
DOI 10.1007/s00158-004-0482-0

RESEARCH PAPER

Struct Multidisc Optim (2005) 29: 257–271

Z. Dimitrovová
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Abstract The methodology to determine upper bounds on
homogenized linear elastic moduli of cellular solids, de-
scribed for the two-dimensional case in Dimitrovová and
Faria (1999), is extended to three-dimensional open-cell
foams. Besides the upper bounds the methodology provides
necessary and sufficient conditions on the optimal media.
These conditions are written in terms of generalized internal
forces and geometrical parameters. In some cases depen-
dence on internal forces can be replaced by geometrical
expressions. In such cases optimality of some medium under
consideration can be verified directly from the microstruc-
ture, without any additional calculation. Some of the bounds
derived in this paper have not yet been published along with
a proof of their optimality.

Keywords Energy methods · Homogenization techniques ·
Open-cell foams · Optimal microstructure · Optimization ·
Upper bounds on effective moduli

1 Introduction

Cellular solids can either be found in nature or manufac-
tured by foaming of polymers, metals and ceramics, or by
other technologies, such as e.g. chemical vapor deposition
(CVD) and direct metal laser sintering (DMLS). They have
a wide range of applications, namely in the absorption of
the kinetic energy from impacts, or as thermal and electrical
insulators. To exploit these properties fully and efficiently,
suitable methodologies allowing a detailed characterization
of the cellular solid’s behavior are needed. In this article we
will examine upper bounds on homogenized linear elastic
moduli.

A cellular solid (a foam) is composed of an intercon-
nected network of solid beams and shell parts, which can
be assigned to cells, that are repeated in the medium. Two
essential features characterize cellular media:
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• The size of voids is very small compared to the size of
the full medium, and thus homogenization techniques
(see Duvaut (1976), Bensoussan et al. (1978), Suquet
(1985), Bakhvalov and Panasenko (1989), Nemat-Nasser
and Hori (1993)) can be used in the determination of the
effective properties.

• The relative density is low, usually below 0.3 (Gibson
and Ashby 1988). As a consequence at least one dimen-
sion of the solid phase (thickness) at the cell level is
small compared to the characteristic cell size. This con-
dition justifies the use of structural theories in homog-
enization calculations instead of the full 3D elasticity
model.

Cellular solids may be classified as closed-cell, partly
open-cell and open-cell foams. In this work we will restrict
our analysis only to open-cell foams, which consist solely of
solid beams. The name repetitive lattice structures can then
also be adopted.

Several works have dealt with effective elastic properties
of open-cell foams or repetitive lattice structures, however,
upper bounds on them are rarely analyzed. The main mono-
graph on cellular solids was published by Gibson and Ashby
(1988). Extensive work by Christensen has been dedicated
to the characterization of effectively isotropic open-cell mi-
crostructures, where the response is governed by bending or
direct (axial) resistance, (Christensen 1994, 1995). In Chris-
tensen (1995) the values of the upper bound on the effective
bulk and shear moduli are presented. The value of the bulk
modulus bound was also addressed by several other works,
but only in the sense of an effective property of some par-
ticular microstructure, see e.g. Warren and Kraynik (1988,
1997), Kraynik and Warren (1994), Zhu et al. (1997).

Methodologies for effective properties determination can
be discrete or continuous. Discrete approaches are usually
based on micromechanics. They exploit either the period-
icity or the regularity of the medium under consideration.
In the former case calculations are performed on a unit or
a basic cell, while in the latter case either a representative
volume element or a typical joint is used. For instance in
Kraynik and Warren (1994) and Warren and Kraynik (1997)
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effective moduli are determined by considering a tetrahe-
dral joint (Kelvin foam) under an assumption of affine dis-
placements. Application of this methodology to a medium
with randomly placed basic cells of the regular cubic lat-
tice also yields the maximum shear response. In this context,
the work of Dimitrovová (1999) could also be mentioned,
where a detailed discussion of the applicability of the ori-
entational averaging to periodic cells is given. Among other
works, (Grenestedt 1999; Li et al. 2003) should also be men-
tioned. Continuum modeling of repetitive lattice structures
is reviewed by Noor (1988). The literature review in this
paragraph is far from being complete because it is not the
aim of this paper to determine homogenized moduli, but
their upper bounds.

The inverse problem of identifying microstructures that
achieve prescribed effective properties has also been exten-
sively studied (see, e.g. Sigmund (1994), Neves et al. (2000),
Gibianski and Sigmund (2000), Guedes et al. (2003)). These
methods exploit homogenization techniques, starting with
a basic cell whose shape must be specified in advance, and
the available material is then optimally distributed within it.

Cellular solids can be viewed as two-phase composites
with void and solid (generally nonhomogeneous) phases.
Determination of bounds on composite effective proper-
ties has been the subject of considerable research for many
years. One may argue that there is no need for any new
methodology, since the bounds for foams can be obtained
from the composite two-phase ones, just by the introduction
of zero void properties. This is true in 2D, but in 3D the opti-
mal foams must contain shell parts in some regimes of opti-
mality (Allaire and Kohn 1993), therefore upper bounds on
homogenized moduli of open-cell foams are strictly lower
than those for general foams and the development of a new
methodology addressing this issue is fully justified.

Only upper bounds on effective elastic moduli will be
examined, because lower bounds for media with one void
phase are zero. Without loss of generality only open-cell
foams with periodic microstructure will be considered, be-
cause in a medium with random microstructure, a repre-
sentative volume element can be chosen so that a medium
created by its periodic repetition will have the same ef-
fective properties as the original random one. The contri-
bution of this paper is the extension of the methodology
proposed by Dimitrovová and Faria (1999) from 2D to 3D.
The methodology is based on homogenization theory and
does not require any restriction on the basic cell shape or
arrangement. The influence of the boundary layer is not
accounted for and it is assumed that the basic cell con-
tains a finite number of structural members, i.e. beams or
bars. Upper bounds are derived by a bounding procedure
using results from linear algebra and the Voigt bound ba-
sic assumption (Hill 1963). The main advantage of the new
methodology is that from the bounding procedure the ne-
cessary and sufficient conditions characterizing the optimal
media will immediately follow. These conditions are writ-
ten in terms of generalized internal forces and geometrical
parameters. The proposed methodology recovers the well-
known bounds for effectively isotropic open-cell foams, al-
though with a different proof. The main contribution lies in

the identification of new bounds on effective shear moduli
of open-cell microstructures with effective cubic symmetry.
In such cases dependence on internal forces in maximal-
ity conditions can be replaced by geometrical expressions,
implying that the optimality of the medium under considera-
tion can be verified directly from the microstructure, without
any additional calculation. Approximations inherent to the
methodology are commonly used structural simplifications.
Limitations are based on the assumption of a finite number
of structural members in the basic cell, allowing only the
identification of single-scale microstructures, which implic-
itly excludes multiple-rank laminates (see e.g. Allaire and
Aubry (1999)) and the Hashin’s spheres assemblage (Hashin
1962).

The paper is organized as follows. The methodology is
reviewed in Sect. 2, namely in Sect. 2.1 simplified assump-
tions and basic relations are introduced, in Sect. 2.2 it is
shown that the optimal media can be initially sought within
a specific class of micro-trusses (the term will be explained
later on) and in Sect. 2.3 the methodology is reviewed within
this restricted class. Bounds are proven in Sect. 3 along with
optimal media microstructures specification. The paper is
concluded in Sect. 4 with the discussion and analysis of the
developments achieved.

2 Review of the new methodology

2.1 Simplifying assumptions and basic relations

The basic cell, ϑ, defined as the (smallest) region of a peri-
odic medium that can compose the full medium by periodic
repetition, will be conveniently rescaled to V , where the
spatial microvariable y is introduced. It is assumed that V
contains a finite number of beams and that the solid phase
is homogeneous and isotropic. Therefore the term material
volume fraction can be used instead of relative density.

There are two extreme possibilities for the structural
model of a joint between the beams composing the foam:
(i) pin joint and (ii) rigid joint. A pin joint cannot transmit
bending moments and therefore allows rotations of the struc-
tural members connected to it. Consequently non-loaded
structural member with two pin joints can only support in-
ternal forces acting in the direction of the line connecting
the joints. On the other hand a rigid joint preserves the an-
gles between the beams connected to it. If all joints are rigid,
the term micro-frame medium can be used; on the other
hand not necessarily straight structural members connected
by pin joints will be named micro-truss media. Therefore
any micro-frame medium has its related micro-truss, which
is obtained by switching the behavior of rigid joints to pin
joints. In reality joint behavior is somewhere between these
two extreme cases and should be represented by a flexible
joint. Pin-joint behavior can be achieved either by a special
construction allowing for rotations of the connected mem-
bers or as a limit case: if the beams connected to a given joint
have uniform cross-sectional areas and the material volume
fraction tends to zero, then the flexible joint approaches pin-
joint behavior.
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Fig. 1 Introduction of theoretical and active lengths

In structural theories beams are defined by their mid-
dle axes and joints can be replaced by single points (joint
“centers”) located in the middle axes intersection. The term
theoretical length will be used to identify the middle axis
length between joint centers and active length to identify the
same length shortened by the parts inside the joints (Fig. 1).
Small discrepancies when middle axes do not intersect ex-
actly at a single point will not be considered.

We will address only open-cell foams with effective
isotropy or cubic symmetry. The tensor of effective elastic
constants can thus be written in dimensionless matrix form
as:

C∗ =
(

C∗
1 0

0 C∗
2

)
, (1)

where C∗
2 = G∗

2I and

C∗
1 =




K∗ +4G∗
1/4 K∗ −2G∗

1/4 K∗ −2G∗
1/4

K∗ +4G∗
1/4 K∗ −2G∗

1/4

symm. K∗ +4G∗
1/4


 . (2)

Here I stands for the unit 3 by 3 matrix and 0 for the zero
3 by 3 matrix. Effective engineering constants K , G1 and
G2 are the homogenized bulk and two shear moduli, respec-
tively. Their dimensionless values with respect to the solid

Table 1 Test macroloads and the corresponding specification of the macrostress and the macrostrain

Macroload Property Specification of � Specification of E

� K K ∗ Σ = Σ11 = Σ22 = Σ33 �= 0,
Σij = 0 ∀i �= j

E = E11 = E22 = E33 �= 0,
Eij = 0 ∀i �= j, 3K ∗ = Σ/ (E Es)

� 1G G∗
1

Σ11 +Σ22 +Σ33 = 0, ∃k; Σkk �= 0,
Σij = 0 ∀i �= j

E11 + E22 + E33 = 0, Eij = 0 ∀i �= j,
2G∗

1 = Σkk/ (Ekk Es) ∀k†

� 2G G∗
2 Σ11 = Σ22 = Σ33 = 0, ∃i �= j; Σij �= 0

E11 = E22 = E33 = 0,

2G∗
2 = Σij/

(
Eij Es

) ∀i �= j†

�G G∗ Σ11 +Σ22 +Σ33 = 0, ∃k; Σkk �= 0,
∃i �= j; Σij �= 0

E11 + E22 + E33 = 0,

2G∗ = Σij/
(
Eij Es

) ∀i, j†

(†if the macrostress component is different from zero)

phase Young’s modulus Es are identified as: K∗ = K/Es ,
G∗

1 = G1/Es and G∗
2 = G2/Es. A medium is effectively

isotropic when G∗
1 = G∗

2 = G∗. The above matrix form of
the fourth-order tensor of elastic constants (see Lekhnitskii
(1981)) in terms of the engineering constants K∗, G∗

1 and G∗
2

is presented in Hashin and Shtrikman (1962).
At first, the aim is to determine each of the macroscopic

engineering constants in terms of the generalized internal
forces, which will form the initial relation for the bound-
ing procedure. The global strain energy density W can be
expressed for isotropic media as:

W = 1

2Es

(
Σ2

M

K∗ + �D : �D

2G∗

)
(3)

and for media with effective cubic symmetry as:

W = 1

2Es

{
Σ2

M

K∗ + Σ2
D,12 +Σ2

D,31 +Σ2
D,23

G∗
2

+Σ̃2
D,12 + Σ̃2

D,31 + Σ̃2
D,23

6G∗
1

}
, (4)

where ΣM and �D are the volumetric and deviatoric parts
of the global stress tensor � , �D : �D = ΣD,ijΣD,ij (sum-
mation convention is adopted) and Σ̃D,12 = ΣD,11 −ΣD,22,
Σ̃D,31 = ΣD,33 −ΣD,11, Σ̃D,23 = ΣD,22 −ΣD,33. The test
macroloads, to be applied on the medium and consequently
on the basic cell, can be chosen so that only one effective
engineering constant will be left in (3) or (4), and can be
thus expressed independently of the others and in terms of �
components and W . Examples of these macroloads are spec-
ified in Table 1. It is seen that the corresponding macrostrain
E must fulfill similar conditions. The macrostrain E is con-
nected to the macrostress � by � = EsC∗ ·E, where
� = {Σ11,Σ22,Σ33, Σ23,Σ31,Σ12}T ,
E = {E11, E22, E33, 2E23, 2E31, 2E12}T and “·” stands for
matrix multiplication.

� and W can be expressed with the help of an averag-
ing operator applied on the local characteristics, σ and w,
(Suquet 1985):



260 Z. Dimitrovová

Σjk = 1
|V |
∫
V �

σjk dy = 1
|V |
∑

i

∫
V �

i

σ i
jk dy =

∑
i

〈
σ i

jk

〉
, (5)

W = 1
|V |
∫
V �

w dy = 1
|V |
∑

i

∫
V �

i

wi dy =
∑

i

〈
wi
〉
, (6)

where σ i and wi are the local stress and the local strain en-
ergy density corresponding to the i th beam (i-beam). The
volume of the full cell is |V | while the volume of the i-beam
is|V �

i |. |V �
i | is composed of the volume corresponding to

the active length plus the corresponding volume in the con-
nected parts within the joints, so that |V �

i

⋂
V �

j | = 0 ∀i �= j

and
∑

i
|V �

i | = |V �|. V � is the volume of the material part

in the cell. Due to the periodic repetition it is not necessary
to treat separately the case when the i-beam is cut by the
boundary of the cell.

Next, it is necessary to express contributions of each i-
beam, 〈σ i〉 and 〈wi〉, in terms of generalized internal forces.
Looking at 〈σ i〉, the formula from Nemat-Nasser and Hori
(1993)〈
σ i

m j

〉
= 1∣∣∣V �

i

∣∣∣
∫

∂V �
i

σ i
jknkbm dS = 1∣∣∣V �

i

∣∣∣
∫

∂V �
i

ti
jbm dS (7)

can be exploited. In (7) b is the position vector of the
points on ∂V �

i and t is the boundary traction. If t is self-
equilibrated, then

〈
σ i
〉

is symmetric and the integral in (7)

Fig. 2 Specification of
the curved i-beam

does not depend on the origin of the coordinate system for
b. Expression for

〈
wi
〉

can be, as usual, simplified by con-
sidering that generalized internal forces act over theoretical
lengths and that the contribution from the joints is negligi-
ble.

2.2 Micro-trusses with straight bars of constant
cross-sectional area versus micro-frames

Optimal low-density micro-frame open-cell foams will be
defined as those for which the related micro-truss is optimal.
Justification of this definition and more details on optimal
micro-trusses are presented in this subsection, namely it will
be proven that optimal micro-trusses can only be composed
from straight bars with constant cross section.

In order to justify the definition stated above it is neces-
sary to verify that a curved beam cannot make part of the
optimal low-density media. Let us suppose that the i-beam
of a micro-frame basic cell is curved. Then a local coordi-
nate system (z1, z2) can be introduced so that z1 connects
the joint centers (Fig. 2). The middle axis of the beam is
given by z2 = a(z1) and r designates the curved coordinate.
Let us separate the beam of active length from the joints
by the cuts shown in Fig. 2. It is assumed that there ex-
ists a plane containing the i-beam middle curve and that the
macroload acts in a way that the generalized internal forces
in the beam cuts are also contained in this plane. The geo-
metrical parameters α(r), α0k, α0m , hk, hm , vk, vm , l, p, the
generalized internal forces in the beam cuts F, B and D and
other local auxiliary coordinate systems (z̃1, z̃2) and (ẑ1, ẑ2)
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are specified in Fig. 2. l and p are projections of the theor-
etical and the active lengths on z1 and the bending moment
along the beam is separated into its (average) constant (D)
and “antisymmetric” parts.

For the i-beam let us express the average quantities
〈
σ i
〉

and 〈wi〉 in terms of the generalized internal forces and dis-
cuss the possibility of its position in an optimal medium.
The superscript “i” will be omitted for the sake of simpli-
city, where possible without confusion. It must be pointed
out that local stress averaging cannot be performed over
the theoretical length, because it would cause joint overlap-
ping. Thus the i-beam average stress 〈σ〉 must be expressed
as 〈σ〉 = 〈σbm〉+〈σjk〉+〈σjm〉, where the contribution with
subscript “bm” relates to the beam with active length and
those with “jk” and “jm” subscripts relate to the left (k)
and right (m) adjacent joints parts, respectively. Strict ap-
plication of (7), in the previous expression, would imply
integration over the internal faces of the joints, which is
complicated. To overcome these difficulties one can define
〈σ̃〉 = 〈σbm〉+ 〈σ̃jk〉+ 〈σ̃jm〉, where 〈σ̃jk〉 and 〈σ̃jm〉 stand
only for the contribution of the faces where the beam was
cut. Then 〈σ̃jk〉 and 〈σ̃jm〉 are coordinate system dependent
and therefore their coordinate systems must be uniquely
defined in a way applicable to any beam from the ba-
sic cell. Coordinate systems (z̃1, z̃2) and (ẑ1, ẑ2) are intro-
duced as specified in Fig. 2. With respect to (z1, z2), (7)
yields:
(see Equation (8) on this page)
With respect to (z̃1, z̃2) and (ẑ1, ẑ2) one can obtain:

|V |
〈
σ̃ ′

jk

〉
=
(

Fhk + Bvk −Fvk + Bhk

−Bp/2− D 0

)
and

|V |
〈
σ̃ ′

jm

〉
=
(

Fhm − Bvm Fvm + Bhm

−Bp/2+ D 0

)
(9)

which after rotation to (z1, z2) yields:

|V |
〈
σ̃ ′

jk

〉
=




Fhk

+1

2
Bp sin α0k cos α0k

+D sin α0k cos α0k

Bhk

+1

2
Bp sin2 α0k

+D sin2 α0k

Fvk

−1

2
Bp cos2 α0k

−D cos2 α0k

Bvk

−1

2
Bp sin α0k cos α0k

−D sin α0k cos α0k




(10)

|V | 〈σbm〉 =




Fp− 1

2
Bp (sin α0k cos α0k − sin α0m cos α0m)

−D (sin α0k cos α0k + sin α0m cos α0m)

1

2
Bp
(

cos2 α0k + cos2 α0m

)
+D

(
cos2α0k − cos2α0m

)
−F (vk −vm)+ 1

2
Bp
(

cos2 α0k + cos2 α0m

)
+D

(
cos2 α0k − cos2 α0m

)
1

2
Bp (sin α0k cos α0k − sin α0m cos α0m)

+B (vk −vm)+ D (sin α0k cos α0k + sin α0m cos α0m)




. (8)

and

|V |
〈
σ̃ ′

jm

〉
=




Fhm

−1

2
Bp sin α0m cos α0m

+D sin α0m cos α0m

Bhm

+1

2
Bp sin2 α0m

−D sin2 α0m

−Fvm

−1

2
Bp cos2 α0m

+D cos2 α0k

−Bvm

+1

2
Bp sin α0m cos α0m

−D sin α0m cos α0m




,

(11)

which finally gives

〈σ̃〉 = l

|V |
(

F B

0 0

)
. (12)

Origins of the coordinate systems (z1, z2) and (z̃1, z̃2)
are coincident, therefore only the face of joint (m) and the
face of beam corresponding to it could be considered to ob-
tain (12). It is necessary to point out that the reason for
non-symmetry of 〈σ̃〉 is the omission of the contributions
from the internal faces of the joints in (9)–(11), as explained
above. This does not mean any inaccuracy, because after ro-
tation of all beam contributions to the cell coordinate system
and summation over all the beams, the final expression for �
will be complete and symmetric.

When a general curved beam under a general macroload
is considered, local coordinate system (z1, z2) connecting
the joint centers can also be introduced. Then it is necessary
to replace internal force B by B1 and B2, bending moment D
by D1 and D2 and to introduce torsion moment T . Following
the same procedure as above, one obtains:

〈σ̃〉 = l

|V |


F B1 B2

0 0 0
0 0 0


 . (13)

It is important to realize that (13) has the same form as
it would have for a related straight beam with theoretical
length l, arbitrary cross-sectional area variation and with the
same generalized internal forces in cuts. Therefore there is
no distinction between the 〈σ〉 contribution of a straight or
a curved beam to � . Moreover (13) does neither include the
constant part of bending moments D1 and D2 nor the torsion
moment T . If the i-beam had pin joints, then from equilib-
rium B1 = B2 = 0. We recall that, in order to express � , (13)
should be rotated to the basic cell coordinates and summed
over all the beams.
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Now the average 〈w〉 will be determined. For the sake
of simplicity it is again firstly assumed that a curved beam
and the generalized forces are contained in a plane. As usual
strain energy density corresponding to shear forces can be
omitted. Then one can write:

〈w〉 = 1

2 |V | Es


∫

(a)

N2 (r)

A (r)
dr +

∫
(a)

M2 (r)

I (r)
dr


 , (14)

where A(r) and I(r) stand for cross-sectional area and mo-
ment of inertia, respectively, N (r) and M (r) are normal
forces and bending moments and (a) stands for the integra-
tion along the curved theoretical length of the beam. It might
be remarked that using theoretical lengths and overlapping
in joints is an allowable and common simplification in strain
energy expression. In accordance with this approximation,
the originally introduced generalized forces F, B and D in
beam cuts do not have to change.

A cross-sectional area A0 of a related straight beam with
constant cross section and the same volume as the original
curved one, can be introduced by (overlapping in junctions
can also be neglected here):

A0l =
l∫

0

A (z1)

√
1+ (a′ (z1))

2 dz1 , (15)

where a′ (z1) = da(z1)
dz1

.
Because there is no distinction between the 〈σ〉 contri-

bution of straight or curved beams to � , let us minimize
〈w〉 in order to discuss the position of the i-beam in an op-
timal medium. This minimization must be performed over
all possible shapes a (z1) and volume distributions along the
middle curve:

2Es |V | min
a(z1);A(r);I(r)

〈w〉

= min
a(z1);A(r);I(r)


∫

(a)

N2 (r)

A (r)
dr +

∫
(a)

M2 (r)

I (r)
dr




≥ min
a(z1);A(r)

∫
(a)

N2 (r)

A (r)
dr + min

a(z1);I(r)

∫
(a)

M2 (r)

I (r)
dr . (16)

Equality in (16) can be achieved if the minimizing shape
and volume distribution are the same for both terms in the
last part of (16).

The normal force distribution can be written as:

N (r) = F cos α (r)+ B sin α (r) . (17)

Therefore:

∫
(a)

N2 (r)

A (r)
dr =

l∫
0

(
F + Ba′ (z1)

)2
A (z1)

√
1+ (a′ (z1))

2
dz1 . (18)

Using the Schwarz inequality in the form:
(see Equation (19) on next page)
gives the following inequality:

l∫
0

(
F + Ba′ (z1)

)2
A (z1)

√
1+ (a′ (z1))

2
dz1 ≥ F2 l

A0
. (20)

Equality in (20) or (19) can only be achieved if
F+Ba′(z1)

A(z1)
√

1+(a′(z1))
2

is constant with respect to z1, which im-

plies that the beam must be straight and with constant
cross-sectional area. Then the normal force contribution to
〈w〉 does not include B.

The bending moment distribution can be expressed as:

M (z1) = D + Fa (z1)+ B

(
l

2
− z1

)
. (21)

When minimizing conditions for the contribution of nor-
mal forces to 〈w〉 are used, it is sufficient to look at
l∫

0

(
D + B

( l
2 − z1

))2
dz1 = D2l + B2l3/12. The optimal me-

dia requires D = 0 because D does not appear in (12).
If moreover B = 0, as a consequence of constant cross-
sectional area and material volume fraction going to zero,
then the contribution from the bending moment is zero and
the last term in (16) reaches its trivial minimum. Extension
of this statement to a general curved beam under general
macroload is clear; there would only be one more integral
in form of (21) and a separate T contribution, which can be
required to be zero, because T does not appear in (13).

This justifies the definition of optimal media stated at the
beginning of this subsection and proves that optimal micro-
trusses must be composed of straight bars with constant
cross-sectional areas. Nevertheless the bending contribution
is not excluded from the optimal media when it has micro-
frame behaviour.

In summary, optimal open-cell foams can be sought
within the class of micro-trusses with straight bars of con-
stant cross section. In this class the bound can be expressed
as a linear function of the material volume fraction, s, as
shown in Dimitrovová and Faria (1999) and as clarified
in Sect. 3. Related optimal micro-frames can develop non-
zero bending moments, but only in their antisymmetric form
(in terms of B1 and/or B2). If bending moments are pre-
sented, the corresponding effective engineering constant,
written as a Taylor’s expansion in s, contains a quadratic
term (a detailed discussion is provided in Dimitrovová and
Faria (1999)). The tangent at s = 0, i.e. the linearized bound,
relates to the same property of the corresponding micro-
truss. Please note however (see Fig. 3) that for a particularly
high material volume fraction, s0, there can exist a micro-
frame with a higher elastic property than that obtained from
the optimal micro-truss. These cases are of no interest here
since for low-density media only the initial slope (linearized
property) matters. For the same reasons media with only
bending response are strictly excluded from the class of op-
timal micro-frames because the corresponding micro-truss is
a kinematical mechanism and the linearized bound is zero.
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F2l2 =

 l∫

0

(
F + Ba′ (z1)

)
dz1




2

=

 l∫

0

F + Ba′ (z1)

√
A (z1)

4
√

1+ (a′ (z1))
2

(√
A (z1)

4
√

1+ (a′ (z1))
2
)

dz1




2

≤

 l∫

0

(
F + Ba′ (z1)

)2
A (z1)

√
1+ (a′ (z1))

2
dz1




 l∫

0

A (z1)

√
1+ (a′ (z1))

2 dz1


= A0l

l∫
0

(
F + Ba′ (z1)

)2
A (z1)

√
1+ (a′ (z1))

2
dz1 (19)

It was shown in Dimitrovová and Faria (1999) that if
bulk modulus is under consideration, then the components
of macrostress necessary to express this property do not con-
tain a B contribution. So, bending moments are excluded
from optimal media, not only in the limit at s = 0, but in
the full range of low-density s values. This result is readily
extendable to 3D.

In Sect. 3.2, optimal micro-trusses for the shear modulus
G∗

1 of media with effective cubic symmetry will be fully ge-
ometrically specified. In this case it will be seen that switch-
ing to micro-frames will not develop bending moments. So
the upper bound is also linear here within the validity of
structural theories. The bending contribution is present only
in the isotropic shear G∗ and in G∗

2.

Fig. 3 Specification of optimal media response

2.3 Review of the methodology in the class of micro-truss
media with straight bars of constant cross section

In the class of micro-trusses, normal force is the only gen-
eralized internal force in the medium. Let an arbitrary ba-
sic cell consisting of n bars be assumed. The contributions〈
σ i
〉

and 〈wi〉 of each i-bar with theoretical length li , cross-
sectional area Ai and normal force Ni can be specified in the
following way (compare with (13)):〈
σ i
〉
= Nili

|V |


cos2 ϕi sin2 θi sin ϕi cos ϕi sin2 θi cos ϕi sin θi cos θi

sin2 ϕi sin2 θi sin ϕi sin θi cos θi

symm. cos2 θi


 ,

(22)

where the two spherical angles θi ∈ 〈0, π) and ϕi ∈ 〈0, 2π)
specify the i-bar position with respect to the cell coordinates
yj, j = 1, 2, 3, (Fig. 4); and (see (16) and (20))

〈wi〉 = 1

2 |V | Es

(
N2

i
li

Ai

)
. (23)

Let the following notation be introduced:

Ω1,i = cos2 ϕi sin2 θi ,Ω2,i = sin2 ϕi sin2 θi ,

Ω3,i = cos2 θi ;
Φ1,i = sin ϕi sin θi cos θi, Φ2,i = cos ϕi sin θi cos θi ,

Φ3,i = sin ϕi cos ϕi sin2 θi ;
Ψ1,i = sin2 ϕi sin2 θi − cos2 θi ,

Ψ2,i = cos2 θi − cos2 ϕi sin2 θi ,

Ψ3,i = cos (2ϕi) sin2 θi ; (24)

then the vectors N, R, Q and L (compare with Dimitrovová
and Faria (1999)) can be defined as:

N =

N1

√
l1

A1
, N2

√
l2

A2
, . . . , Nn

√
ln

An


 ;

Rj =
{
Ωj,1

√
l1 A1,Ωj,2

√
l2 A2, . . . ,Ωj,n

√
ln An

}
,

j = 1, 2, 3 ;

Qj =
{
Φj,1

√
l1 A1,Φj,2

√
l2 A2, . . . , Φj,n

√
ln An

}
,

j = 1, 2, 3 ;

L =
{√

l1 A1,
√

l2 A2, . . . ,
√

ln An

}
. (25)

In addition, let us denote:

P1 = R2 −R3, P2 = R3 −R1, P3 = R1 −R2 . (26)

Thus:

Pj =
{
Ψj,1

√
l1 A1, Ψj,2

√
l2 A2, . . . , Ψj,n

√
ln An

}
,

j = 1, 2, 3 (27)



264 Z. Dimitrovová

Fig. 4 Specification of the i-bar within the basic cell

and it holds:

P1 +P2 +P3 = 0, R1 +R2 +R3 = L ,

‖P1‖2 +‖P2‖2 +‖P3‖2 +
‖Q1‖2 +‖Q2‖2 +‖Q3‖2 = 2 ‖L‖2 , (28)

where ‖ ‖ is the Euclidean norm. The material volume frac-
tion, s, can be approximated neglecting higher-order terms
as:

s = ‖L‖2

|V | . (29)

Taking into account (24)–(25), (22) can be substituted
into (5) giving:

� = 1
|V |S ·NT

= 1

|V | {R1, R2, R3, Q1, Q2, Q3}T ·NT (30)

and (23) into (6) as:

W = ‖N‖2

2 |V | Es
, (31)

where S will be called a modified static matrix.
As written in Sect. 2.1, a particular engineering con-

stant can be expressed, from (3) or (4), independently of the
others, if the corresponding macroload from Table 1 is ap-
plied. Then expressions (30)–(31) can be introduced and the
initial expression for the bounding procedure, in terms of
normal forces and geometrical parameters, is obtained. The
bounding procedure is performed using basic knowledge
from linear algebra and the Voigt assumption for the upper
bound derivation (uniform local strain), and the bound is fi-
nally expressed as a linear function of the material volume
fraction. Maximality conditions on possible normal forces
are then obtained as conditions that ensure equality with
the bound. The specifications in Table 1 provide the addi-
tional constraints on the possible normal forces that can be

developed in an optimal medium. Using the maximality con-
ditions, these additional constraints can be written in terms
of microstructure geometrical parameters, as will be seen in
Sect. 3.

For more details on the Voigt assumption and bound see
e.g. Hill (1963). We only remark that, when local strains are
uniform throughout the medium, then they are equal to the
macroscopic strain and the global engineering constant cor-
responding to such a macroload reaches its maximum. Since
micro-truss media are characterized by the bar middle axes,
which (except for the joints) correspond to the “direction”
of the local strain, the Voigt assumption implies that the
local displacements of the bar middle axes, u, coincide with
the linear part of displacements, i.e. ui = Eij yj (summation
convention is adopted). This requirement states necessary
maximality conditions on possible normal forces, which can
be written as:

ST ·E = NT /Es . (32)

Maximality conditions (32) are not sufficient because the re-
quirement of uniform strain does not exclude bars with zero
normal force (zero bars). More facts about relation between
optimal micro-frames and the Voigt bound are given in the
Appendix.

Obviously, upper bounds determined in the way de-
scribed in this subsection could be extremely large and unre-
alistic because no restrictions such as topological connectiv-
ity or joint equilibrium were considered. However, if a phys-
ical medium saturating the bound can be found, the bound
would be proven to be optimal. This is actually achieved in
all the cases considered in this paper.

3 Linearized bounds on effective moduli

3.1 Bulk modulus K∗ (for effective isotropy or cubic
symmetry)

If the macroload � K (Table 1) is imposed, then starting with
(3), introducing (30)–(31), (28) and (29), the bulk modulus
K∗ can be expressed as:

K∗ = Σ2
M

2EsW
= |V |

‖N‖2

(
(R1 +R2 +R3) ·NT

3 |V |
)2

= 1

9 |V |
(
L ·NT

)2
‖N‖2 ≤ s

9
, (33)

providing the maximality condition

N ‖ L , (34)

(i.e. local stresses are required to be constant all over the
bars) and the bound K∗+ = s/9. Using (34), additional con-
straints from Table 1 can be written in terms of geometrical
parameters as:

R1 ·LT = R2 ·LT = R3 ·LT & Qj⊥L ∀ j = 1, 2, 3 . (35)
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Fig. 5 The regular cubic lattice

Equation (32), which should also be implemented, does not
bring, in this case, anything new. It is seen that it corres-
ponds directly to (34), after conditions from Table 1 had
been implemented, N = Σ

3K∗L . One can check that in this
case (32) ensures not only the necessary but also sufficient
maximality condition, because zero bars are excluded as
Ni ∼ Ai �= 0 ∀i, where “∼” means proportionality.

The conditions stated in (34)–(35) are the necessary and
sufficient conditions on K∗-optimal media. Equation (34)
cannot be expressed only in terms of geometrical param-
eters and therefore verification of K∗-optimality of some
medium requires the determination of the normal forces
in N. The bound is optimal because several known media
saturate it. The simplest K∗-optimal medium is the regu-
lar cubic lattice (Fig. 5) (see Warren and Kraynik (1988),
Dimitrovová (1999)), where it is easy to verify conditions
(34)–(35). The class of periodic K∗-optimal media can be
extended by the class of media with random microstruc-
ture, where a basic cell of some K∗-optimal medium ap-
pears in the representative volume element with all pos-
sible rotations with the same probability. Because the bulk
modulus is invariant under orientational averaging, the bulk
modulus of the new random medium will be the same
as for the corresponding periodic medium (Dimitrovová
1999).

3.2 Shear modulus G∗
1 (for effective cubic symmetry)

If macroload � 1G (see Table 1) is imposed, then one has:

G∗
1 = 1

6 |V |
(
P1 ·NT

)2 + (P2 ·NT
)2 + (P3 ·NT

)2
‖N‖2

= s

6

∑
j=1,2,3

∥∥Pj
∥∥2 cos2

(
N, Pj

)
‖L‖2

= s

3

∑
j=1,2,3

∥∥Pj
∥∥2 cos2

(
N, Pj

)
∑

j=1,2,3

∥∥Pj
∥∥2 + ∑

j=1,2,3

∥∥Qj
∥∥2 . (36)

According to Table 1, additional constraints on possible N
are:

N⊥L & N⊥Qj ∀ j = 1, 2, 3 . (37)

If Qj = 0 ∀ j = 1, 2, 3 and N ‖ Pj ∀ j = 1, 2, 3, then the
maximum in (36) would be s/3. However no physical
medium could fulfill all these conditions, as will be shown
in the following. In order to determine the real maximum,
it is necessary to realize that any � 1G can be written as
a linear combination of three basic cases Σ22 = −Σ33 = 1,
Σ33 = −Σ11 = 1 and Σ11 = −Σ22 = 1. In each of these
local strains must be uniform according to (32) and the value
of the corresponding G∗

1 must be the same, as specified in
Table 2.

Using superposition, the necessary maximality condition
from Table 2 reads:

N = 1

2G∗
1

(µ1P1 +µ2P2 +µ3P3)

= λ1P1 +λ2P2 +λ3P3 , (38)

where the coefficients µj express the particular basic cases
combination corresponding to the imposed macroload. Ad-
ditional constraints from Table 2 must be satisfied simultan-
eously, giving:

Qj⊥Pk ∀ j, k = 1, 2, 3 ,

‖R1‖ = ‖R2‖ = ‖R3‖ ,

cos (R1, R2) = cos (R2, R3) = cos (R3, R1) (39)

and

‖P1‖ = ‖P2‖ = ‖P3‖ = 2
√

G∗
1 |V | . (40)

Equation (40) could be obtained directly as the condi-
tion ensuring the same G∗

1 in all basic cases. If (40) was
derived first, then using some statements about finite dimen-
sional spaces, condition (38) is the maximality condition for
the sum: cos2 (N, P1)+ cos2 (N, P2)+ cos2 (N, P3). Here it
holds that:

cos2 (N, P1)+ cos2 (N, P2)+ cos2 (N, P3) = 3/2 . (41)

Then the bound G∗
1,+ = s/6 can be obtained from (36) if

Qj = 0 ∀ j = 1, 2, 3. Thus the proof of G∗
1,+ = s/6 would be

completed if at least one optimal medium can be found, i.e.
if there exists a medium in which Qj = 0 ∀ j = 1, 2, 3, ex-
pressions (38)–(40) hold and no zero bars are contained in
it.

In order to justify an existence of such a medium, first of
all the spherical angles that will ensure Qj = 0 ∀ j = 1, 2, 3
must be found. This requirement is equivalent to the condi-
tion that

max
(∣∣Ψ1,i

∣∣+ ∣∣Ψ2,i
∣∣+ ∣∣Ψ3,i

∣∣) (42)
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Table 2 Basic load cases in � 1G

Basic case 1. 2. 3.

Macrostress Σ22 = −Σ33 = 1 Σ33 = −Σ11 = 1 Σ11 = −Σ22 = 1

Macrostrain E22 = −E33 = 1/
(
2G∗

1 Es
)

E33 = −E11 = 1/
(
2G∗

1 Es
)

E11 = −E22 = 1/
(
2G∗

1 Es
)

Maximality condition from (32) N = 1
2G∗

1
P1 N = 1

2G∗
1

P2 N = 1
2G∗

1
P3

Additional constraints
‖R2‖ = ‖R3‖ , R1⊥P1,

P1⊥Qj ∀ j = 1, 2, 3

‖R3‖ = ‖R1‖ , R2⊥P2,

P2⊥Qj ∀ j = 1, 2, 3

‖R1‖ = ‖R2‖ , R3⊥P3,

P3⊥Qj ∀ j = 1, 2, 3

Table 3 Characterization of G∗
1-optimal media

Group 1. 2. 3.

Spherical angles
ϕ1 = 0,
θ1 = π/2

ϕ2 = π/2,
θ2 = π/2 θ3 = 0

Values of Ψ1, Ψ2, Ψ3 0,−1, 1 1, 0,−1 −1, 1, 0
Values of Ω1, Ω2, Ω3 1, 0, 0 0, 1, 0 0, 0, 1

is obtained for each i. Solution of problem (42) results in
three groups of angles, which predict bar directions in an op-
timal medium, as stated in Table 3. It is therefore convenient
to choose a rectangular basic cell with faces perpendicu-
lar to the bar directions. Due to the equilibrium in joints
only continuous bars passing through the cell can be present.
From Table 3 it follows immediately that R1⊥R2⊥R3, but
in order to ensure ‖R1‖ = ‖R2‖ = ‖R3‖, the following con-
dition must be satisfied:∑
1. group

li Ai =
∑

2. group

lj Aj =
∑

3. group

lk Ak , (43)

i.e. in each of the three perpendicular directions in the cell,
the volume of the bars must be the same. It remains to en-
sure (38) and impose conditions to eliminate zero bars. Let
us take for example one continuous bar from the first group.
From (38) follows that, all over the bar, Ni/Ai = λ3 −λ2
holds. Therefore normal forces between the respective joints
must be proportional to the cross-sectional areas with the
same coefficient of proportionality in each group. Due to the
equilibrium in joints, normal forces must be the same within
each continuous bar, which implies that the cross-sectional
areas are constant within the continuous bar as well.

Let us now summarize the results. G∗
1,+ = s/6 and all

G∗
1-optimal media can be fully geometrically specified in the

following way:
G∗

1-optimal media are continuous lattices for which:

• a rectangular basic cell (with dimensions Li in yi-
directions, i = 1, 2, 3) consisting only of continuous
orthogonal bars in the yi-directions can be found,

• each bar has constant cross-sectional area within the

basic cell and the condition L1

n1∑
i=1

Ai = L2

n1∑
j=1

Aj =

L3

n1∑
k=1

Ak is satisfied (ni is the number of bars in the yi-

direction, i = 1, 2, 3).

The group of media specified above is the only group
of G∗

1-optimal media. They are in fact the 3D extension of
the uniform perpendicular lattices (UPL) introduced in Dim-
itrovová and Faria (1999). The simplest example from this
group is the regular cubic lattice (Fig. 5). The value of its
G∗

1 (not the proof of maximality) could be obtained directly
from the G∗

1 of its 2D analogue: the regular square lattice. If
we denote by s2D and s3D the material volume fractions of
2D and 3D regular lattices, respectively, s2D = 2s3D/3 holds,
and consequently

G∗
1 = 1

4
s2D = 1

6
s3D . (44)

3.3 Shear modulus G∗
2 (for effective cubic symmetry)

First of all, we point out that in 3D there does not exist
a rotation of global coordinates that interchanges the pos-
itions of G∗

1 and G∗
2 in C∗, as exists in 2D (see Dimitrovová

and Faria (1999)). Thus G∗
2-optimal media cannot be derived

from G∗
1-optimal media. For macroload � 2G one can obtain:

G∗
2 = 1

6 |V |
(
Q1 ·NT

)2 + (Q2 ·NT
)2 + (Q3 ·NT

)2
‖N‖2

= s

3

∑
j=1,2,3

∥∥Qj
∥∥2 cos2

(
N, Qj

)
∑

j=1,2,3

∥∥Pj
∥∥2 + ∑

j=1,2,3

∥∥Qj
∥∥2 . (45)

Additional constraints on possible N are:

N⊥Rj ∀ j = 1, 2, 3 . (46)

The obvious maximum s/3 cannot be achieved by any
medium, like in Sect. 3.2. Also combination of 2D results
(contrary to (44)) would lead to a wrong conclusion, as can
be demonstrated: let only Σ23 �= 0 in � 2G , then an optimal
medium should have bars in the directions of the unit square
diagonals in the (2,3) planes, according to Dimitrovová and
Faria (1999). Analogously, the other load cases Σ12 �= 0 and
Σ13 �= 0 imply bar directions in the (1,2) and (1,3) planes,
respectively. The 2D result G∗

2,+ = s2D/4 and the fact that
s2D = s3D/3 thus yield G∗

2 = s3D/12, because the bar direc-
tions stated previously do not coincide. However, it will be
proven that G∗

2,+ = s/9.
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Table 4 Basic load cases in � 2G

Basic case 1. 2. 3.

Macrostress Σ23 = 1 Σ13 = 1 Σ12 = 1

Macrostrain E23 = 1/
(
2G∗

2 Es
)

E13 = 1/
(
2G∗

2 Es
)

E12 = 1/
(
2G∗

2 Es
)

Maximality condition from (32) N = 1
G∗

2
Q1 N = 1

G∗
2

Q2 N = 1
G∗

2
Q3

Additional constraints

Q1⊥Q2&Q1⊥Q3,

Q1⊥Rj ∀ j = 1, 2, 3,

‖Q1‖2 = G∗
2 |V |

Q2⊥Q1&Q2⊥Q3,

Q2⊥Rj ∀ j = 1, 2, 3,

‖Q2‖2 = G∗
2 |V |

Q3⊥Q1&Q3⊥Q2,

Q3⊥Rj ∀ j = 1, 2, 3,

‖Q3‖2 = G∗
2 |V |

Table 5 Characterization of G∗
2-optimal media

Group 1. 2. 3. 4.

Spherical angles

cos ϕ1 = 1√
2
,

sin ϕ1 = 1√
2
,

cos θ1 = 1√
3
,

sin θ1 =
√

2√
3

cos ϕ2 = 1√
2
,

sin ϕ2 = 1√
2
,

cos θ2 = − 1√
3
,

sin θ2 =
√

2√
3

cos ϕ3 = − 1√
2
,

sin ϕ3 = 1√
2
,

cos θ3 = 1√
3
,

sin θ3 =
√

2√
3

cos ϕ4 = − 1√
2
,

sin ϕ4 = 1√
2
,

cos θ4 = − 1√
3
,

sin θ4 =
√

2√
3

Values of Φ1, Φ2, Φ3 1/3, 1/3, 1/3 −1/3,−1/3, 1/3 1/3,−1/3,−1/3 −1/3, 1/3,−1/3

Values of Ω1, Ω2, Ω3 1/3, 1/3, 1/3 1/3, 1/3, 1/3 1/3, 1/3, 1/3 1/3, 1/3, 1/3

An arbitrary � 2G can be expressed as a linear combina-
tion of three basic cases (Table 4). Using superposition, the
necessary maximality condition reads:

N = 1

G∗
2

(µ1Q1 +µ2Q2 +µ3Q3)

= λ1Q1 +λ2Q2 +λ3Q3 , (47)

where the coefficients µi express the specific combination of
basic cases corresponding to the imposed macroload. Addi-
tional constraints are:

Qj⊥Rk ∀ j, k = 1, 2, 3 & Q1⊥Q2⊥Q3 (48)

and

‖Q1‖ = ‖Q2‖ = ‖Q3‖ =
√

G∗
2 |V | . (49)

If (49) were derived first, then using some statements
about finite dimensional spaces, (47) is the maximality con-
dition for the sum of cosines from (45), like in Sect. 3.2.
Now, due to the orthogonality of Qj , the sum of cosines
is equal to 1, therefore G∗

2,+ = s/9 if at least one optimal
medium exists, i.e. if there can be found a medium in which
Pj = 0 ∀ j = 1, 2, 3, (47)–(49) hold and no zero bars are con-
tained. The requirement Pj = 0 ∀ j = 1, 2, 3 is equivalent to
the condition that

max
(∣∣Φ1,i

∣∣+ ∣∣Φ2,i
∣∣+ ∣∣Φ3,i

∣∣) (50)

is obtained for each i . Solutions of (50) yield four groups
of angles, as specified in Table 5, corresponding to the unit
cube main diagonals. It is not convenient to choose a basic
cell with eight faces (perpendicular to the bar directions), be-
cause the regular octahedron does not fill space. It is better to
assume a rectangular cell according to Fig. 6. The conditions
Qj⊥Rk ∀ j, k = 1, 2, 3 imply, again, the same bar volume
constraint within each group:

∑
1. group

li Ai =
∑

2. group

lj Aj

=
∑

3. group

lk Ak =
∑

4. group

lr Ar , (51)

Fig. 6 Rectangular cell for G∗
2-optimal media, top view
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which, in a sequel, guarantees mutual perpendicularity of
Qj, j = 1, 2, 3, while (49) is satisfied directly.

It remains to ensure that (47) holds and impose condi-
tions to eliminate zero bars. Let us take one bar from the
first group. From (47) it directly follows that, in each part be-
tween joints of this bar, Ni/Ai = (−λ1 +λ2 −λ3) /3 holds.
Thus normal forces must be proportional to cross-sectional
areas with the same coefficient of proportionality in each
group, in other words, in bars of each group local stresses
must be the same: σ1, σ2, σ3, σ4, respectively. Because four
possible directions of bars exist, it cannot be directly con-
cluded that due to the equilibrium in joints only continuous
bars are included in the cell. However, this statement can be
justified in the following way. Obviously

σ1 = (−λ1 +λ2 −λ3) /3 , σ2 = (λ1 −λ2 −λ3) /3 ,

σ3 = (−λ1 −λ2 +λ3) /3 , σ4 = (λ1 +λ2 +λ3) /3 (52)

hold. Let us take a joint and suppose that a member from
each group is presented there as continuous. Contributions
to the cell coordinate directions are given in Table 6. Conse-
quently, equilibrium in the joint reads:

σ1
(
A1,m − A1,m−1

)+σ2
(
A2,n − A2,n−1

)−
σ3
(
A3,r − A3,r−1

)−σ4
(
A4,s − A4,s−1

)= 0 ,

σ1
(
A1,m − A1,m−1

)+σ2
(
A2,n − A2,n−1

)+
σ3
(
A3,r − A3,r−1

)+σ4
(
A4,s − A4,s−1

)= 0 ,

σ1
(
A1,m − A1,m−1

)−σ2
(
A2,n − A2,n−1

)+
σ3
(
A3,r − A3,r−1

)−σ4
(
A4,s − A4,s−1

)= 0 , (53)

where the first subscript to cross-sectional areas denotes
the group and the second expresses order number within
the group. Equation (53) must be satisfied for any σi, i =
1, 2, 3, 4, consequently the cross-sectional areas must be ei-
ther the same (resulting in a continuous bar with constant
cross-sectional area) or zero (the group is not contained in
the joint), which completes the justification.

In summary, G∗
2,+ = s/9 and all G∗

2-optimal media can
be fully geometrically specified in the following way:
G∗

2-optimal media are continuous lattices for which:

• a rectangular basic cell, according to Fig. 6, where only
continuous bars in four directions specified by Table 5
are present, can be found,

• each continuous bar has constant cross-sectional area
and (51) holds.

Table 6 Contributions of the local stresses to the coordinate directions

σ1 σ2 σ3 σ4

y1 1/
√

3 1/
√

3 −1/
√

3 −1/
√

3
y2 1/

√
3 1/

√
3 1/

√
3 1/

√
3

y3 1/
√

3 −1/
√

3 1/
√

3 −1/
√

3

Fig. 7 The regular cube-diagonal lattice

The group of media described above is the only group of
G∗

2-optimal media. The name for such media was introduced
in Dimitrovová and Faria (1999) as uniform diagonal lattices
(UDL). The simplest example from this group is the regular
cube-diagonal lattice in Fig. 7.

3.4 Shear modulus G∗ (for effective isotropy)

In this case conclusions from the two previous sections can
be exploited. Let us assume that we already have a G∗-
optimal medium. Macroloads � 1G and � 2G can be imposed
separately on it and the same bounding procedure as in
Sects. 3.2–3.3 can be performed. It is only necessary to pre-
vent a geometrical specification that would contradict the
possibility of effective isotropy of the medium. Thus:

G∗ ≤ s

4

‖P‖2

‖L‖2 and G∗ ≤ s

6

‖Q‖2

‖L‖2 , (54)

where subscripts in P and Q are omitted for the sake of sim-
plicity. Since the maximum in both relations of (54) must
be the same, ‖P‖2 = 2 ‖Q‖2 /3 and, taking into account the,
last expression of (28), G∗ ≤ s/15 can finally be obtained.
Therefore G∗+ = s/15, if at least one optimal medium exists.
The necessary maximality and additional constraints could
be expressed analogously as in Sects. 3.2–3.3 as:

N =
∑

j=1,2,3

λjPj +
∑

k=1,2,3

µkQk (55)

and

‖R1‖ = ‖R2‖ = ‖R3‖ ; ‖Q1‖ = ‖Q2‖ = ‖Q3‖ ;
cos (R1, R2) = cos (R2, R3) = cos (R3, R1) ;
Qj⊥Rk ∀ j, k = 1, 2, 3 ; Q1⊥Q2⊥Q3 . (56)

Unfortunately, the full geometrical characterization of
G∗-optimal media is not possible. Existence of at least one
optimal medium can be proven by superposition of the re-
sults, namely by combination of the cells of the simplest G∗

1-



A new methodology to establish upper bounds on open-cell foam homogenized moduli 269

and G∗
2-optimal media, see Dimitrovová and Faria (1999)

for the conditions under which such a superposition can be
done. Let us denote the material volume fractions of the
simplest G∗

1- and G∗
2-optimal media as s1G and s2G , respec-

tively. It can be written:

G∗ = s1G

6
= s2G

9
, (57)

yielding s1G = 2s2G/3 and consequently (s = s1G + s2G be-
cause the bars of the original media do not coincide) G∗ =
s/15 for the combined medium. As a consequence, the rela-
tion between cross-sectional areas can be derived as A1G =
8
√

3A2G/9, where, A1G and A2G stand for the cross sec-
tions of the original G∗

1- and G∗
2-optimal media, respectively

(Figs. 5 and 7). It can be verified that, in this case as well,
the bending effect can be superposed directly, as in the 2D
analog, as shown in Dimitrovová and Faria (1999).

4 Concluding remarks

It was proven that G∗
1- and G∗

2-optimal media can be geo-
metrically fully specified; they are UPL and UDL, respec-
tively. For neither K∗- nor G∗-optimal media can full ge-
ometrical specification of their microstructure be given. It
is easy to verify that G∗

1- and K∗-optimal media, assumed
either as micro-trusses or as micro-frames, respond only ax-
ially, while in G∗

2- and G∗-optimal micro-frames, bending
response is always present. The bending contribution is dif-
ferent for different G∗

2- and G∗-optimal media, therefore
the nonlinear part is rather difficult to define. However, it
can be stated that for low-density media this nonlinear part
is not important. Bending contribution can be increased by
putting more material close to the joints because the bend-
ing moment distribution is antisymmetric within each beam
(Sect. 2.2). However, this change would decrease the axial
contribution (19)–(20), and the corresponding linearized
bound would decrease. Then the medium would not be op-
timal anymore, according to the definition from Sect. 2.2.

It is useful to remark that directions of bars in optimal
micro-trusses should be related to the principal directions of
the applied macroload according to the theory of Michell
trusses. This is directly related to the impossibility of full
geometrical characterization of K∗- and G∗-optimal media.
For � K each direction is a principal direction. �G can be

Table 7 Other elastic properties in optimal micro-trusses

Macro-
load

Optimal
micro-trusses

Other elastic properties
K ∗ G∗

1 G∗
2 G∗

� K
UPL, UDL, other media,
which cannot be fully
geometrically specified

K ∗+
not uniquely
defined

not uniquely
defined

not uniquely
defined

� 1G only UPL K ∗+ G∗
1,+ 0 −−

� 2G only UDL K ∗+ 0 G∗
2,+ −−

�G
media that cannot be
fully geometrically specified,
but neither UPL nor UDL

not uniquely
defined G∗+ G∗+ G∗+

determined by five non-zero and independent parameters,
and therefore each direction can also be assumed as a prin-
cipal one. Directions of bars are precisely specified in G∗

1-
and G∗

2-optimal media. In the former case they coincide with
the principal directions of the macroload, which are in this
case unique for any � 1G . However, in the latter case, the
directions of bars could hardly be determined in such a way.

Other remarks emerge from comparison of the addi-
tional constraints (geometrical requirements) for K∗- and
G∗-optimal media, (35) and (56), respectively. It can be
shown, with the help of (26) and the second relation in (28),
that the group of media satisfying (56) forms a subgroup of
microstructures for which (35) holds. Therefore each K∗-
optimal medium already fulfills additional constraints for
G∗-optimal ones, consequently, it is hard to find a G∗-
optimal medium that is not K∗-optimal.

It is straightforward to derive bounds for the Young’s
modulus for media with effective isotropy and cubic symme-
try, respectively, in the form of

E∗
is,+ = 4K∗+G∗+

K∗+ + G∗+
= 4 (s/9) (s/15)

(s/9)+ (s/15)
= s

6
,

E∗
cs,+ = 4K∗+G∗

1,+
K∗+ + G∗

1,+
= 4 (s/9) (s/6)

(s/9)+ (s/6)
= 4

15
s , (58)

however, no conclusions can be taken on upper bounds on
effective Poisson’s ratios. It is only easy to verify that UPL
have zero effective Poisson´s ratios. K∗- and at the same
time G∗-optimal micro-trusses have an effective Poisson’s
ratio equal to 1/4, as shown by Bakhvalov and Panasenko
(1989).

In the optimal micro-trusses it is interesting to see what
the other elastic properties are. A summary is given in
Table 7. Furthermore, in Table 8 bounds for open-cell foams
proven in this article are compared with the composite ones.
The composites bounds for effectively isotropic media are
taken from Hashin and Shtrikman (1963) and Hashin (1970,
1983) and for media with effective cubic symmetry from
Avellaneda (1987). They are specified for one void phase
and linearized with respect to the material volume fraction.
One can see that the solid-phase Poisson’s ratio νs natu-
rally appears in the linearized composite bounds (unlike the
2D case shown in Dimitrovová and Faria (1999)). This is
because in optimal 3D media shell or plate parts must be
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Table 8 Composite bounds, bounds for open-cell foams and characterization of the optimal media

Composite
bounds

K ∗+ = 2s

3 (3 (1−νs)− s (1+νs))

G∗
1,+ = s (2−νs)

2 (1+νs)

1

3 (3 (1−νs)− s (1−2νs))

G∗
2,+ = s (5−3νs)

2 (1+νs)

1

(9 (1−νs)−2s (2−3νs))

G∗+ = s (7−5νs)

2 (1+νs)

1

(15 (1−νs)−2s (4−5νs))

Linearized form
2

9 (1−νs)
s

2−νs

6
(
1−ν2

s

) s
5−3νs

18
(
1−ν2

s

) s
7−5νs

30
(
1−ν2

s

) s

Previous form
with νs = 0

2

9
s

1

3
s

5

18
s

7

30
s

Bound for
open-cell foams
from this article

1

9
s

1

6
s

1

9
s +βs2 1

15
s +ηs2

Optimal media
are ...

determined by
necessary and
sufficient conditions

fully
geometrically
specified

fully
geometrically
specified

determined by
necessary and
sufficient conditions

included. β and η stand for coefficients of the bending con-
tribution.

Finally, let us make some remarks about the simplified
assumptions adopted for the strain energy contribution. It
is known that assuming a micro-frame medium with the-
oretical lengths makes the medium softer than it really is.
It is thus better to use beam active lengths and include the
deformation of the joints. Moreover, the strain energy dens-
ity corresponding to shear forces could be included in W .
Obviously, such improvements do not change the linearized
bounds since they do not influence expressions for the axial
response of the media. If, e.g., the strain energy density cor-
responding to shear forces was included, the parameters β
and η from Table 8 would decrease. In this case the solid-
phase Poisson’s ratio would appear in the final result.

Appendix

Admitting a more general solid material behavior it is pos-
sible to show that open-cell foam bounds coincide with
the Voigt bound. For the sake of simplicity let us assume
a 2D medium, the regular lattice, which is k∗- & G∗

1-optimal
(Dimitrovová and Faria 1999). k∗ stands for the 2D bulk
modulus and G∗

1 has the same meaning as before. The
Voigt bounds k∗

V and G∗
1,V for one void phase are (see Hill

(1963)):

k∗
V = s

2 (1−νs)
, G∗

1,V = s

2 (1+νs)
,

where νs is the solid-phase Poisson’s ratio. Now deforma-
tion of joints cannot be neglected, due to the presence of νs ,
which is restricted to the interval [−1, 1]. It is obvious that
the strain field inside the cell of the regular lattice would be
fully uniform for the � k macroload only if νs = −1, giving
k∗

V = s/4, and for the � 1G macroload only if νs = 1, yield-
ing G∗

1,V = s/4, which are upper bounds on the moduli of
2D cellular media.
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