. This choice 
comes with its own limitations: the pre-packaged Rayleigh damping implementation applies 
the same α coefficient to the whole model. To define the desired damping, six discrete 
damping elements have to be added for each quadrilateral element of the absorbing layer. 
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3 ONE-DIMENSIONAL ABSORBING LAYER 
To test the effectiveness of the CALM, a one-dimensional problem is considered. The 

model is analogous to a rod with axial deformation only, but it is modelled as a mesh of 
quadrilateral plane stress elements, so the implementation can later be applied to a two-
dimensional model. The degrees of freedom perpendicular to the rod’s axis are constrained, 
and the objective is to simulate a semi-infinite rod (see Figure 1).

Figure 1: One dimensional model with CALM (based on Semblat et al. [4]) 

The length of the model is equal to four times the wavelength to absorb, plus the length of 
the absorbing layer, which is also a multiple of the wavelength. 

The material properties chosen are those of a hard soil, but with the Poisson ratio equal to 
zero, to model a true uniaxial problem, where there are no transversal deformations. The 
Young modulus (E) is 200 MPa and the mass density (ρ) is 2000 kg/m3. This values lead to a
pressure wave’s speed (cP) of 316.228 m/s (see Telford et al. [18]). 

The free-end of the rod is subjected to an impulse displacement, with its time history equal 
to a second-order Ricker Wavelet (see Hosken [19]):

      22 222 2
2 0 2 1 s pt t t

s pR t U t t t e       (5) 

where U0 is the maximum amplitude of the wave, t is the time coordinate, tp is the 
fundamental period of the wavelet and ts is the time shift and t is the time coordinate. 

Assuming a fundamental frequency ω = 500 rad/s, the period of the wavelet is 

2 0.012566 pt s   (6) 

The time shift was assumed to be equal to the fundamental period, and the maximum 
amplitude equal to one millimetre.

Knowing the fundamental frequency of the excitation, the wavelength of the pressure 
waves can be estimated as 

2 3.974 mP Pc      (7) 

The size of the elements was chosen to be λ/24, to reduce numerical wave dispersion. 

3.1 Absorbing layer properties 
The next step is to define the properties of the absorbing layer. Preliminary tests show that 

using a constant loss factor leads to significant reflection at the interface. This reflection can 
be controlled by reducing the loss factor, but this increases the reflections at the boundary of 
the model – there is a trade-off between having adequate absorption inside de layer and 

561



6

minimizing reflection at the interface. Even by tuning the loss factor to the best possible 
value, the maximum amplitude of the reflected waves is about 10% of the original impulse. 

To circumvent this problem, the loss factor can be assumed to grow from 0 at the interface 
to a prescribed value ηmin at the boundary. Various implementations are possible: (i) a single 
element with a continuous variation of the loss factor already factored in; (ii) a discretisation 
of the layer in multiple elements, each with continuous variation of the loss factor; (iii) a 
discretisation of both the geometry of the layer and of the variation of the loss factor (i.e.,
each element has constant loss factor across its volume, but different values for each element). 

The first approach leads to reflections due to the sudden change in element size (see 
Bazant [20]). The two other options have virtually indistinguishable results, at least for the 
level of refinement used (24 elements per wavelength). Since the discretised variation of the 
loss factor is simpler to implement, it is used exclusively in the rest of the paper. 

3.3 Parametric optimization of the loss factor 
A parametric test is then performed to find the optimum loss factor as a function of the 

absorbing layer length (habs), which varies approximately from one wavelength to five 
wavelengths at increments. The loss factor at the end of the absorbing layer, ηmin, varies in 
increments of 0.25. Of the various different variations of the loss factor along the absorbing 
layer tested, the best two are presented: linear and quadratic. 

To assess the effectiveness of each implementation, objective measures of the reflection 
must be defined. Two different quality parameters are considered: the maximum displacement 
inside the medium of interest (u(x,t)) after the Ricker wavelet has left it (t > tw), expressed as a 
percentage of the maximum applied displacement 

  max 0,
max ,

wx t t
u u x t U


 (8) 

and the time integration of the L2-norm of the displacement field inside the medium of
interest, for t > tw, as a percentage of the maximum value of the L2-norm of the displacement
field inside the medium of interest for a simulation on a long model (u∞(x,t)). To preserve 
dimensional consistency, the numerator is normalized by dividing it by the time interval: 

        2 2 2L L , max L ,
f

w

t

t f w
t

u x t dt t t u x t

 
  
 
 
 (9) 

The two quality parameters are computed for each combination of loss factor, variation and 
absorbing layer length. The best value of each as a function of the layer length is presented in 
Figure 2. It can be seen that the amplitude of the reflected waves decreases asymptotically 
with the layer’s length: the longer the path of absorption, the smoother the variation of the 
damping, and therefore less reflections occur at the interface and between elements. 

It is also clear that the quadratic variation of the loss factor leads to better results than the 
linear one. For this reason, the quadratic variation is used from here on. However, it should be 
noted that the difference is not very significant, and the linear variation is a valid approach. 

Previous works (Festa and Nielsen [11], Oskooi and Johnson [12]) have reported that high 
order polynomial variation of the damping (both for PML and other absorbing layers) leads to 
better wave absorption. Future work will test if that is also the case for the CALM. 
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Figure 2: Best value of the quality parameters as a function of the layer’s length

3.4 Optimum loss factor as a function of the layer’s length
Having the optimum values of the loss factor as a function of the layer’s length in 

proportion to the wavelength allows generalization of the obtained results to other material 
proprieties. Since the properties of the material are already taken into account in the 
calculation of the wave speed (and therefore the wavelength), it seems reasonable to expect 
the optimum loss factor to be independent of the material parameters. 

Since the Lt
2 quality parameter gives a more accurate impression of the total reflection of

the incident waves, the loss factor considered to be optimum was the one that minimized this 
parameter. These values are presented in Table 1.

Table 1: Optimum loss factor as a function of the layer’s length and estimated value

habs [m] 4 8 12 16 20
habs / λ 1.007 2.013 3.020 4.026 5.033
ηmin 2.50 1.50 1.25 1.00 0.75
ηmin

* 2.528 1.550 1.164 0.950 0.812

To express the optimum loss factor as a function of the layer’s length, different regression 
techniques are tested. The best fit is the power law, which yields the following expression: 

  0.706* 2.540min absh   (10) 

Table 1 includes the estimated loss factor using equation (10). 
The power law is a good approach from a theoretical point of view: as the length of the 

layer tends to zero, the loss factor needed to absorb the incident elastic waves grow to infinity; 
as the length grows to infinity, the loss factor diminishes until no damping is needed at all. 

To test the applicability of the proposed formula, four different combinations of material 
properties were tested (including softer materials and different Poisson ratios), as well as a 
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plane strain formulation. All results were very close to the ones obtained before. 

3.5 Detuned absorbing layer 
Since it is not always possible to clearly define the frequency content of the loads, or it 

may happen that a wide range of frequencies are relevant, it is important to test if misjudging 
the prevailing frequency does not lead to a drastic drop in the efficiency of the CALM. 

To that effect, the value assumed as the load frequency for the absorbing layer (ωr) was 
changed to take different values from the Ricker wavelet (ω). Figure 3 shows the maximum 
displacement as a function of the ratio of the load frequency to the layer frequency. 

Figure 3: Amplitude of the reflected waves as a function of the ratio of the load to layer frequency 

From the analysis of the results, one can confirm that the damping parameters defined in 
equation (4) lead to maximum absorption of the desired frequency. 

Furthermore, it becomes evident that the efficiency of the absorbing layer suffers the most 
when the frequency of the load is lower than what the absorbing layer is prepared for. As will 
be shown in the next section, the absorbing layer is not as efficient in absorbing low 
frequency elastic waves, which explains these results. It is therefore preferable to 
underestimate the dominating frequency of the loads than overestimating it. 

4 TWO-DIMENSIONAL ABSORBING LAYER
A two-dimensional plane stress problem is considered next. The model represents and 

elastic half-space with a horizontal free-surface where a vertical point load is applied. The 
intensity of the load as a function of time follows the Ricker wavelet (equation (5)). The 
maximum intensity is 1 kN, and the frequency is once again equal to 500 rad/s. 

The material properties are the same as for the one-dimensional problem, except for the 
Poisson ratio, that is now ν = 0.3. This means that a different pressure wave speed should be 
considered. It should also be noted that shear waves and Rayleigh waves are also to be 
expected, due to the two-dimensional nature of the problem and the existence of a interface 
(see Telford et al. [18]). Table 2 presents the wave speed and wavelength for the three types. 
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Table 2: Wave speed and wavelength for the three types of waves, considering ν = 0.3

Wave type Pressure Shear Rayleigh
c [m/s] 366.900 196.116 181.935
λ [m] 4.611 2.464 2.286

The larger wavelength is that of the pressure waves, and therefore the absorbing layer 
thickness will be measured as a multiple of this value. 

Due to the symmetrical nature of the problem, one of the boundaries of the FE grid is only 
constrained on the horizontal direction. The top boundary is free, and the two remaining 
boundaries, where the absorbing layer ends, are fixed, as can be seen in Figure 4. 

Figure 4: Two dimensional model with CALM (based on Semblat et al. [4]) 

The size of the medium of interest is restrained to only one multiple of the wavelength, due 
to the considerable increase in the computational cost of the problem compared to the one-
dimensional model. The thickness of the absorbing layer varies from one to four wavelengths. 

For comparison, a model with the same dimensions but no damping properties is tested –
for a sufficiently large model, no reflections should be observed inside the medium of interest. 

To verify how  the CALM compares to other classical methods for grid truncation, the 
model was also implemented with Lysmer-Kuhlemeyer absorbing boundary conditions [1].
This method consists of adding a damper to each degree of freedom at the boundary with 
damping coefficient defined by the properties of the material and the size of the finite 
elements. To prevent rigid body motion, springs are also added at the bottom, a technique 
already employed by the authors with good results [21,22]. 

4.1 Results 
The three types of model described above are tested.  For the CALM, the loss factor at the 

end is the value estimated using equation (10) with the wavelength of the pressure waves. 
The displacements are obtained at the surface of the medium, where the Rayleigh waves 

have a bigger influence (pressure and shear waves are important throughout the model). 
The quality parameters are similar to the ones used before, with some adaptations. First, 

there is no longer a single direction of displacement, but two. Due to the contribution of the 

CALM
medium 

of interest λ

nλλ nλ

P
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Rayleigh waves to the behaviour in the area of interest, it is important to also compare the 
total displacement of the nodes at the surface: 

2 2
total x yu u u  (11) 

The other main difference from the one-dimensional case is that the maximum 
displacement after the waves have left the elastic medium is now expressed as a percentage of 
the maximum displacement in the largest model without absorbing layer: 

     max ,
max , max ,

px t t x
u u x t u x t

 (12) 

Results are presented in Figures 5 for total displacement (vertical and horizontal 
displacement show very similar trends). Although the Lysmer boundaries provide a good 
solution, the CALM approach leads to better results. As before, the thickness of the boundary 
has a very clear influence in the results. A layer with length equal to the wavelength leads to 
better results than the Lysmer boundaries, but by increasing the length, there is a considerable 
improvement in the absorption of the elastic waves. Naturally, the CALM approach has the 
disadvantage of requiring a bigger model, increasing considerably the solution time.

Figure 5: Maximum displacement of the reflected waves, two-dimensional model

Comparison of the vertical displacement at the point where the load is applied shows that 
the frequency of the reflected waves goes down with the increase of the absorbing layer’s 
length, as does their amplitude. 

4.2 Optimum loss factor 
As before, a detailed optimization of the loss factor was performed, but only for the 

absorbing layer with thickness equal to the wavelength. Results are summarized in Table 9. 

Table 3: Optimum loss factor values for the considered quality parameters, compared to the predicted value 

ηmin* umax [%] ηmin umax [%] ηmin* Lt
2 [%] ηmin Lt

2 [%]
ux 2.528 1.13% 1.9 0.87% 2.528 3.72% 1.8 2.22%
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uy 0.48% 2.3 0.48% 4.64% 2.6 4.64%
utotal 0.48% 2.35 0.48% 4.38% 2 4.26%

It is easy to verify that the optimum loss factor is not the same for the horizontal, vertical 
and total displacement, neither for all the parameters considered. The optimum value for the 
horizontal displacement is lower than the predicted value. The optimum value for the vertical 
and total displacement is closer to the prediction, even though the absorbing layer was 
optimized for the pressure waves which, at the surface of the elastic medium, are expected to 
travel in the horizontal direction. However, it is clear that the predicted values do not lead to 
results much worse than the optimum value, and from the figures it can be seen that exceeding 
the actual optimum value is preferable than to underestimate it. 

5 CONCLUSIONS 
The Caughey Absorbing Layer Method has been shown to work effectively to mitigate the 

problem of spurious wave reflections at the boundaries, for one and two-dimensional models. 
The absorbing layer not only greatly reduces the amplitude of the reflected waves, but also 
filters their high frequency content. 

It was shown that the quadratic variation of the loss factor leads to better results than a 
constant value and linear variation. 

An estimated value for the optimum loss factor as a function of the length of the layer in 
relation to the wavelength to absorb was proposed, and shown to lead to good results. 

It is important to note that, although the CALM is more efficient than the Lysmer 
boundaries, it could not be implemented with standard explicit time integration, and it has the 
disadvantage of requiring a higher number of degrees of freedom that make the analysis 
slower when compared to absorbing boundary methods. 

5.1 Future work 
The next logical step is to test the two-dimensional model with plain strain elements. Since 

the results in the one-dimensional model with plain strain were very close to the ones 
obtained with plane stress, it is expected that the same will happen in two-dimensions.

Higher order polynomial variation of the damping of the absorbing layer should be tested, 
since previous works [11,12] have suggested that this lowers reflections at the interfaces. 

The optimization process that led to equation (10), although successful, was relatively 
coarse, so a more refined analysis could lead to a more exact approximation. This 
optimization could also be done for the two-dimensional model, in which it was carried out 
only for a layer with length equal to the wavelength. 

An important development to pursue would be to implement the finite elements with 
independent Rayleigh damping in the Ansys software, so the method can be applied to more 
complex problems, including three-dimensional models. 
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