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In LCM processes of fiber-reinforced composite manufacturing,
resin is injected into a closed mold with a preplaced stationary fiber
preform. If these preforms are created from fiber tows, resin pro-
gression at the microlevel during infiltration is often non-uniform.
Consequently, macroscopic description of the filling phase requires
a theory of flow through unsaturated porous media in which the
transition (partly saturated) region must be taken into account. Un-
saturated flows must consider surface tension effects; therefore, cap-
illary pressure and relative permeability must be included in gov-
erning equations. This paper presents a methodology to determine
relative permeability and macroscopic capillary pressure for simple
flows. The results lead to important conclusions and the methodol-
ogy can be generalized to other flow fields.  © 2002 Eisevier Science
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1. INTRODUCTION

used to accomplish this task is called liquid composite molc
ing (LCM), in which a fiber network consisting of fabric layers,
called fiber preform, is placed into a closed mold and a low vis
cosity resin is injected into it to fill the empty spaces betwee
the stationary fibers (1). Special attention must be paid to t
injection phase as any unfilled region known as a void or a d
spot can be detrimental to the mechanical performance of t
composite.

Infiltration of the resin is driven by the hydrodynamic pressur
gradient originated by the inlet pressure. When the resistance
the preforms to overcome is very high, in certain regions th
hydrodynamic pressure gradient can be so low that the wickir
gradient can exceed it and change the driving mechanism. Tl
situation occurs more often when dual porosity preforms (bui
from fiber tows) are used because the spacing between the tc
is about an order of magnitude higher than the spacing of por
inside the tows. Therefore, when the inlet pressure is high, res
proceeds rapidly in intertow spaces, where the permeability
at least one to two orders of magnitude higher than in the intr

In the past three decades, fiber-reinforced composite mai@w spaces. On the other hand, when the inlet pressure is Ic

rials have become an important class of engineering materiaéillary forces (higher in intratow spaces) can exceed visco
because (i) they allow flexibility in the design of the componenfprces and the resin front will proceed more rapidly inside th
(i) of the possibility of tailoring their properties to industrialtows. As a consequence resin progression is not uniform at t
requirements, and (iii) of the development of efficient manufagicrolevel.
turing processes. When the mold containing fibers and air is filled, air can b
Reinforcing fibers carry most of the structural loads; henceisplaced either by a primary or by a secondary mechanisi
more fibers translate into stiffer and stronger composite. To oPbke primary mechanism is to displace the air with the resin ar
tain higher fiber volume fractions, the fibers must be aligned aaflow it to escape through a vent in the mold. However, if air i
grouped in fiber tows (bundles) that may contain from 2000 teapped and held by capillary forces in the form of bubbles afte
48,000 fiber strands (fibrils). Fiber tows can then be arrangghte primary mechanism is completed, it can only be displace
randomly; however, very high fiber volume fractions can onlygy the secondary mechanism. To activate it, it is necessary
be achieved if the tows are stitched or woven to make a pattéfisrease the viscous forces (e.g., by increasing the pressure) u
of a fabric layer. they exceed the capillary forces.
In polymer composites, the empty space between fibers ign order to predict and consequently prevent voids and d
filled with a resin. A manufacturing process that is widelgpot formation in flows with non-uniform progression at the mi
crolevel, a theory of flows through unsaturated porous med
L E-mail: zdimitro@dem.ist.utlpt. must be invoked; thus, relative permeability and macroscop

2To whom correspondence should be addressed. Fax: (302)831-36‘@@pi||ary.pressure must be included in the gove”t‘ing equ
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characteristics for simple flows. The results lead to importamtay be determined by analytical (13—-16), experimental (7, 17
conclusions and the methodology can be generalized to otBé) or numerical methods (10, 27-31). Numerical or analytice

flow situations. determination oK is conducted by microlevel analysis. This
is accomplished by calculating the phase average of the loc
2. MACRO LEVEL GOVERNING EQUATIONS velocities of the unit viscosity Stokes flow in a fully saturatec

basic cell or arepresentative volume element under a unit maci
Practice has converged on modeling of filling as flow througbressure gradient or a unit volumetric force. For basic unit cel
a porous medium, which is created by the fiber network (2—pPeriodic boundary conditions are applied.
Basic literature on flow through porous media is covered in However, Eq. [1] originally was an empirical relation pro-
books such as (8-10). Attention was focused on the macrolepesed by Darcy (32). It has been verified analytically by homog
(global) analysis, which is assumed agumsi-steady-state pro- €nization techniques, namely by asymptotic expansion metho
cessand the domain to be filled was divided into two regiond27, 33—-34) and by local averaging methods (10, 35).
saturated and unfilled, separated by@ving sharp surfaceep- Numerical-simulation results from standard approach for sir
resenting the flow front. Thus, only the theory of saturated flov@e scale porous preforms or for dual scale porous preforms wi
was required for description of the filling process. Such an afgndomly arranged fiber tows usually showed excellent agre
proach describes solely the primary displacing mechanism af@nt with experimental examinations. However, in woven o
we will refer it as thestandard approachThere are only few stitched dual porous preforms, macroscopic flow front is nc
works related to the secondary mechanism (11, 12) and little aharp and &ansition layer of finite deptbetween the saturated
tention has been paid to unsaturated flows in dual scale por@il unfilled region is visible. This occurs as a consequence of t
media. non-uniform progression at the microlevel, as noted in the intrc
Under assumptions reasonable for most LCM processes, idi¢tion. In order to describe the transition region it is necessa
for isothermal quasi-steady filling of incompressible and statiot® modify Eq. [1] to
ary preform by anincompressible Newtonian resin with insignif-
icant resin inertia as compared to viscous effects, with no influ- as b
ence of resin weight and of the air on the resin front, one can write ¢ ="VV (s), [3a]
k(s)

the governing equations for the standard approach as follows,
n

¢sV(s) = vO(s) = ———K - V(P(s) — Pe(s)),  [3b]

Vv.vP =0, [1a]
b K where the new variable, saturatienis defined as the ratio of
v:i=——.VP [1b] the fi . Co
0" e filled pore space to the total pore space in a basic unit cell
a representative volume element. In the transition regiba-
with the following boundary conditions, longs to the open interval (0,1) and in the saturated region (whe

s = 1) Eq. [3] coincides with Eq. [1]. Because exact implemen
at the resin frontyf /ot + (VP - Vf)/¢p =0 [2a] fation of Eq.'[3a] is quite difficult (36)', usually an extension of
Darcy’s law in the form of Eq. [3b] (first proposed by Muskat

and P =0; [2b] in (37)) is usedk(s) is referred to as the relative permeabil-
h Id wallsy® D_0m K oP K oP o ity and takes values in the closed interval [0,1]; for the sake ¢
atthe mold wallsy™ -n=uv, =0= "M + A T nonambiguity, the term absolute permeability is used<fotn

[2c] the same way as single porosity absolute permealilitgual
porosity K can be determined from fully saturated flow in a
at the injection gates” =vo(t) or P = Py(t); [2d] pasic cell or a representative volume element, either with &
single fibrils modeled (38, 39) or with fiber tows approximatec
whereVP is the phase-averaged velocity vector related to thiy a porous medium (30, 40, 41). Unlike saturated flows, unsa
intrinsic phase averagé by vP = ¢V, ¢ being the porosity, urated flows must consider capillary effects; therefore, besids
and P is the intrinsic phase-averaged pressure (pore pressutkg global hydrodynamic pressuRys) the macroscopic cap-
K is the permeability tensor of the fiber preform guds the illary pressureP.(s) appears in [3b]. One needs to fifR{s)
resin viscosity. Implicit functionf (x(t), t) = O describes the but P,(s) andk(s) enter the analysis as known functions; thus
location of the moving resin front. Equation [2a] results fronthey must be determined either experimentally or by transiel
conservation of mass, it is the motion equation of the front, amticroanalysis.
itis known as the kinematic equation, while Eq. [2b] is the static Applicable boundary conditions are only Egs. [2c] and [2d
(sometimes dynamic) free boundary conditibnn, vg, or Py and will remain unchanged. Resin progression is ensured by s
stand for time, outer unit normal to the front, and prescribadation increase, i.e., by Eq. [3a], and actually the term “resi
velocity and pressure at the inlet, respectively. front” cannot be used anymore. The macroscopic capillary pre
P andvP are used as the macroscopic (global) counterpastsre, unlike its microscopic counterpart, does not act at the res
of the microscopic (local) pressupeand velocity vectow - K front, but in the full transition region. It can be proved, as by
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Antonelli and Farina (42), that if the depth of the transition rerelation does not determine the actual equilibrium free surfac
gion tends to zero, then the approach based on Eq. [3] testhiape, it only tells us what distribution of the capillary pressur
to the standard approach. The explicit or implicit method casthould be applied at the known frontal surface. In Eq. [5b], &
be easily implemented in Eq. [3a], but unlike the advantage a$ual, viscous normal stresses were neglected as comparel
the explicit method in standard approach, stable results can ophgssure values.
be obtained by use of central differences and implicit methodsBesides the fact that Eqgs. [5a]-[5d] must be fulfilled, a conta
when the capillary pressure dominates (43). angle 9, must be formed at the resin surface-fiber contact poin
It is useful to introduce one more level, which we will reActually, then the no-slip condition Eq. [5c] is quite inappro-
fer to as themesolevel,as an intermediate level between th@riate and slip coefficients are usually used to remove the stre
macro- and microlevel (38). Then the macrolevel maintairsingularity there (47). The contact angle is given by Young’
the full medium scale. Microlevel will be reserved for intraequation, presented in (8, 10, 44—46), but the equation itself
tow scale and intertow scale will correspond to the mesoscatetimportant for our purposes. Surface tension and contact an
At the mesoscale, resin motion in the intertow spaces is d&e definite and accurately measurable properties; thus, they v
scribed by the Stokes flow while the fiber tows can model & introduced into our studies as known parameters. It is use
the porous medium with the corresponding Darcy law. Trate remark that the resin front shape is formed in a way that eqt
sient mesoanalysis can be then used to deterk{s)er P.(s). libriumis reached between all unbalanced forces. If only surfac
However, the main purpose of the mesoscale analysis shoulddmsion effects are considered and all other contributions are r
to capture void formation and to study other particular detaitgected, then surface with constant curvature is formed (48).
of the flow progression, which cannot be modeled by macro- orBefore we proceed, is it important to review some facts an

microanalysis. introduce new terms. The teripasic cell ¥, is used inasymp-
totic expansion methods the smallest component of a periodic
3. MICROLEVEL GOVERNING EQUATIONS medium, which can form the full medium by its periodic repe-

tition. An infinite number of different basic cells exists in one
Description of the transition region must originate at the mperiodic medium, but homogenization results cannot depend
crolevel. With the assumptions stated at the beginning of the pi-choice. We will introduce the terperiodic solutionfor the
vious section, one changes the law from Darcy’s law to Stokeslution §, p) of Stokes problem in a fully saturated basic cell
law to obtain the governing equations. The filled region is sepaader periodicity boundary conditions, i.e., of the problem state
rated from the rest by a sharp flow front with “material discontby Eqgs. [4] and [5¢] and by the following conditions,
nuity”; thus, the explicit method for the front progression
lr)ne;i;)r:l;a: advantageous. Governing equations in the resin d& - £ is prescribed on all external cell boundaries and [6¢

v and p fulfill periodicity boundary conditions

V.v=0, [4a] .
on all external cell boundaries. [6b]

Vp = pAv, [4b]

wherev and p denote the local velocity and pressure, respe& < 0 is an imposed macrogradiests a spatial coordinate

tively, and x is the resin viscosity. Boundary conditions ardSide the basic cell, anflis definedbyp = G - § + p +¢; vis
usually written as (44) follows: Unigue andbis unique up to a constant pressure feld - £ + ¢

is called the linear, whil@ is called the periodic part of the local
[5a] pressure. Viscosity enters the problem only as a linear analy:
parameter; surface tension and contact angle do not appea

.n=0andp=p.=—y (i + i) —_2yH: [5b] all. Usually it is not necessary to prescriBe £ on all external
R, '

at the resin frontgf /ot +v-vf =0 and

Ry boundaries, e.g., when the basic cell has one boundary as ir

at the fiber boundary; = O; [5¢] and some other as outlet, and then it is possible to prescri

G - £ only there. Volume rate at the outlet is naturally the sam

atthe inlety = vo(t) or p = po(t). [5d]  as atthe inlet, but velocity distribution along the outlet boundar

will generally be different. Exploiting incompressibility and the
Functionf (y(t), t) = 0 again describes the position of the movno-slip condition, the ith component of phase-averaged veloci
ing front (spatial variable at the microlevel is usually rescaleshn be determined by (31)
and designated ag, n is the outer unit normal vector to the
corresponding surface, is resin stress tensor, amtis viscous
shear stress}; andR; are the radii of the surface curvatut¢,  [?|v° = /

Vi dvk
vidy=kaa—'dy=—fa—yi dy
is the mean curvature, andis the surface tension coefficient. ke ks Y Yk

O
Equation [5b] expresses the surface tension influence, which at
a curved resin front surface at equilibrium can be replaced by +/Uknkyi ds+ / vkNkYi dS = f vkNky; dS, [7]

a pressure dropsp called the capillary pressurg, (45). The & 9, o,
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FIG. 1. Two ways to approximate the flow front with a smooth curve and specify the 2nd coordinate system.

whered, is the part of the basic cell occupied by the re§pis In explicit scheme, the new nodal position is determined in th
the resin-fiber boundary, aréd is the external cell boundary. normal direction as

Thus, ifalong the inlet and outlet boundary velocity distributions

do not coincide ang; is not constant, then the averaged value Xnte.y = Xnte + (trr — B vng,.- [8b]
cannot correspond to the averaged periodic velocity.

The smooth curve approximation as described above is repea

now for the new front, and the surface curvature and cons
4. FREE BOUNDARY PROGRAM quently capillary pressure according to Eq. [5b] are calculate
separately at each new frontal nodal point. Capillary pressure
. S . . en imposed as piecewise linear at each frontal element ed
microlevel gnd of determination of relative permeability an ther boundary conditions Egs. [5¢c—5d] are applied and, finall
macroscopic capillary pressure, a free boundary program us kes problem is solved in the new domain.

the general purpose finite element code Ansys (exploiting t ®Treatment of nodal points at axes of symmetry is adjusted

Ansys Parametric Design Language (APDL)) was developed,tﬁ%ir special location and also resin surface-fiber contact poin

far only for 2D problems. !ts initial form withoutsurfape tensior}ﬂe handled differently. If surface tension effects are neglecte
influence was presented in (39). The program permits one to g B resin front progresses along the fiber boundary when otf
transient microlevel problems under the assumptions IiStedfPantal points will touch it, as it is shown in Fig. 2a. If sur-

the previogs section. A new resin fr(_)r_1t position is CaICUIa_tefgce tension effects are included, the contact angle is adjust
directly using the free boundary condition Eq. [5a] and explicif, j; given value by creating an additional curved surface &

m(;thods.b. f Inodal poi . . shown in Fig. 2b. The radius of this surface is not a knowt
tanarbitraryfrontalnodal pointatcurrenttintga one time giority, but it should be small, in order not to affect the pro-

step run follows as first, ve!ocﬂy IS exFracted from prewogsl ression of the bulk boundary. In accordance with the real res
solved Stokes problem at this nodal point and a local coordinate

system (called 1-local coordinate system as shown in Fig. 1) is
created close to it, where the flow front is locally approximated
by a smooth curve including two adjacent nodal points. This
permits one to define uniquely the outer normal vector to the flow
front. Two different ways to approximate are explained in Fig. 1.
An elliptic approximation in lieu of a circular or a parabolic one
was found preferable. Next, a second local coordinate system is
created atthe nodal pointunder consideration with axes along the
tangential x;, and the outer normal vectox,. If the flow front

is described locally by, = g(x) with respect to the second
coordinate system, then Eq. [5a] can be written as

With the purpose of examination of the resin flow at th

y

a)

rogression along
fiber boundary

99 _ 39

Uy — V— = vy = —. [8a] FIG. 2. Progression of the resin front along the fiber boundary, without (a
0%t ot and with (b) surface tension effects included.
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behavior, it is ensured in the program that once a fiber surfagien will practically stop. In this case the implicit scheme coulc
is wetted, it remains wetted. This does not hold generally foelp.
the bulk flow front; spaces filled by the resin can be abandonedThe free boundary program is based on a moving me:s
later, as will be seen in examples in the next section. Adjusteheme. Therefore, the flow front can be traced precisely, whi
ment of the resin front to the contact angle is very importari§ important for the application of surface tension effects. Alsi
in order to ensure the correct total value of the capillary presther advantages such as easy prescription of variable elem
sure applied at the frontal surface. It can be proved that cagslze permiting creation of fine discretization close to the flov
lary pressure acting on an arbitrary part of a free surface safi@nt and rougher discretization in other regions can be applie
fies equivalent load conditions with the surface tension applidbreover, Ansys meshing capabilities can be exploited and t
in the cuts of this surface. Thus, the total capillary pressutime taken by the mesh creation and by the solution of the (lir
i.e., the capillary force, which should be applied at the resear) analysis is almost negligible when compared to the tin
front, can always be determined analytically if the resin frontieeded for the extraction of the velocities, the new front cre
fiber contact point locations (and the parameterand6) are ation, and assessment of the results. Several Fortran files w
known. implemented into a general APDL file with the intent of making
Several adjustments of the frontal nodal points are impl#iis part of the program numerically more efficient.
mented in the free boundary program during one time step run.
First, very close nodal points are eliminated at the old front, in 5. FLOW ACROSS CYLINDRICAL FIBERS
order not to affect the approximation of a smooth curve. The
new front extent is always reduced not only by the frontal ra- Before the methodology for determination of the relative pel
tio, but it is also reduced in the way that the boundary will nateability and the macroscopic capillary pressure is presentec
cross any of the other boundaries (symmetry or fiber), but at beghple case of flow across cylindrical fibers with circular cros
will touch them. Other reduction eliminates crossing of normafgction and square arrangement is discussed. Flow front ve
during front determination and loops creation along the frordtion and the time it takes to become periodic with respect |
Again, very close nodal points of the new front are eliminatedhe input parameters are investigated. Fiber radius for this stu
An implicit method is also implemented into front progreswas selected to be 0.25 mm and spacing of fiber centersis 1 n
sion in which wayvyy,,, are used in Eq. [8b] witlx € (0, 1].  (porosity is approximately 0.8), to be able to see front variatior
lterations are performed over different domains, yielding slomore easily.
convergence properties; thus, it is not worthwhile to use it. Ac- Let the input parameters for silicon oil and carbon fibers b
curacy of the new front position can be gained in the explicit = 0.057 Pa s, y =20.64 x 10-3 N/m, andd = 28.36°. The
approach by measured time steps. In the program, time stegpecimen chosen for the study contain five fibers and only t
calculated from the maximum allowed frontal extent, which igpper half will be examined because of symmetry. The inle
defined as a ratio of the maximum finite element size of frontaélocity is applied uniformly along the left side of the speci-
elements. This ratio, which we call as tiiental ratio, as well men and symmetry conditions are imposed on the lower ar
as the element size are user-input parameters. The programupper pore boundaries. Thus the problem is macroscopica
lows one to restart at the user-specified time step and modifye-dimensional or can be assumed as three-dimensional w
the parameters for the subsequent analysis. A criterion whemtinfluence on other two directions. Five cases are examine
decrease the frontal ratio does not have to be determined anditey correspond to =1 m/s with no influence of the surface
ically. The best warning that the frontal ratio is too high is whetension and) =1, 0.1, 0.01, and 0.001 m/s, respectively. Thes
the new front is not smooth. This can happen basically duefive cases yield capillary number variationscas 2.76, 0.276,
two reasons, either there will be a large change in the norn@ab276, and 0.00276, respectively. Flow front progression is r
velocity or if the capillary number of the problem is very lowported in Fig. 3; consequent fronts have the same ordering nu
which makes the flow front numerically very sensitive to theer increase, but do not correspond to the same time increase
approximation of the capillary pressure. Capillary number issometimes front ratio was changed or front extend was reduc
dimensionless measure of the importance of viscous over cape to other reasons. It can be concluded that different flow pz
illary forces and it is defined as the ratio of viscous forces p&rns are strongly related to the capillary number and that fron

unit length to surface tension, as become periodic very soon, right after the first fiber was covere
" with resin.
Ne = 7 [9] Figure 3 demonstrates that as the capillary number decreas

capillarity becomes stronger and the resin front progression p:
wherev is a selected characteristic velocity. When capillariern might approach the constant curvature pattern directed ol
number is very low, then small incorrectness caused by ry the contact angle, as sketched in Fig. 4. In the first ca:
merical approximations can amplify capillary pressure, whidffrig. 3a) after the top of the fiber has been passed, hydrod
with too high frontal ratio will cause opposite curvature in conaamic pressure moves the resin to the next fiber and only af
sequent front. Repetition of this fact causes oscillations. Thige resin reaches it, space between fibers begins to be fill
frontal ratio can naturally become so small that the front progrédf/thout surface tension, any combination of viscosity and inle
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T

FIG. 3. Flow front variation for capillary number ap, b) 2.76, c) 0.276, d) 0.0276, and e€) 0.00276.

velocity yields the same front progression. In the other two casgsmic pressure is noticeable in Fig. 3e. The upper part of tt
(Figs. 3b and 3c) flow front also reaches the next fiber before tfient advances so much that after the fiber has been complett
space between the fibers is fully filled. Therefore a void migurrounded by the resin, the upper part moves back, and t
be formed and our results correspond to the vacuumed initi@kin front becomes straight. On the other hand, it is seen

stage. In last case (Fig. 3e), when the front reaches the fiber, Big. 4 that without any hydrodynamic pressure, resin progressic
upper part moves back to adjust the “almost” constant curvatweuld completely stop before the last plotted positions woul
shape determined by the contact angle. But the flow front shapereached (49).

cannot “hold” this position because the fibers are too far andFigures 3a and Fig. 4 correspond to two limiting cases, t
the contact angle is too high. Constant curvature surface ppwegression where capillarity is neglected and to the one whe
gression directed by the contact angle (Fig. 4) is not developexdily capillarity is dominant. Besides the geometry, progressio
Differences between Fig. 3e and Fig. 4 are clear after the frantFig. 4 is influenced by the contact angle. Thus front patter
crosses the top of the fiber. Then, influence of the hydrodselated to this specimen under any capillary number but wit
contact angle maintained should be addressed between th
two cases.

It was numerically justified that the front progression is the
same for the same capillary number and independent of absoll
dimensions (contact angle is maintained during this compar
son). Flow progression for three situations with the same capi
lary number ofN. = 0.276 obtained by the following combina-
tion of parameters, (jy = 0.0057 Pas,y =20.64 x 103 N/m,
andv=1 m/s; (i) ©u =0.057Pa s,y = 2064 x 10~3 N/m,

FIG. 4. Constant curvature surface progression directed solely by the co"hnd_v =1 m/S;_ (iii) the case relateq to .Fig. 3c with dimenSionS
tact angle. 10 times amplified; are presented in Fig. 5. Progressions shot
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FIG. 5. Identical flow front progression for three cases of the capillary number of 0.276. This capillary number was obtained by |) modifying viscosit
velocity, 1) modifying surface tension and velocity, and Ill) changing dimensions by rescaling.

?
]

be compared to Fig. 3c. The fact that this expected equivalencsliwuld not cover onlg € (0,1) but should include a part of the
shown numerically also verifies correctness of the free boundaturated regiors(= 1), where local fields are not yet periodic;
program. i.e., they do not correspond to the steady-state situation. We w

In summary, it was seen that flow front progression is strongtgfer constant flow rate filling asniform filling. If any possi-
dependent on capillary number. However, once all pores die transition cell is filledy and p resemble periodic solution
filled, local velocity and pressure in any basic cell correspondifgphase-averaged velocity is a linear functiortgind macro-
the periodic solution, and consequently, capillarity cannot inflpressure gradient is constant and independent of the uniform c
ence the absolute (saturated) permeability. In Fig. 6 the distrilmhoice.&; is a spatial variable corresponding to the resin fron
tion of the horizontal velocity component related to progressigiosition in cells, ranging from zero to the cell lengthMacro-
from Fig. 3bis plotted,; itis seen that it is periodic in the full parpressure gradient is represented by the gradient of the intrin:
of the specimen, where flow fronts display the periodic pattenphase-averaged pressure with respeét.tdhen it yields from
except in the vicinity of the flow front. Eq. [3b] that relative permeability is a linear functionggf

For macroscopically one-dimensional (or three-dimensional
with no influence on other two directions) problem we introduce 6. METHODOLOGY TO DETERMINE RELATIVE
the uniform basic cells a basic cell, in which during resin in- PERMEABILITY AND MACROSCOPIC
filtration saturation increases from 0 to 1, while previous cells CAPILLARY PRESSURE
are fully saturated and next cells are fully empty. Uniform ba-
sic cells depend on capillary number, because their left (inlet)Unlike absolute permeability, no simple relation is available
and right (outlet) sides are formed by periodically correspontb determine the relative permeability either from the asymptoti
ing flow fronts. In transition stage they are calledti@ssition expansion or from the local averaging methods. A general intr
cells After a transition cell is filled, it will still take additional duction of the relative permeability notion by the local averagin
time until the distribution ofs and p inside it will correspond method can be found in (10, 35), but it cannot be easily inr
to the periodic solution (they will reach it simultaneously as plemented in particular cases. Relative permeability concept
consequence of the uniqueness of the periodic solution). Baskgtussed in (8). Other theoretical studies, which can be found
on this fact, from a theoretical point of view, the transition regiothe literature, usually deal only with particular cases, as, e.g.,

0

= . 316827
5 633655
g .950482
T - - - - v B R
i e T T st T T et T s T T el — 1'534
L S e S W 00 O
i [
2.218
Ll 2.535
- 2.851

FIG. 6. Distribution of the horizontal component of the local velocity in m/s for capillary number of 0.276.
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reference
cell
reference flow

front position, § =0

§=s, S =1+s, §=2+s, S=3+3,

FIG.7. Reference flow front position and the reference cell, arbitrary uniform basic cell, and flow front progression along the selected geometry.

(50). Regarding composite processing, very little experimental- s + 5, ands higher then unity does not mean overfilling.
data are available (36, 51). S is restricted to [0,1], & [0,1] is reserved to mark actual flow

Macroscopic capillary pressure should correspond to the dkent in the transition cell related to a particular uniform cell,
erage of its microscopic values while resin is filling the basiandn denotes number of fully filled cells behind this transition

cell or the representative volume element (10); thus, cell (Fig. 7).
Evolution of phase-averaged velocity and intrinsic phase
Pe(s) = 2y (H)(s), [10] averaged pressure can be expressed as functions &f s

] ~andsy, whereG < 0 is the macroscopic saturated (periodic)
where(H)(s) is the average of the mean curvature. There is Radient. In order to provide the macroscopic pressure gradie
general methodology to use Eq. [10] and one cannot ensure @&§mation, it is convenient to switch from variabeands, to
in periodic media such result is independent of the cell georyatial variablegs andés,, related to the filled area and defined
etry. Several methodologies to represent macroscopic capillaey sketched in Fig. 8. We remark thgtand &5, are assumed
pressure have been developed in [8-10], [51-53]. as dimensional, both ranging from 0 to= 1 mm. Then the

For both relative permeability and macroscopic capillary prégsacroscopic pressure gradient in the transition cell can be es
sure, the theoretical and numerical background for LCM présated according to Fig. 9. At this point it is still impossible to
cesses is not yet established. In this section, a methodology,& Eq. [3b], since then the relative permeability would deper
determine these characteristics will be presented for a simgigthe uniform cell geometry. Itis necessary first to average se
flow example. It will be shown that from this simple case, imrately the phase-averaged velocity and the macroscopic pr
portant conclusions can be drawn and that generalizations of $ige gradient oveg,. This operation will be designated @ .

methodology are possible. . _ _ Macroscopic capillary pressure is obtained as an intermediz
Let the geometry from the previous section be examined for

flow with N; = 0.166. Theprincipal assumptioin this analysis

is that after any arbitrary transition cell is filled, local fields $=0 s _0’/5 =S

and p will resembleimmediately the periodic solutioff this is \

fulfilled, then the phase-averaged velocity in filled cells and th actual front
intrinsic phase-averaged pressure difference between neighb position, s =n+s+s,

ing filled cells would be constant and equal to the periodic valut
for any choice of the uniform cell. It was verified numerically
for some particular choices that the error introduced in the stuc
due to this assumption is small. N

We introduce reference saturatid),and mark a reference approximation Of/'
flow front position wheré& = 0 and the corresponding uniform
cell we name as the reference cell (Fig. 7). The left side of ar 3
arbitrary uniform basic cell is located in the reference cell-at
. In order to compare behavior of the averaged characteristicgig. 8. Estimation of the distancg = & — £, — nL according to filled
in neighboring cellss is measured along the cells. Thiis= area (saturation).

filled area
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A which is simply,

(ii) it preserves the statement that values of local pressure

imation of
Approximation o tween two filled neighboring uniform cells differ by GL in any

acropressure slope

0, ~0) P(E, ) | case of filling, giving for a fixed front and th&t, > &,
$= = »
s | L
) o1 -1) P (&6, £) — P (8 — (Eso — E501): Eo)
%S
< > -G- (5502 - %_501) . [12]
FIG.9. Macro pressure gradient estimation in the transition cell. From these two facts and numerical examination it wa

concluded thanff (&s, &5,) could be written in the following form,

result. Generalizations of this methodology will be discussed P (&, &) = PM(&. &) + PY(&s. &) + A(s).  [13]
later.

In order to determine functional dependencies, an arbitraghere PY(%, £5,) is the variable part onf(gs, &s,), such that
uniform cell specified in Fig. 7 is considered. The averages ap&(0, &,) = PY(L, &,) = 0, and A(&s,) — GL/2 is the initial

calculated at each time step in the free boundary program, sggtue forn = j andés = 0. PY(&, £,) reads as (see Fig. 12)
arately at each uniform cell and plotted in Figs. 10 and 11. Itis

seen from Fig. 10 that the phase-averaged velocity (horizontal PY(&s, &) = P (& + &) — P(és) for&s+&g <L [14]
component) in transition cell is monotonically increasing and
reaches the periodic value almost immediately after the trana)
tion cell is saturated. Periodic values are then maintained in thePV (&, &) = P(&s + &, — L) — P(&s) for&+& > L.
fully filled cells. Intrinsic phase-averaged pressure inside filled
cells vary with saturation of their neighbors, as shown in Fig. 11From now on functions with upper will correspond to the
reference cell. It can be concluded that

The following derivation is fully analytical except for one par- . .
ticular point where we will need numerical values. Nevertheless, P(£s) — Pl6ses) = Al€sr) — Alsn)- [15]
the form of functions introduced below was first guessed from
numerical results. Let us start with macroscopic pressure grafibe intrinsic phase-averaged pressure in transition cel
ent derivation. For intrinsic phase-averaged pressure expressitités, &), can be written similarly as
infilled j cell, ijf(ss, &s,), we will use two facts: (i) itis an exten- «
sion of the form for uniform filling without capillary pressure, P (és, €s) = M- PY(6s, 65) — G - &5/2+ 9(6s, &),  [16]

0.06

2 Y —
o A A,
o.gf in celll / v2 in cell 2 / v> in cell 3 Af/
S 7
N A A
7

7
('J

00 02 04 06 08 10 12 14 16 18 20 22 24 28 23 3.

J“l

@

0

FIG. 10. Phase-averaged velocity calculated in each uniform cell separately.
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0.4

[kPa ] /,\/
0.3
Pin celll /
0.2 /
/‘1;1/12 7/_\/
0.1
in cell 3

Al )-GL /21 //_\// /—L// )

O ! ! ! ! ! ! ! ! &S - &So

0 02 04 06 08 1V( 12 14 16 18 2 22 24 26 28 30

-0.1

FIG. 11. Intrinsic phase averaged pressures calculated in each uniform cell separately.

wheremis a coefficient and(&s, &) is a function, which adjust following form,

the initial and the final value. It will be seen later on that it is not

necessary to determine exactly either the value of m or the exapfts, &) = 9(0, &) - f1(&s) + 9(L. &) - f2(&s)
functional dependence d?#¥(&s, &s,). Functiong(&s, &,) must

. . . X A . L, + P.(0,
basically fulfill two conditions: (1) as = 0 it reflects mainly _ g(L. &)+ Pe(0. &) f1(&s)+0(L. &) - f2(&s)
the influence of the capillary pressure on the initial interstitial 2
phase-averaged value and this influence rapidly diminishes with [19]

increasings; (1) on the other hand, close &g = L, local fields

are approaching the periodic stage, capillary pressure influemdeere functionsf;(&s) and f2(£s) express the respective impor-

is going to be completely removed, and its influence will shift ttance of these statements.

the next transition cell. The value of functigrclose toés = L Capillary pressure can be determined analytically as a fun

can thus be estimated from the condition that the macroscop@n of the resin front-fiber contact point location. For our pur-

pressure gradient must reach vatBgwhich will be used later poses, we willneedthe total horizontal capillary force distribute

on. From continuity, uniformly along the vertical distaneg (see Fig. 8). At this point
we will need numerical results of the front progression, in or

PU(L, &) = —GL/2+g(L, &) = A(&,) — GL/2.  [17] der to relate contact point locations withandrs. Analytically

determined values related to numerically obtaiggid the ref-

erence cell are plotted in Fig. 13. Capillary pressure is unique

Then condition (1) yield related to the front position. Thus,

P(0, &) = (0, &) = Alss) +2Pc(0, £s) Po(és £s) = Pe(bs+ &) forés+&, <L [20]

(L, &) + Ps(0, &) 3
5 : [18] Po(ts &) = Pols+ &, — L) forés+&g > L.

and

Due to conditions (1) and (ll) functiog can be assumed in theMacroscopic pressure gradient can be expressed as (Fig. 9)

A

1- Esn ESo

0 1 S0 Pl ) \1\ .

FIG. 12. Functional dependence ¥ (&, &)
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0.02 whereAg,_ .. is the mean value of the capillary pressure related
frontprogression angl = &;/L isthe dimensionless counterpart
[kPa] of &
0 ' . ‘ —E Using Egs. [16], [19], and [23], it can be shown that
0.2 y/ 08 08
-0.02 (Pﬁ(fs, £s,) — Pe(&s, 5@))550
P"(&/ <g(L7 ESD))E + AF’ca Es
004 =—G 5/2~ Ap,e + >
-0.08 o
\/ Still unknown term(g(L, &5))s,, can be determined from the
-0.08 condition (ll) ensuring foks = L the result in Eq. [24] equals
FIG. 13. Capillary pressure dependence. —GL/2.Sincefy(L) = 0andfz(L) = 1,itholds(g(1, &s))e, =
Apc,gs. Thus,
Gés ) = —2(P" (65 6) — Polts 80)) /65 [21] 1- f1(6) — fal6)

(G(&s &), = G +2An.s, [25]

Its average ovefg, must be performed. Since denominator of s
Eqg. [21] is independent df;,, the average of the numerator is
straightforward. The phase-averaged velocity can be expresg

as

Now functionsfi (&) and f,(&s) appear in sum, and they can
ed . . S
€ estimated simultaneously. One of the possibilities is

~ ~ — _ 1y
(6 ) = 07 (6 1 6) — T2 (b)), fOrést+éq <L [22] fa8s) + fal6s) = (28/L = 1), [26]
and whereq is even. Wherg = 0, there is no non-uniformity and
v (6, &) = DR (s + s — L) + 02(L) — 02 (55, saturated gradier is reached in the full range, i.e., filling is
for e+ £ > L uniform. The higher the value of q, the sharper the implemer
Ssténz L, tation of conditions (I) and (ll). Adoptinngp = —(Ky/1)G

where (L) = ng is the periodic value from the principal one can finally express the relative permeability from Eq. [3k

assumption. ValuesP(&s ), andvP (&) are generally differ-

ent; for both, velocities are integrated over the same area, but G- &/L

in the first case the reference cell is in the transition stage Ko = 2Prere

while in the second case it has achieved the saturated state. G+ T(l_ (2&s/L — 1))
Continuity must be preserved; thus both values coincide when G- es

&+ &, = L. One can integrate the local velocity over an area [27]

including one filled reference cell and a reference transition cell

in two ways. Either by selecting the reference cell as the uniform R

cell or by selecting the other cell as the uniform cell such thathereG = GL.

&+ &, < L. Takinginto accountthe principal assumption, itre- Relative permeability in our example as function &fis

sultsinv? (&), = T2 (&5, ). Therefore local velocity distribution shown in Fig. 14 forg =2 andq = 8. It is seen that the

does not vary during filling. This does not mean thi¢s, £,) difference between these two curves is not crucial. The ma

is linear with respect tés for arbitraryég,, but (as will be shown information from the final result is the maximum distance o

below) linearity is fulfilled for the averaged valye? (s, £s))e,- k(&) fromthe linear function (also included in Fig. 14), which
Simple analytical derivation reveals that (for aRy(&s, &,)  is dictated byAp_ ., depending on front progression. As an inter-

G Pl (26— 1))

fulfilling (14)) mediate result, macroscopic capillary pressigés, &s,))e, =
Ap_ .. Was obtained independent &f
(Pe(&s, st))g = (Pe(£))e, = Ap.e/L = Ap. e Relative permeability should hgve tensorial F:haracter i|_1 tr
° same way as absolute permeabilty Therefore in Eq. [3b] it
(PY(&s, 5&))5% =0 [23]  should notappear as a scalar parameter, but different compone

of K should be multiplied by corresponding relative permeabil
5 5 5 5 ity components. It would be more appropriate to use in Eq. [3t
(02 (&, 5%))550 =0 (L) - &/L = vy - &s/L = v - &5, effective permeability tensor. For the sake of completenes

and
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1 = will be different andAg, ., will be higher. However, this change
0.9 S is not as large as the change @ and therefore the relative
0.8 lincar // permeability curve is less curved than the original.
e k// (d) Wwith dimensional change in the cell where all resin pa
o »{ rameters and capillary number are the same it was conclud
= 0.6 n= 5 / \ that the relative permeability curve did not change.
\g 0.5
4 04 / / \
/ RS \ 7. CONCLUSIONS
0.3 — n=_§
0.2 / _ / In this paper, free boundary program and methodology for de
o ¢ Z,—// termination of relative permeability and macroscopic capillan
7 3 pressure were presented. Free boundary program permits ont
0 M o2 o oo e . study resin progression at the microlevel and in this way defin
for example, the range for the capillary number for a particula
FIG. 14. Relative permeability as a function &ffor n = 2 and 8. geometry’ which will ensure air disp'acement by the primar!
mechanism.

Methodology to determine relative permeability and macro
our geometry has three principal directions; thigg,= k,, = scopic capillary pressure was presented with t.he help ofasimr;
Kee = 0, kyy = ke and k,, would have to be determined€xample. It was concludec_zl that surfac_e_ tension as well as vi
differently. cous forces influence relative permeability. More work must b

Now we can summarize the methodology and make sorﬂ%ne to study cases where more cells wiII_be in transition stag
generalizations. From the previous discussion and derivatioRénultaneously and cases with dual porosity geometry.
it is clear that for the relative permeability determination it is
sufficient to calculate analytically the local horizontal capillary
force as a function of the resin front-fiber contact points. Then
it is necessary to determine front progression in at least one advani, s. G., Bruschke, M. V., and Parnas, R.i“Flow and Rheol-
uniform cell, distribute uniformly the capillary force alomg, ogy in Polymeric Composites Manufacturing” (S. G. Advani. Ed.), p. 465.
and express it as a function &f Next it is possible to calculate  Elsevier, Amsterdam, 1994.
Ap, .. as the mean value of the previous distribution, determing Bruschke, M. V., and Advani, S. GRolym. Composl1, 398 (1990).

’ . . . Bruschke, M. V., and Advani, S. GAMPE Q22,2 (1991).
saturated gradlem‘;, and use Eq. [27] with a selected Iqon'zem4. Bruschke, M. V., and Advani, S. G., A numerical approach to model non
and even value of. The methodology presented here ensures isothermal, viscous flow with free surfaces through fibrous métta,J.
that the final curve will always have values below the linear Numer. Methods Fluid$9,575 (1994).
function as soon a&p, .. is negative and that the boundary values>- Lee, L. J., Young, W. B., and Lin, R. J., Mold filling and cure modeling of

will be 0 and 1. Macroscopic capillary pressure was determined RTM and SRIM processe§ompos. Struc7,109 (1994). ,
asA 6. Liu, B., Bickerton, S., and Advani, S. G., Modeling and simulation of resin
Pe, &5

. transfer molding (RTM)-Gate control, venting, and dry spot prediction,
The same geometry was retained but other parameters werecomposites 7A, 135 (1996).

changed to test the universality of the methodology. Below we. Gauvin, R., Trochu, F., Lemenn, Y., and Diallo, L., Permeability measure
state some of our conclusions. ment and flow simulation through fiber reinforcemd?dlym. Composl?,
34 (1996).
(a) For this case study, with the same capillary number b Scheidegger, A. E., “The Physics of Flow through Porous Media.
different surface tension it was concluded that front progres- _ Macmillan, New York, 1957. - _

. the same, althougp, .. is proportional t In the . Bear, J., “Dynamics of Fluids in Porous Media.” Elsevier, New York, 1972.
sion was e .65 1S Prop Oy 10. Kaviany, M., “Principles of Heat Transfer in Porous Media,” 2nd ed.
same way for the modifie@, consequently the relative perme-  springer-verlag, New York, 1995.
ability curve is exactly the same. 11. Lundstrom, T. S., Bubble transport through constricted capillary tube

(b) For this case, the contact anglewas varied with the with application to resin transfer moldind?olym. Composl17, 770
same capillary number and the same value of surface tepsion (1996). _ _ _ . .
It was concluded that front progression was almost the samej(lzh Lundstrom, T. S., Void collapse in resin transfer moldiagmposites A

; 11 prog _ 28A, 201 (1997).

studied caseg _has small |_nfluence on bulk front progression);3. Gebart, B. R.J. Compos. Mate6, 1100 (1992).
althoughAp_.. is strongly influenced by. 14. Bruschke, M. V., and Advani, S. G., Flow of generalized Newtonian fluids

(c) The case with the same surface tensiobut different across a periodic array of cylindeds,Rheol 37,479 (1993). _
capillary numbers revealed that local capillary pressure will & van der Westhuizen, J., and du Plessis, J. P., An attempt to quantify

. . . . bre bed permeability utilizing the phase average Navier-Stokes equatio
the same as a function of the resin front-fiber constant points. Composites 27A, 263 (1996).

Front progrgs;ion will be different. .For larger capillary numbeis. simacek, P., and Advani, S. G., Permeability model for a woven fabric
than the original value contact point dependencésand ng Polym. Composl7,887 (1996).
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