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1 Introduction. 

A cellular medium (CM) is composed of an interconnected network of solid beam and 

shell parts, which can be assigned to cells, i.e. building blocks that are (perhaps with some 

modifications) repeated in the medium. CM are characterized by two essential features: 

(i) dimensions of voids are very small compared to the size of the medium, 

(ii) CM have high porosity (usually above 70%). 

Thus when a CM is under consideration we are dealing with a highly heterogeneous 

composite with void and solid phases. We introduce the relative density, s, as the ratio of the 

density of the CM to the density of the solid phase and in the following the term basic 

material is used for the solid phase. Due to the low relative density it is obvious that at least 

one dimension of the basic material, thickness, at the cell level is small compared to the 

characteristic cell size. This condition motivates to the possibility of using structural theories 

in homogenization calculation of CM effective properties as we already discussed in detail in 

[5] and [6]. In the present paper we show that structural theories are a powerful tool in 

determination of bounds on CM effective properties as well. 

CM have a wide range of applications. They can be used for absorption of the kinetic 

energy from impacts, as thermal isolation, they have useful electrical properties, etc. New 

technologies allow foaming of metals and ceramics, so there are many new materials in the 

class of CM and detailed description of their properties is required. 

Determination of bounds on effective properties of highly heterogeneous composites has 

been the subject of considerable research for many years. In the present paper we make use of 

formulation of two-phase bounds of Hashin-Shtrikman for 2D effectively isotropic media 

([9]-[11]) and of Allaire & Kohn from [1] for 2D media with effective square symmetry. 



 3

The main monograph on CM [8] has been published by Gibson and Ashby, but the 

problem of bounds on CM effective properties is not examined neither in [8] nor elsewhere. 

There are only available numerical optimization algorithms to determine microstructures 

consisting of trusses or beams, which correspond to prescribed properties [13]-[16]. 

Clearly, 2D-CM are composed only of beams while 3D media can be more general. The 

important restriction of the class of 3D-CM is thus to CM consisting of beams (CMB). This 

restriction allows determination of new CMB bounds that are strictly lower than the general 

ones since optimal media for 3D general bounds cannot be just from CMB class (the proof is 

in [2]). The main contribution of this paper is thus in the introduction of the new methodology 

to establish bounds on effective properties of CMB media. The methodology is in detail 

described and verified in 2D. The verification is made by comparison with the known 2D 

bounds. Consequently, the main conclusions obtained in this paper can be extended to 3D 

case. Determination of the new 3D-CMB bounds together with the extension of the 

methodology presented here we published in [7]. Moreover, using the same methodology, we 

also developed bounds on properties of CMB media with mainly bending and torsion 

response, see [4]. These ones we are going to publish soon. 

2 General remarks about the new methodology. 

2.1 SIMPLIFIED ASSUMPTIONS AND BASIC RELATIONS NEEDED FOR THE NEW 

METHODOLOGY. 

When CMB are under consideration, there are two extreme possibilities for the structural 

model of the crossing points - either “hinges” or “rigid corners”. According to [15] we 

introduce the terms micro-frame media when rigid corners are assumed and micro-truss 

media when the beams are straight and connected only by hinges. The group of CM 
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consisting of straight beams we denote by CMS. To each micro-frame medium from CMS 

group we can relate a micro-truss medium just by changing the behavior of the crossings. In 

true CMB the behavior of the crossings is somewhere between these two extreme cases. The 

corners are not really stiffened, only in some natural CMB the thickness is usually higher 

close to the crossing points. This influence is not very significant (see [17]), but it justifies the 

assumption of rigid corners. Fig. 2.1 illustrates the definition of the theoretical length and 

effective length. The former is the length between the theoretical crossing points, measured 

on the middle axes of the beams, and the latter is the theoretical length reduced by parts that 

belong to the crossings. 

For the sake of simplicity we assume that the basic material is homogeneous isotropic 

linear elastic (Eb m and νb m stand for its Young’s modulus and Poisson’s ratio, respectively). 

Due to the homogeneity, the relative density coincides with the volume fraction of the basic 

material and thus it forms a counter part to the porosity. In a sequel, we adopt a maximum 

value for the relative density of CM as s=0.3, see [8]. 

Obviously, without loss of generality, we can treat only CMB with periodic 

microstructure and we can use some basic conclusions from homogenization techniques, thus 

a cell of a CMB medium can be conveniently rescaled and spatial variable y can be 

introduced there, [5]. Rescaling enables introduction of the unit related to some dimension of 

the cell. All other geometrical parameters are expressed proportionally to this unit. 

As already mentioned, only 2D-CMB are considered in this paper and, in addition, 

assumption of the plane stress without specifying the perpendicular thickness is adopted. 

Furthermore, we restrict ourselves to media with effective isotropy or square symmetry and 

thus the dimensionless matrix of effective elastic stiffnesses C* is used in the following form: 
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As usual k* stands for the plane stress bulk modulus, *G1  and 2G* are the shear moduli. The 

star * in notation means effective and dimensionless with respect to the basic material 

Young’s modulus Eb m. A medium is effectively isotropic when *G1 =2G*=G*. If we do not 

specify the stiffness constant, which we are referred to, we use the notation C*. Only bounds 

on constitutive constants mentioned above will be determined. Obviously, lower bounds of 

media with one void-phase are always zero, consequently only upper bounds will be 

examined in the following. 

In derivation of each bound just basic knowledge from linear beam theory, some basic 

facts from linear algebra, Schwarz inequality and basic assumption for derivation of Voight 

bound (rule of mixtures) will be used. This assumption states uniform strain field in optimal 

media (see [12]), namely, when local strain field is uniform throughout the composite, then it 

is equal to the macroscopic one and the stiffness constant that corresponds to such macroload 

reaches a maximum possible value. Since in a micro-truss medium each bar has a uniform 

strain field with respect to its “bar” coordinates, to fulfil the previous assumption means that 

we have to find directions of bars, such that their strain field will coincide with the 

macroscopic one. Due to the small thickness of the bars, the influence of crossings can be 

neglected and the medium can be characterized only by its bars’ middle axes. Their local 

displacements, u, must thus coincide with the uniform strain, E⋅y, where E is the macrostrain 

and y is the spatial variable. This requirement can be used to get necessary maximality 

condition for micro-truss media. The condition is not sufficient, since the requirement does 

not exclude "zero" bars from the optimal medium. Introduction of this maximality condition 

is inevitable in 3D case, but in 2D case can be obtained as a consequence of the estimations. 
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Base of the new methodology lies in well-known expressions for effective strain energy 

density W (ΣM and ΣD are volumetric and deviatoric parts of the effective stress tensor Σ): 

Medium with effective 

isotropy 

Medium with effective square 

symmetry 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Σ
=

*G2
:

*k2
W DD

2
M ΣΣ1

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Σ
+

Σ−Σ
+

Σ
=

*G*G4*k2
W 2

2
2,D

2
22,D,D

2
M 1

1
111

 
(2.2) 

To be able to express from (2.2) just a specific C*, an appropriate test macroload must be 

applied to the medium. The ones that are needed in this paper are summarized in tab. 2.1. Due 

to the effective isotropy or square symmetry of assumed media, components of the 

macrostrain, E, developed in CMB under the macroloads, cannot be arbitrary. It must satisfy 

the same conditions as the macrostress (see column 3 of tab. 2.1). 

Macroload Constant to be determined Specification 

ΣI  k* 11Σ =Σ2 2≠0, 12Σ =0 

ΣI I  G* 11Σ =-Σ2 2≠0, 21Σ ≠0, 11Σ / 21Σ =γ 

ΣI I I  *G1  11Σ =-Σ2 2≠0, 21Σ =0 

ΣI V 2G* 11Σ =Σ2 2=0, 21Σ ≠0 

Tab. 2.1  – Test macroloads and the corresponding specification of macrostress as well as macrostrain. 

Since the effective stress and the strain energy density are defined by averaging [5], we 

apply averaging operator (see (3.1) later on) on the local stress and strain energy fields and 

express the results in terms of beam’s internal forces and moments. For the W-expression we 

keep the following assumptions: each beam is assumed with its theoretical length, crossing 

points are assumed as rigid corners and the effect of shear deflection is neglected. 

Then we express a fraction defining C* in terms of internal forces and moments and by 

step by step estimation using especially Schwartz inequality we finally obtain the form of the 

bound. 
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2.2 SOME CONCLUSIONS ABOUT THE CMB OPTIMAL MEDIA 

Besides of simplicity the main advantage of the present methodology is that from the step 

by step estimations immediately follow necessary and sufficient conditions on microstructure 

of optimal media, which can be in some cases written only in terms of geometrical 

parameters. 

The most interesting partial results are: 

(i) the optimal media are from CMS, 

(ii) each beam of an optimal medium has a constant thickness, 

(iii) except of G*-optimal media, only normal forces are developed under the corresponding 

macroload, 

(iv) directions of the beams coincide with the principal directions of the macroload. 

To the point (i) it should be add, that there exists, to the authors’ knowledge, only one 

2D-medium, that is ΣI -optimal and cannot be determined by our methodology. It is the 

fictitious Hashin’s medium – the composite cylinders. This medium has random 

microstructure of special kind and in the bulk test it is in the state of uniform local strains that 

corresponds to extension in radial symmetry. A cell of the Hashin’s medium, in fact, contains 

infinite number of composite cylinders, thus it can be hardly included to CM. In addition, we 

start our estimations with the assumption that a cell of a CMB medium is composed by finite 

number of beams (see Section 3.1), which is the other reason why the Hashin’s medium was 

not discovered by our methodology. The proof that the straight beams are preferable in 

optimal media we included in [7], thus here we restrict directly to CMS media. 

The point (ii) follows simply from the Schwarz inequality and will be justified later on, 

in the first proof and then it will be introduced as the assumption. 
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In addition to the point (iii) we remark that (except of G*-bound) each bound is a linear 

function of the relative density. Obviously, this linear function is the tangent to the general 

bound (compare with [6]). In the case of G*-bound the CMB bound lies between the general 

bound and the linearized bound. The linearized one is the tangent to both and corresponds to 

G*-optimal medium taken as a micro-truss. We can show, see [7], that the nonlinear effect in 

G*-CMB bound is negligible. 

In this context it is also useful to remark, that the validity of the CMB-bounds is related 

to the validity of the linear beam theory, that is used in their derivation. Specifically, the 

linear beam theory is reliable only if the ratio of the theoretical length of each beam to its 

thickness remains inside the interval [4,R], where R is related to the stability limit. In a 

sequel, other nonlinearities should be included in bounds’ form for higher relative densities, 

when some ratio is close to the lower limit 4, but this effect cannot be large. Also the range of 

the validity of each bound in terms of the relative density should not be simply s=0.3, but 

should be adjusted to the existence of at least one optimal medium, for which the beam theory 

is still acceptable. 

Finally, the point (iv) is related to the theory of Michell trusses, [2]. Directions of the 

beams are not exactly specified in ΣI  and ΣI I  –optimal media, since in the former case each 

direction is principal and in the latter case the macroload is not uniquely determined (see tab. 

2.1) and consequently each direction can be assumed as principal. We also remark, that in 3D, 

on contrary to the 2D case, beams’ directions of 2G*-optimal media could hardly be 

determined from the principal directions of the macroload (see [7]). 

2.3 GENERAL TWO-PHASE BOUNDS AND CMB BOUNDS. 

Following tab. 2.2 summarizes the general bounds (specified to media with one void-

phase) together with their linearized forms with respect to the relative density. Obviously, in 
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linearized forms does not appear the basic material Poisson’s ratio νb m. For the sake of 

completeness also CMB bounds and the state of conditions that is possible to obtain on 

optimal media is included in tab. 2.2, δ represents small coefficient in front of the bending 

contribution to G*-CMB bound. We define G*-optimal media as media, which taken as 

micro-trusses saturate the linearized bound. The coefficient δ is different for different G*-

optimal media. 

Bound k*+ ++ = *G*G 21  +*G  

General form ( )[ ]bms22
s

ν+− 1
 ( )[ ]bms22

s
ν−− 1

 ( )[ ]bm3s42
s

ν−−
 

Linearized form s/4 s/4 s/8 

CMB bound s/4 s/4 s/8+δs3 

Optimal medium 
necessary and 

sufficient conditions 

fully specified by 

geometrical relations 

necessary and 

sufficient 

conditions 
Tab. 2.2 – General bounds, CMB bounds and characterization of the CMB optimal media. 

3 2D-CMB media. 

3.1 BASIC FORMULAS OBTAINED BY APPLICATION OF THE AVERAGING OPERATOR. 

As explained above, we can restrict ourselves directly to CMS media. Let us take a cell 

of a CMS medium and assume that the cell, V, contains finite number of beams. Now we 

express macrostress Σ and macroscopic strain energy density W as (see [5]): 

∑∑ ∫∫ ===
i

i

i *v

i

*v i

d
V

d
V

σσσΣ yy 11 , 

∑ σ=Σ
i

i
MM , ∑=

i

i
DD σΣ , ∑=

i

iwW , 
(3.1) 
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where σi  is the local stress field, its deviatoric and volumetric parts are denoted by i
Dσ  and 

i
Mσ , respectively, and wi is the local strain energy density corresponding to one single i-

beam. The area of the full cell is ⎟V⎢ while the one corresponding to the i-beam is ⎟V*i⎢. 

⎟V*i⎢ must include the area related to the effective length and to the connected parts of 

crossings in the way that *V*V
i

i =∑  and dim(V*i∩V*j)≤1 ∀i≠j, where V* is the material 

part of the cell. Due to the periodicity we do not have to treat separately the case, when the i-

beam is cut but the boundary of the cell. 

Let us take one single i-beam and compute its contributions 〈σi〉 and 〈wi〉. Detailed 

analysis is needed for 〈σi〉, since influence of crossing points is important. The i-beam has the 

theoretical length li , the effective length pi  and arbitrarily oriented middle axis by the angle 

αi=〈0,2π) with respect to the cell coordinate y1 (see fig. 3.1). Let us denote by hi l  and hi r  the 

parts of the theoretical length li , which correspond to the left and right end of the beam and 

are included in the crossing points. Thus pi=li-hi l -hi r . Generally thickness is variable within 

the beam’s effective length, where local coordinate iz1  is introduced with the origin in the 

middle of the theoretical length, thus ti=ti(
iz1). 

We introduce the internal forces and moments Ni, Qi , Mi in a way that is specified in fig. 

3.1. Distribution of bending moments corresponding to iM  is constant and corresponding to 

2/pQ ii  is linear with “zero area”. First we compute the stress contribution (using Green’s 

formula) with respect to the beam’s local coordinate system and in its simplified (as explained 

below) form i~σ . Obviously ++= i
cpl

i
bm

i ~~~ σσσ i
cpr

~σ , where contribution with subscript 

“bm” relates to the beam with effective length, with “cpl” and “cpr” to the left and right 

crossing faces, respectivelly, see fig. 3.1. It holds: 
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Relations in (3.2) do not include the contributions from the integration over internal faces of 

crossings, since they would cancel after summing inside the cell. This is the simplification 

mentioned above. Finally: 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
QN

V
l~ iiiiσ . (3.3) 

We can see that (3.3) does not include constant bending moments Mi and that i-beam 

contribution is non-symmetric, due to the missing contributions. Transformation to the cell 

coordinates yields in: 

⎥
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Since the tractions on the boundary of the cell are self-equilibrated, Σ must be symmetric ([5]) 

and consequently we can take from each contribution just its symmetric part, since then 

∑∑ ==
i

i
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i
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∑=Σ
i

iiM lN
V2
1  and expression for ΣD is obvious. 

Since (3.4) does not include constant moments Mi, we can simply conclude, that if in 

optimal medium bending moments develop, they have zero area. Consequently the 

contribution 〈wi〉 in optimal media is (under the assumptions already taken in Section 2.1): 
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or when the thickness is constant within i-beam: 
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Now the orientation of the coordinate iz1  is unimportant and we can only assume that 

)π∈α ,0i . 

3.2 DERIVATION OF 2D CMB BOUNDS. 

Two ways in the bound’s proofs can be established, one for general micro-frames (proof 

A) and the other specified just for micro-truss media with constant thickness within each truss 

(proof B). We define the following vectors to facilitate expressions in proof B: 

⎭
⎬
⎫

⎩
⎨
⎧

=
n

n
n

2

2
2 t

lN,...,
t
lN,

t
lN
1

1
1N , 

{ }n
2

nn2
2

22
2 costl,...,costl,costl ααα= 111

1R , 

{ }n
2

nn2
2

22
22 sintl,...,sintl,sintl ααα= 111R , 

( ) ( ) ( ){ }nnn222 2costl,...,2costl,2costl ααα= 111P , 

( ) ( ) ( ){ }nnn222 2sintl,...,2sintl,2sintl ααα= 111Q , 

{ }nn22 tl,...,tl,tl 11=L . 

 

Obviously: 

RRP 2−=1 , LRR =+21  and 222 LQP =+ ,  

where  denotes the Euclidean norm and n is the number of trusses in the cell. The relative 

density can be expressed as V/s 2L=  and relation (3.4) now takes the form: 
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where we used the usual vector representation { }222 ,, 111 ΣΣΣ=Σ  and S is a modified statical 

matrix. If the local strains are uniform, we can write compatibility conditions in the form: 

bm
TTT E/NES =⋅ , (3.6) 

where analogously { }222 E2,E,E 111=E . Specifications of components of Σ from tab. 2.1 

introduced into (3.5) results in additional conditions on possible normal forces, while similar 

specifications of E together with (3.6) yield in the necessary maximality conditions on normal 

forces. 

In the proofs we first establish the bound together with maximality and additional 

conditions on possible internal forces. Then we summarize the necessary and sufficient 

conditions on optimal media and try to express them, as much as possible, as geometrical 

conditions. 

3.2.1 BULK MODULUS. 

ΣI -macroload. 

Proof A. It can be written directly: 
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(3.7) 

In addition, we can use Schwarz inequality in the form: 
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Substituting (3.8) into (3.7) results in: 
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where the Schwarz inequality was used again, now in the following integral form: 
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Relation (3.10) states the important conclusion of constant thickness within each beam of an 

optimal medium, since only in this case the equality in (3.10) is obtained and consequently 

the equality holds also in the second inequality of (3.9). Obviously, relations analogous to 

(3.9) are obtained in estimations related to the others stiffness constants, thus (3.10) can be 

also applied there. In the sequel, from now on the assumption of constant thickness within 

each beam is adopted. 

Maximality conditions on possible internal forces are the ones that ensure equalities in 

the above relations (3.7-9), i.e. only normal forces can be developed and Ni/ti  must be 

constant within the cell. Thus optimal media can be taken as micro-trusses and the maximality 

condition is written as: 



 15

LN // . (3.11) 

Additional conditions, with (3.11) substituted, can be written as geometrical ones: 

T2T LRLR ⋅=⋅1  & LQ⊥  ⇔ RR 2=1  & LQ⊥ . (3.12) 

(3.11-12) are necessary and sufficient conditions on optimal media for ΣI -macroload. 

Unfortunately (3.11) cannot be expressed only by geometrical parameters. Simple examples 

of optimal media with structural hexagonal symmetry are in fig. 3.2 and with structural square 

symmetry in fig. 3.3. Some interesting conclusions about optimal media with structural 

hexagonal symmetry are in [4]. 

Proof B: 

( )
4
s

V4
*k 2

2T

≤
⋅

⋅=
N
LN1 ,  

consequently the maximality condition is (3.11) and the rest of the discussion is the same as 

before. 

The other possibility in proof B is to start with (3.6), taking into account tab. 2.1. Then 

(3.11) is derived directly and we see, that in this case (3.6) ensure not only necessary but also 

sufficient maximality conditions as it is obvious from (3.11) that now “zero” trusses are 

excluded. 

3.2.2 SHEAR MODULI. 

ΣI I -macroload. 

Proof A. A useful condition in this case is(: stands for the tensorial multiplication): 

( )2
i

2
i2

2
ii

D
i
D QN

V2
l: +=σσ ,  

but following the similar estimations as for ΣI -macroload, we can obtain only a bound equal 

to s/4, with maximality conditions that cannot be satisfied by any medium. This happens due 

to the nonlinearity of the bound. 
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ΣI I I -macroload. 

Proof A. Let us express first: 

( ) ( ) ( )
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i ii
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i
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2i
22,D
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V
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tl 111 . 

 

Step by step estimations yield in: 
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⎥
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Thus maximality conditions show again that we can assume only micro-truss media, 

consequently we will not specify any other condition now, since the direct determination from 

proof B is easier. 

Proof B: 

( ) ( ) 2

2
22

2

2T

,cos
V4V4

*G
L

L
PNP

N
PN

⋅⋅=
⋅

⋅=
111 ( )

4
s,cos

4
s 2

22

2

≤
+

⋅= PN
QP

P
, (3.13) 

where ( )PN,  denotes the angle between the vectors N and P. Maximality conditions from 

(3.13) result in PN //  and 0Q = ; additional ones (from (3.5)) are N⊥L and N⊥Q. In this 

case the optimal medium can be fully geometrically specified. From 0Q =  we directly obtain 

that only horizontal and vertical trusses can be in the cell, thus it is convenient to assume that 

the cell is rectangular, with in-line arrangement (fig. 3.4). Since we have to exclude zero 
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trusses, equilibrium in crossings results in continuous bars passing through the cell. 

Additionally, P⊥L yield in: 

∑∑ =
vert

jj
horiz

ii tltl .  

Thus the total vertical trusses’ area must be the same as the area of the horizontal trusses. 

Using the maximality condition PN // , e.g. forces in horizontal bars are positive and in 

vertical ones negative proportions of the corresponding thickness. Again due to equilibrium in 

crossings, forces must be equal in each passing bar, which enforce the thickness to be 

constant within the bar, which completes the full geometrical specification. We call the 

optimal medium the uniform perpendicular lattice (UPL). Let us denote the dimensions of the 

cell L and H. Thus UPL group is characterized in the following way: 

• the cell consists only of horizontal and vertical continuous bars (beams), 

• condition ∑∑
==

=
m

1j
j,H

n

1i
i,L tHtL  is satisfied, where n and m is the number of horizontal and 

vertical bars, respectively. The other notation is marked in fig. 3.4. 

No other medium can be optimal for ΣI I I -macroload. The simplest example from UPL group 

is the regular square lattice (from fig. 3.3). 

Starting from (3.6) we would get the maximality condition PN // , but not 0Q = . Thus 

in this case (3.6) yield only in the necessary but not sufficient maximality conditions. 

ΣI V-macroload. 

Since by rotation of global coordinates by 45 degrees the two shear moduli exchange its 

position in the matrix of effective elastic stiffnesses (2.1), the situation now is exactly the 

same as for ΣI I I -macroload, just rotated. The bound is the same, the optimal media are the 

UPL media rotated by 45 degrees and we name them the uniform diagonal lattices (UDL), 
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since the bars’ directions are in directions of diagonals of the unit square. The simplest 

example from UDL group is the regular diagonal lattice from fig. 3.3. 

ΣI I -macroload. 

Going back to ΣI I -macroload we restrict ourselves to micro-trusses to obtain at least the 

linearized bound. Suppose that we have already an optimal medium for ΣI I -macroload. By 

application of the ΣI I I  and ΣI V-macroloads separately, we get the best estimates as (since 

vectors Q  or P  cannot be zero): 

22

2

4
s*G

QP

P

+
⋅≤  & 22

2

4
s*G

QP

Q

+
⋅≤  ⇒ G*+=s/8. (3.14) 

Maximality conditions are the following: 

PN //III  & QN //IV  ⇒ N=λ1P+λ2Q, (3.15) 

where I I IN and I VN correspond to the normal forces developed under the ΣI I I  and ΣI V-

macroloads, respectively, and λ1 , λ2  are coefficients. Additional conditions are thus: 

I I IN⊥L, I I IN⊥Q, I VN⊥1R, I VN⊥2R ⇒ 

RR 2=1  & Q⊥1R & Q⊥2R, 
(3.16) 

where the geometrical ones on the second line of (3.16) ensure the opposite implication in 

(3.15). Thus: 

PN //III  & QN //IV  ⇔ N=λ1P+λ2Q.  

It remains to prove, that at least one optimal medium exists. We could do it by showing the 

known optimal media, e.g. the ones with structural hexagonal symmetry are the regular 

triangle lattice and the triangle & honeycomb lattice from fig. 3.2, but we also present another 

interesting proof in the following section. 

Conditions (3.15-16) state again necessary and sufficient settings on optimal micro-truss 

media, but their full geometrical specification is difficult. All G*-optimal media taken as 
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micro-frames exhibit bending contribution that puts the G*-value slightly above the linearized 

bound, but there are no G*-optimal media, which taken as micro-trusses would not be 

characterized by necessary and sufficient conditions (3.15-16). As we proved in [7], the 

bending contribution is negligible. 

3.3 SUPERPOSITION OF THE RESULTS. 

Let us take two Σk-optimal micro-truss media, k=I, II, III or IV, with the same cell shape 

and size and combine them together in the sense, that if the trusses cross, we assume a 

crossing point there. Let us adjust the value of the macroloads s.t. 1Σ k  and 2Σk  applied on the 

original first and second cells, respectively, produce the same macrostrain i.e. the same local 

uniform strain. Now let us introduce the superposition of the macroloads 1Σk+2Σk  to the 

combined cell and suppose, that the internal normal forces are N=1N+2N, where iN are 

normal forces developed in i-cell under iΣ k , i=1,2. Equilibrium in the combined cell is 

obviously satisfied. Consequently for the stiffness constant, that corresponds to the applied 

macroload hold: 

*C*C*C 2+≤1 , (3.17) 

where the superscripts correspond to the first and to the second medium. Since the local strain 

was the same for both cells, it is the same in combined cell as well, thus compatibility is 

satisfied and consequently equality holds in (3.17). 

As an example let us take the square lattice with two oblique bars from fig. 3.3, that was 

obtained by combination of the regular square lattice (thickness t1) and the regular diagonal 

lattice (thickness t2), both in fig. 3.3. It holds (1s and 2s are the original relative densities of 

the two cells): 

4
s

4
s

4
s*k*k*k

2
2 =+=+=

1
1 , since sss 2+=1   
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More generally, when the original media are neither micro-trusses nor optimal, the strain 

developed in the cells is not necessarily uniform. If after combination of the cells, 

compatibility is obtained for N=1N+2N, the equality in (3.17) holds as well. Thus, for the 

same example taken as micro-frame: 

3
2

32
2 t2t

216
s

4
s*G*G*G +=+=+= 1

1
1111 1 , 

2
3

23
2222 t

2
2t

24
s

16
s*G*G*G +=+=+= 1

1
1 1 . 

 

As a consequence, the relation to ensure effective isotropy of the square lattice with two 

oblique beams is 2t2t =1 , as obviously follows from G*= *G*G 2=1  (see fig. 3.5). Then: 

2
sss 2 ==1  and 3s

28
s

8
*G

1
11

+= .  

Going back to (3.14) one can see, that we found a G*-optimal medium. 

4 Conclusion. 

The presented new methodology for determination of bounds on effective constitutive 

constants of CM has many advantages and is fully general. It can be thus used CMB with 

more general effective behavior, than the ones presented in this paper. 

In addition, we summarize some interesting facts. First, the maximality and additional 

conditions are in tab. 4.1. 

Macroload Maximality conditions Additional conditions 

ΣI  LN //  RR 2=1  & LQ⊥  

ΣI I  N=λ1P+λ2Q RR 2=1  & Q⊥1R & Q⊥2R 

ΣI I I  PN //  & 0Q =  not included due to the full geometrical specification 

ΣI V QN //  & 0P =  not included due to the full geometrical specification 

Tab. 4.1 – Maximality and additional conditions. 
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From additional conditions, we can conclude, that there may exist ΣI -optimal media, which 

are not ΣI I -optimal. It is, e.g., the regular honeycomb lattice from fig. 3.2. For the discussion 

of the opposite statement, i.e. of the existence of media with “large” G* and “small” k* see 

[6]. 

Second, some other comparisons are in tab. 4.2, where we also included the column with 

the tension test (because the conclusions there are interesting) and we did not include a 

column with ΣI I -macroload. 

Macroload Optimal media 
Under applied macroload the medium is … 

ΣI  ΣI I I  ΣI V Tension test 

ΣI  

UPL, UDL, others 

without full geom. 

spec. 

optimal optimal optimal 
not unique 

cathegory 

ΣI I  
without full geom. 

spec. 
see [6] optimal optimal see [6] 

ΣI I I  UPL optimal optimal 
kinematical 

mechanism 
optimal 

ΣI V UDL optimal 
kinematical 

mechanism 
optimal 

kinematical 

mechanism 
Tab. 4.1 – Final comparisons. 

Other interesting facts are: media from UPL group have zero effective Poisson’s ratio and ΣI  

&  ΣI I -optimal media have the effective Poisson’s ratio equal to 1/3. This statement is already 

published in [3]. 
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Fig. 2.1 – Introduction of theoretical and effective lengths. 

 

Fig. 3.1 – i-beam’s location in the cell and its internal forces and moments. 
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Fig. 3.2 – ΣI -optimal media with structural hexagonal symmetry. 

 

 

 

Fig. 3.3 – ΣI -optimal media with structural square symmetry. 

 

Fig. 3.4 – ΣI I I -optimal media – UPL group. 
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Fig. 3.5 - ΣI I -optimal medium with structural square symmetry. 
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