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In LCM processes of fiber-reinforced composite manufacturing,
resin is injected into a closed mold with a preplaced stationary fiber
preform. If these preforms are created from fiber tows, resin pro-
gression at the microlevel during infiltration is often non-uniform.
Consequently, macroscopic description of the filling phase requires
a theory of flow through unsaturated porous media in which the
transition (partly saturated) region must be taken into account. Un-
saturated flows must consider surface tension effects; therefore, cap-
illary pressure and relative permeability must be included in gov-
erning equations. This paper presents a methodology to determine
relative permeability and macroscopic capillary pressure for simple
flows. The results lead to important conclusions and the methodol-
ogy can be generalized to other flow fields. C© 2002 Elsevier Science

Key Words: dual porous media; liquid composite molding; relative
permeability; capillary pressure; surface tension; free surface flow.
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1. INTRODUCTION

In the past three decades, fiber-reinforced composite m
rials have become an important class of engineering mate
because (i) they allow flexibility in the design of the compone
(ii) of the possibility of tailoring their properties to industri
requirements, and (iii) of the development of efficient manu
turing processes.

Reinforcing fibers carry most of the structural loads; hen
more fibers translate into stiffer and stronger composite. To
tain higher fiber volume fractions, the fibers must be aligned
grouped in fiber tows (bundles) that may contain from 200
48,000 fiber strands (fibrils). Fiber tows can then be arran
randomly; however, very high fiber volume fractions can o
be achieved if the tows are stitched or woven to make a pa
of a fabric layer.

In polymer composites, the empty space between fibe
filled with a resin. A manufacturing process that is wid
1 E-mail: zdimitro@dem.ist.utl.pt.
2 To whom correspondence should be addressed. Fax: (302)831-3

E-mail: advani@me.udel.edu.
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used to accomplish this task is called liquid composite mo
ing (LCM), in which a fiber network consisting of fabric layer
called fiber preform, is placed into a closed mold and a low
cosity resin is injected into it to fill the empty spaces betwe
the stationary fibers (1). Special attention must be paid to
injection phase as any unfilled region known as a void or a
spot can be detrimental to the mechanical performance o
composite.

Infiltration of the resin is driven by the hydrodynamic press
gradient originated by the inlet pressure. When the resistan
the preforms to overcome is very high, in certain regions
hydrodynamic pressure gradient can be so low that the wic
gradient can exceed it and change the driving mechanism.
situation occurs more often when dual porosity preforms (b
from fiber tows) are used because the spacing between the
is about an order of magnitude higher than the spacing of p
inside the tows. Therefore, when the inlet pressure is high, r
proceeds rapidly in intertow spaces, where the permeabili
at least one to two orders of magnitude higher than in the in
tow spaces. On the other hand, when the inlet pressure is
capillary forces (higher in intratow spaces) can exceed visc
forces and the resin front will proceed more rapidly inside
tows. As a consequence resin progression is not uniform a
microlevel.

When the mold containing fibers and air is filled, air can
displaced either by a primary or by a secondary mechan
The primary mechanism is to displace the air with the resin
allow it to escape through a vent in the mold. However, if ai
trapped and held by capillary forces in the form of bubbles a
the primary mechanism is completed, it can only be displa
by the secondary mechanism. To activate it, it is necessa
increase the viscous forces (e.g., by increasing the pressure
they exceed the capillary forces.

In order to predict and consequently prevent voids and
spot formation in flows with non-uniform progression at the m
crolevel, a theory of flows through unsaturated porous me
must be invoked; thus, relative permeability and macrosco
capillary pressure must be included in the governing eq
tions. This paper presents a methodology to determine the
5 0021-9797/02 $35.00
C© 2002 Elsevier Science
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characteristics for simple flows. The results lead to impor
conclusions and the methodology can be generalized to o
flow situations.

2. MACRO LEVEL GOVERNING EQUATIONS

Practice has converged on modeling of filling as flow throu
a porous medium, which is created by the fiber network (2
Basic literature on flow through porous media is covered
books such as (8–10). Attention was focused on the macro
(global) analysis, which is assumed as aquasi-steady-state pro
cessand the domain to be filled was divided into two regio
saturated and unfilled, separated by amoving sharp surfacerep-
resenting the flow front. Thus, only the theory of saturated flo
was required for description of the filling process. Such an
proach describes solely the primary displacing mechanism
we will refer it as thestandard approach. There are only few
works related to the secondary mechanism (11, 12) and littl
tention has been paid to unsaturated flows in dual scale po
media.

Under assumptions reasonable for most LCM processes
for isothermal quasi-steady filling of incompressible and stat
ary preform by an incompressible Newtonian resin with insig
icant resin inertia as compared to viscous effects, with no in
ence of resin weight and of the air on the resin front, one can w
the governing equations for the standard approach as follo

∇ · vD = 0, [1a]

vD = −K
µ
· ∇P [1b]

with the following boundary conditions,

at the resin front,∂ f/∂t + (vD · ∇ f )/φ = 0 [2a]

and P = 0; [2b]

at the mold walls,vD · n= vD
n = 0⇒ Knn

∂P

∂n
+ Knl

∂P

∂l
= 0;

[2c]

at the injection gates,vD= v0(t) or P = P0(t); [2d]

wherevD is the phase-averaged velocity vector related to
intrinsic phase averagevf by vD = φvf, φ being the porosity
and P is the intrinsic phase-averaged pressure (pore press
K is the permeability tensor of the fiber preform andµ is the
resin viscosity. Implicit functionf (x(t), t) = 0 describes the
location of the moving resin front. Equation [2a] results fro
conservation of mass, it is the motion equation of the front,
it is known as the kinematic equation, while Eq. [2b] is the sta
(sometimes dynamic) free boundary condition.t, n, v0, or P0

stand for time, outer unit normal to the front, and prescrib
velocity and pressure at the inlet, respectively.
P andvD are used as the macroscopic (global) counterpa
of the microscopic (local) pressurep and velocity vectorv · K
ND ADVANI
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may be determined by analytical (13–16), experimental (7, 1
26) or numerical methods (10, 27–31). Numerical or analytic
determination ofK is conducted by microlevel analysis. Thi
is accomplished by calculating the phase average of the lo
velocities of the unit viscosity Stokes flow in a fully saturate
basic cell or a representative volume element under a unit mac
pressure gradient or a unit volumetric force. For basic unit ce
periodic boundary conditions are applied.

However, Eq. [1] originally was an empirical relation pro
posed by Darcy (32). It has been verified analytically by homo
enization techniques, namely by asymptotic expansion meth
(27, 33–34) and by local averaging methods (10, 35).

Numerical-simulation results from standard approach for s
gle scale porous preforms or for dual scale porous preforms w
randomly arranged fiber tows usually showed excellent agr
ment with experimental examinations. However, in woven
stitched dual porous preforms, macroscopic flow front is n
sharp and atransition layer of finite depthbetween the saturated
and unfilled region is visible. This occurs as a consequence of
non-uniform progression at the microlevel, as noted in the int
duction. In order to describe the transition region it is necess
to modify Eq. [1] to

φ
∂s

∂t
= −∇ · vD(s), [3a]

φsvf (s) = vD(s) = −k(s)

µ
K · ∇(P(s)− Pc(s)), [3b]

where the new variable, saturations, is defined as the ratio of
the filled pore space to the total pore space in a basic unit cel
a representative volume element. In the transition regions be-
longs to the open interval (0,1) and in the saturated region (wh
s= 1) Eq. [3] coincides with Eq. [1]. Because exact impleme
tation of Eq. [3a] is quite difficult (36), usually an extension o
Darcy’s law in the form of Eq. [3b] (first proposed by Muska
in (37)) is used.k(s) is referred to as the relative permeabi
ity and takes values in the closed interval [0,1]; for the sake
nonambiguity, the term absolute permeability is used forK . In
the same way as single porosity absolute permeabilityK, dual
porosity K can be determined from fully saturated flow in
basic cell or a representative volume element, either with
single fibrils modeled (38, 39) or with fiber tows approximate
by a porous medium (30, 40, 41). Unlike saturated flows, uns
urated flows must consider capillary effects; therefore, besid
the global hydrodynamic pressureP(s) the macroscopic cap-
illary pressurePc(s) appears in [3b]. One needs to findP(s)
but Pc(s) andk(s) enter the analysis as known functions; thu
they must be determined either experimentally or by transie
microanalysis.

Applicable boundary conditions are only Eqs. [2c] and [2
and will remain unchanged. Resin progression is ensured by
uration increase, i.e., by Eq. [3a], and actually the term “res
front” cannot be used anymore. The macroscopic capillary pr

rtssure, unlike its microscopic counterpart, does not act at the resin
front, but in the full transition region. It can be proved, as by
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RELATIVE PERMEABILITY A

Antonelli and Farina (42), that if the depth of the transition
gion tends to zero, then the approach based on Eq. [3] te
to the standard approach. The explicit or implicit method c
be easily implemented in Eq. [3a], but unlike the advantage
the explicit method in standard approach, stable results can
be obtained by use of central differences and implicit meth
when the capillary pressure dominates (43).

It is useful to introduce one more level, which we will re
fer to as themesolevel,as an intermediate level between t
macro- and microlevel (38). Then the macrolevel mainta
the full medium scale. Microlevel will be reserved for intr
tow scale and intertow scale will correspond to the mesosc
At the mesoscale, resin motion in the intertow spaces is
scribed by the Stokes flow while the fiber tows can mode
the porous medium with the corresponding Darcy law. Tr
sient mesoanalysis can be then used to determinek(s) or Pc(s).
However, the main purpose of the mesoscale analysis shou
to capture void formation and to study other particular det
of the flow progression, which cannot be modeled by macro
microanalysis.

3. MICROLEVEL GOVERNING EQUATIONS

Description of the transition region must originate at the m
crolevel. With the assumptions stated at the beginning of the
vious section, one changes the law from Darcy’s law to Sto
law to obtain the governing equations. The filled region is se
rated from the rest by a sharp flow front with “material discon
nuity”; thus, the explicit method for the front progressio
becomes advantageous. Governing equations in the resin
main are

∇ · v = 0, [4a]

∇ p = µ1v, [4b]

wherev and p denote the local velocity and pressure, resp
tively, andµ is the resin viscosity. Boundary conditions a
usually written as (44) follows:

at the resin front,∂ f/∂t + v · ∇ f = 0 and [5a]

τ v · n= 0 and p= pc=−γ
(

1

R1
+ 1

R2

)
=−2γ H ; [5b]

at the fiber boundary,v = 0; [5c]

at the inlet,v = v0(t) or p = p0(t). [5d]

Function f (y(t), t) = 0 again describes the position of the mo
ing front (spatial variable at the microlevel is usually resca
and designated asy), n is the outer unit normal vector to th
corresponding surface,σ is resin stress tensor, andτ v is viscous
shear stress.R1 andR2 are the radii of the surface curvature,H
is the mean curvature, andγ is the surface tension coefficien
Equation [5b] expresses the surface tension influence, whic

a curved resin front surface at equilibrium can be replaced
a pressure drop1p called the capillary pressure,pc (45). The
ND CAPILLARY PRESSURE 327
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relation does not determine the actual equilibrium free surf
shape, it only tells us what distribution of the capillary press
should be applied at the known frontal surface. In Eq. [5b],
usual, viscous normal stresses were neglected as compar
pressure values.

Besides the fact that Eqs. [5a]–[5d] must be fulfilled, a cont
angle,θ , must be formed at the resin surface-fiber contact po
Actually, then the no-slip condition Eq. [5c] is quite inappr
priate and slip coefficients are usually used to remove the st
singularity there (47). The contact angle is given by Youn
equation, presented in (8, 10, 44–46), but the equation itse
not important for our purposes. Surface tension and contact a
are definite and accurately measurable properties; thus, they
be introduced into our studies as known parameters. It is us
to remark that the resin front shape is formed in a way that eq
librium is reached between all unbalanced forces. If only surf
tension effects are considered and all other contributions are
glected, then surface with constant curvature is formed (48)

Before we proceed, is it important to review some facts a
introduce new terms. The term,basic cell, ϑ , is used inasymp-
totic expansion methodsas the smallest component of a period
medium, which can form the full medium by its periodic rep
tition. An infinite number of different basic cells exists in on
periodic medium, but homogenization results cannot depen
its choice. We will introduce the termperiodic solutionfor the
solution (v, p) of Stokes problem in a fully saturated basic ce
under periodicity boundary conditions, i.e., of the problem sta
by Eqs. [4] and [5c] and by the following conditions,

G · ξ is prescribed on all external cell boundaries and [6

v and p̃ fulfill periodicity boundary conditions

on all external cell boundaries. [6b

G < 0 is an imposed macrogradient,ξ is a spatial coordinate
inside the basic cell, and̃p is defined byp = G · ξ + p̃+ c; v is
unique andp is unique up to a constant pressure fieldc. G · ξ + c
is called the linear, whilẽp is called the periodic part of the loca
pressure. Viscosity enters the problem only as a linear ana
parameter; surface tension and contact angle do not appe
all. Usually it is not necessary to prescribeG · ξ on all external
boundaries, e.g., when the basic cell has one boundary as
and some other as outlet, and then it is possible to presc
G · ξ only there. Volume rate at the outlet is naturally the sa
as at the inlet, but velocity distribution along the outlet bound
will generally be different. Exploiting incompressibility and th
no-slip condition, the ith component of phase-averaged velo
can be determined by (31)

|ϑ |vD
i =

∫
ϑr

vi dy =
∫
ϑr

vk
∂yi

∂yk
dy = −

∫
ϑr

∂vk

∂yk
yi dy

∫ ∫ ∫

by +

srf

vknkyi dS+
∂ϑe

vknkyi dS=
∂ϑe

vknkyi dS, [7]
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FIG. 1. Two ways to approximate the flow front w

whereϑr is the part of the basic cell occupied by the resin,Srf is
the resin-fiber boundary, and∂ϑe is the external cell boundary
Thus, if along the inlet and outlet boundary velocity distributio
do not coincide andyi is not constant, then the averaged va
cannot correspond to the averaged periodic velocity.

4. FREE BOUNDARY PROGRAM

With the purpose of examination of the resin flow at t
microlevel and of determination of relative permeability a
macroscopic capillary pressure, a free boundary program u
the general purpose finite element code Ansys (exploiting
Ansys Parametric Design Language (APDL)) was developed
far only for 2D problems. Its initial form without surface tensio
influence was presented in (39). The program permits one to
transient microlevel problems under the assumptions liste
the previous section. A new resin front position is calcula
directly using the free boundary condition Eq. [5a] and expl
methods.

At an arbitrary frontal nodal point at current time,tk, a one time
step run follows as first, velocity is extracted from previou
solved Stokes problem at this nodal point and a local coordin
system (called 1-local coordinate system as shown in Fig. 1
created close to it, where the flow front is locally approxima
by a smooth curve including two adjacent nodal points. T
permits one to define uniquely the outer normal vector to the fl
front. Two different ways to approximate are explained in Fig
An elliptic approximation in lieu of a circular or a parabolic on
was found preferable. Next, a second local coordinate syste
created at the nodal point under consideration with axes alon
tangential,xt, and the outer normal vector,xn. If the flow front
is described locally byxn = g(xt) with respect to the secon
coordinate system, then Eq. [5a] can be written as
vn− vt
∂g

∂xt
= vn = ∂g

∂t
. [8a]
h a smooth curve and specify the 2nd coordinate system.
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In explicit scheme, the new nodal position is determined in
normal direction as

xn,tk+1 = xn,tk + (tk+1− tk)vn,tk . [8b]

The smooth curve approximation as described above is repe
now for the new front, and the surface curvature and con
quently capillary pressure according to Eq. [5b] are calcula
separately at each new frontal nodal point. Capillary pressu
then imposed as piecewise linear at each frontal element e
Other boundary conditions Eqs. [5c–5d] are applied and, fina
Stokes problem is solved in the new domain.

Treatment of nodal points at axes of symmetry is adjuste
their special location and also resin surface-fiber contact po
are handled differently. If surface tension effects are neglec
then resin front progresses along the fiber boundary when o
frontal points will touch it, as it is shown in Fig. 2a. If sur
face tension effects are included, the contact angle is adju
to its given value by creating an additional curved surface
shown in Fig. 2b. The radius of this surface is not a kno
priority, but it should be small, in order not to affect the pr
gression of the bulk boundary. In accordance with the real re
FIG. 2. Progression of the resin front along the fiber boundary, without (a)
and with (b) surface tension effects included.
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RELATIVE PERMEABILITY A

behavior, it is ensured in the program that once a fiber sur
is wetted, it remains wetted. This does not hold generally
the bulk flow front; spaces filled by the resin can be abando
later, as will be seen in examples in the next section. Adju
ment of the resin front to the contact angle is very importa
in order to ensure the correct total value of the capillary pr
sure applied at the frontal surface. It can be proved that ca
lary pressure acting on an arbitrary part of a free surface s
fies equivalent load conditions with the surface tension app
in the cuts of this surface. Thus, the total capillary pressu
i.e., the capillary force, which should be applied at the re
front, can always be determined analytically if the resin fro
fiber contact point locations (and the parametersγ andθ ) are
known.

Several adjustments of the frontal nodal points are imp
mented in the free boundary program during one time step
First, very close nodal points are eliminated at the old front
order not to affect the approximation of a smooth curve. T
new front extent is always reduced not only by the frontal
tio, but it is also reduced in the way that the boundary will n
cross any of the other boundaries (symmetry or fiber), but at
will touch them. Other reduction eliminates crossing of norm
during front determination and loops creation along the fro
Again, very close nodal points of the new front are eliminate

An implicit method is also implemented into front progre
sion in which wayvn,tk+α are used in Eq. [8b] withα ∈ (0, 1].
Iterations are performed over different domains, yielding sl
convergence properties; thus, it is not worthwhile to use it. A
curacy of the new front position can be gained in the expl
approach by measured time steps. In the program, time st
calculated from the maximum allowed frontal extent, which
defined as a ratio of the maximum finite element size of fron
elements. This ratio, which we call as thefrontal ratio, as well
as the element size are user-input parameters. The progra
lows one to restart at the user-specified time step and mo
the parameters for the subsequent analysis. A criterion whe
decrease the frontal ratio does not have to be determined an
ically. The best warning that the frontal ratio is too high is wh
the new front is not smooth. This can happen basically du
two reasons, either there will be a large change in the nor
velocity or if the capillary number of the problem is very low
which makes the flow front numerically very sensitive to t
approximation of the capillary pressure. Capillary number i
dimensionless measure of the importance of viscous over
illary forces and it is defined as the ratio of viscous forces
unit length to surface tension, as

Nc = vµ

γ
, [9]

wherev is a selected characteristic velocity. When capilla
number is very low, then small incorrectness caused by
merical approximations can amplify capillary pressure, wh
with too high frontal ratio will cause opposite curvature in co

sequent front. Repetition of this fact causes oscillations. T
frontal ratio can naturally become so small that the front progre
D CAPILLARY PRESSURE 329
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sion will practically stop. In this case the implicit scheme co
help.

The free boundary program is based on a moving m
scheme. Therefore, the flow front can be traced precisely, w
is important for the application of surface tension effects. A
other advantages such as easy prescription of variable ele
size permiting creation of fine discretization close to the fl
front and rougher discretization in other regions can be app
Moreover, Ansys meshing capabilities can be exploited and
time taken by the mesh creation and by the solution of the
ear) analysis is almost negligible when compared to the t
needed for the extraction of the velocities, the new front c
ation, and assessment of the results. Several Fortran files
implemented into a general APDL file with the intent of maki
this part of the program numerically more efficient.

5. FLOW ACROSS CYLINDRICAL FIBERS

Before the methodology for determination of the relative p
meability and the macroscopic capillary pressure is present
simple case of flow across cylindrical fibers with circular cro
section and square arrangement is discussed. Flow front
ation and the time it takes to become periodic with respec
the input parameters are investigated. Fiber radius for this s
was selected to be 0.25 mm and spacing of fiber centers is 1
(porosity is approximately 0.8), to be able to see front variati
more easily.

Let the input parameters for silicon oil and carbon fibers
µ = 0.057 Pa· s, γ = 20.64× 10−3 N/m, andθ = 28.360. The
specimen chosen for the study contain five fibers and only
upper half will be examined because of symmetry. The in
velocity is applied uniformly along the left side of the spe
men and symmetry conditions are imposed on the lower
upper pore boundaries. Thus the problem is macroscopic
one-dimensional or can be assumed as three-dimensiona
no influence on other two directions. Five cases are exami
They correspond tov= 1 m/s with no influence of the surfac
tension andv= 1, 0.1, 0.01, and 0.001 m/s, respectively. Th
five cases yield capillary number variations as∞, 2.76, 0.276,
0.0276, and 0.00276, respectively. Flow front progression is
ported in Fig. 3; consequent fronts have the same ordering n
ber increase, but do not correspond to the same time increa
sometimes front ratio was changed or front extend was red
due to other reasons. It can be concluded that different flow
terns are strongly related to the capillary number and that fr
become periodic very soon, right after the first fiber was cove
with resin.

Figure 3 demonstrates that as the capillary number decre
capillarity becomes stronger and the resin front progression
tern might approach the constant curvature pattern directed
by the contact angle, as sketched in Fig. 4. In the first c
(Fig. 3a) after the top of the fiber has been passed, hydr
namic pressure moves the resin to the next fiber and only

he
s-
the resin reaches it, space between fibers begins to be filled.
Without surface tension, any combination of viscosity and inlet
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FIG. 4. Co
tact angle.
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FIG. 3. Flow front variation for capillary numb

velocity yields the same front progression. In the other two ca
(Figs. 3b and 3c) flow front also reaches the next fiber before
space between the fibers is fully filled. Therefore a void mi
be formed and our results correspond to the vacuumed in
stage. In last case (Fig. 3e), when the front reaches the fibe
upper part moves back to adjust the “almost” constant curva
shape determined by the contact angle. But the flow front sh
cannot “hold” this position because the fibers are too far
the contact angle is too high. Constant curvature surface
gression directed by the contact angle (Fig. 4) is not develo
Differences between Fig. 3e and Fig. 4 are clear after the f
crosses the top of the fiber. Then, influence of the hydro
nstant curvature surface progression directed solely by the c
r a)∞, b) 2.76, c) 0.276, d) 0.0276, and e) 0.00276.

ses
the
ht

itial
, the
ture
ape
nd
ro-
ed.
ont
dy-

namic pressure is noticeable in Fig. 3e. The upper part of
front advances so much that after the fiber has been compl
surrounded by the resin, the upper part moves back, and
resin front becomes straight. On the other hand, it is see
Fig. 4 that without any hydrodynamic pressure, resin progres
would completely stop before the last plotted positions wo
be reached (49).

Figures 3a and Fig. 4 correspond to two limiting cases
progression where capillarity is neglected and to the one w
only capillarity is dominant. Besides the geometry, progress
in Fig. 4 is influenced by the contact angle. Thus front patt
related to this specimen under any capillary number but w
contact angle maintained should be addressed between
two cases.

It was numerically justified that the front progression is
same for the same capillary number and independent of abs
dimensions (contact angle is maintained during this comp
son). Flow progression for three situations with the same ca
lary number ofNc= 0.276 obtained by the following combina
tion of parameters, (i)µ= 0.0057 Pa· s,γ = 20.64× 10−3 N/m,
and v= 1 m/s; (ii) µ= 0.057 Pa· s, γ = 206.4× 10−3 N/m,
on-andv = 1 m/s; (iii) the case related to Fig. 3c with dimensions
10 times amplified; are presented in Fig. 5. Progressions should
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FIG. 5. Identical flow front progression for three cases of the capillary number of 0.276. This capillary number was obtained by I) modifying viscosity and
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velocity, II) modifying surface tension and velocity, and III) changing dimen

be compared to Fig. 3c. The fact that this expected equivalen
shown numerically also verifies correctness of the free bound
program.

In summary, it was seen that flow front progression is stron
dependent on capillary number. However, once all pores
filled, local velocity and pressure in any basic cell correspon
the periodic solution, and consequently, capillarity cannot in
ence the absolute (saturated) permeability. In Fig. 6 the distr
tion of the horizontal velocity component related to progress
from Fig. 3b is plotted; it is seen that it is periodic in the full pa
of the specimen, where flow fronts display the periodic patte
except in the vicinity of the flow front.

For macroscopically one-dimensional (or three-dimensio
with no influence on other two directions) problem we introdu
theuniform basic cellas a basic cell, in which during resin in
filtration saturation increases from 0 to 1, while previous ce
are fully saturated and next cells are fully empty. Uniform b
sic cells depend on capillary number, because their left (in
and right (outlet) sides are formed by periodically correspo
ing flow fronts. In transition stage they are called astransition
cells. After a transition cell is filled, it will still take additiona
time until the distribution ofv and p inside it will correspond
to the periodic solution (they will reach it simultaneously a

consequence of the uniqueness of the periodic solution). Based
on this fact, f

discussed in (8). Other theoretical studies, which can be found in
cases, as, e.g., in
rom a theoretical point of view, the transition regionthe literature, usually deal only with particular
FIG. 6. Distribution of the horizontal component o
sions by rescaling.
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should not cover onlys∈ (0,1) but should include a part of the
saturated region (s= 1), where local fields are not yet periodic
i.e., they do not correspond to the steady-state situation. We
refer constant flow rate filling asuniform filling. If any possi-
ble transition cell is filled,v and p resemble periodic solution
if phase-averaged velocity is a linear function ofξs and macro-
pressure gradient is constant and independent of the uniform
choice.ξs is a spatial variable corresponding to the resin fro
position in cells, ranging from zero to the cell lengthL. Macro-
pressure gradient is represented by the gradient of the intrin
phase-averaged pressure with respect toξs. Then it yields from
Eq. [3b] that relative permeability is a linear function ofξs.

6. METHODOLOGY TO DETERMINE RELATIVE
PERMEABILITY AND MACROSCOPIC

CAPILLARY PRESSURE

Unlike absolute permeability, no simple relation is availab
to determine the relative permeability either from the asympto
expansion or from the local averaging methods. A general int
duction of the relative permeability notion by the local averagi
method can be found in (10, 35), but it cannot be easily i
plemented in particular cases. Relative permeability concep
f the local velocity in m/s for capillary number of 0.276.
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FIG. 7. Reference flow front position and the reference cell, arbitr

(50). Regarding composite processing, very little experime
data are available (36, 51).

Macroscopic capillary pressure should correspond to the
erage of its microscopic values while resin is filling the ba
cell or the representative volume element (10); thus,

Pc(s) = 2γ 〈H〉(s), [10]

where〈H〉(s) is the average of the mean curvature. There is
general methodology to use Eq. [10] and one cannot ensure
in periodic media such result is independent of the cell geo
etry. Several methodologies to represent macroscopic capi
pressure have been developed in [8–10], [51–53].

For both relative permeability and macroscopic capillary pr
sure, the theoretical and numerical background for LCM p
cesses is not yet established. In this section, a methodolog
determine these characteristics will be presented for a sim
flow example. It will be shown that from this simple case, im
portant conclusions can be drawn and that generalizations o
methodology are possible.

Let the geometry from the previous section be examined
flow with Nc = 0.166. Theprincipal assumptionin this analysis
is that after any arbitrary transition cell is filled, local fieldsv
andp will resembleimmediately the periodic solution. If this is
fulfilled, then the phase-averaged velocity in filled cells and
intrinsic phase-averaged pressure difference between neig
ing filled cells would be constant and equal to the periodic va
for any choice of the uniform cell. It was verified numerica
for some particular choices that the error introduced in the st
due to this assumption is small.

We introduce reference saturation,s̃, and mark a referenc
flow front position wherẽs= 0 and the corresponding uniform
cell we name as the reference cell (Fig. 7). The left side of
arbitrary uniform basic cell is located in the reference cell ats̃=
. In order to compare behavior of the averaged characteris
neighboring cells,̃s is measured along the cells. Thuss̃=
ry uniform basic cell, and flow front progression along the selected geomet

tal
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n+ s+ s0, ands̃ higher then unity does not mean overfilling
s0 is restricted to [0,1], s∈ [0,1] is reserved to mark actual flow
front in the transition cell related to a particular uniform ce
andn denotes number of fully filled cells behind this transitio
cell (Fig. 7).

Evolution of phase-averaged velocity and intrinsic pha
averaged pressure can be expressed as functions ofn, G, s,
and s0, whereG < 0 is the macroscopic saturated (period
gradient. In order to provide the macroscopic pressure grad
estimation, it is convenient to switch from variabless ands0 to
spatial variablesξs andξs0, related to the filled area and define
as sketched in Fig. 8. We remark thatξs andξs0 are assumed
as dimensional, both ranging from 0 toL = 1 mm. Then the
macroscopic pressure gradient in the transition cell can be
mated according to Fig. 9. At this point it is still impossible
use Eq. [3b], since then the relative permeability would dep
on the uniform cell geometry. It is necessary first to average s
arately the phase-averaged velocity and the macroscopic p
sure gradient overξs0. This operation will be designated as〈 〉ξs0

.
Macroscopic capillary pressure is obtained as an intermed
ticsFIG. 8. Estimation of the distanceξs = ξs̃ − ξs0 − nL according to filled
area (saturation).
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FIG. 9. Macro pressure gradient estimation in the transition cell.

result. Generalizations of this methodology will be discuss
later.

In order to determine functional dependencies, an arbit
uniform cell specified in Fig. 7 is considered. The averages
calculated at each time step in the free boundary program,
arately at each uniform cell and plotted in Figs. 10 and 11. I
seen from Fig. 10 that the phase-averaged velocity (horizo
component) in transition cell is monotonically increasing a
reaches the periodic value almost immediately after the tra
tion cell is saturated. Periodic values are then maintained in
fully filled cells. Intrinsic phase-averaged pressure inside fil
cells vary with saturation of their neighbors, as shown in Fig.

The following derivation is fully analytical except for one pa
ticular point where we will need numerical values. Neverthele
the form of functions introduced below was first guessed fr
numerical results. Let us start with macroscopic pressure gr
ent derivation. For intrinsic phase-averaged pressure expre

ff
in filled j cell, Pj (ξs, ξs0), we will use two facts: (i) it is an exten-
sion of the form for uniform filling without capillary pressure, Pft

(
ξs, ξs0

) = m · Pv
(
ξs, ξs0

)− G · ξs/2+ g
(
ξs, ξs0

)
, [16]
FIG. 10. Phase-averaged velocity c
ND CAPILLARY PRESSURE 333
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which is simply,

Pfu
j

(
ξs, ξs0

) = −G · ξs− G · L(n− j + 1/2), [11]

(ii) it preserves the statement that values of local pressure
tween two filled neighboring uniform cells differ by GL in any
case of filling, giving for a fixed front and thatξs02 > ξs01

Pff
j

(
ξs, ξs01

)− Pff
j

(
ξs−

(
ξs02 − ξs01

)
, ξs02

)
=−G · (ξs02 − ξs01

)
. [12]

From these two facts and numerical examination it w
concluded thatPff

j (ξs, ξs0) could be written in the following form,

Pff
j

(
ξs, ξs0

) = Pfu
j

(
ξs, ξs0

)+ Pv
(
ξs, ξs0

)+ A
(
ξs0

)
, [13]

where Pv(ξs, ξs0) is the variable part ofPff
j (ξs, ξs0), such that

Pv(0, ξs0) = Pv(L , ξs0) = 0, and A(ξs0)− GL/2 is the initial
value forn = j andξs = 0. Pv(ξs, ξs0) reads as (see Fig. 12)

Pv
(
ξs, ξs0

) = P̃
(
ξs+ ξs0

)− P̃
(
ξs0

)
for ξs+ ξs0 ≤ L [14]

and

Pv
(
ξs, ξs0

) = P̃
(
ξs+ ξs0 − L

)− P̃
(
ξs0

)
for ξs+ ξs0 ≥ L .

From now on functions with upper∼ will correspond to the
reference cell. It can be concluded that

P̃
(
ξs02

)− P̃
(
ξs01

) = A
(
ξs02

)− A
(
ξs01

)
. [15]

The intrinsic phase-averaged pressure in transition ce
Pft (ξs, ξs0), can be written similarly as
alculated in each uniform cell separately.
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FIG. 11. Intrinsic phase averaged press

wherem is a coefficient andg(ξs, ξs0) is a function, which adjust
the initial and the final value. It will be seen later on that it is n
necessary to determine exactly either the value of m or the e
functional dependence ofPv(ξs, ξs0). Functiong(ξs, ξs0) must
basically fulfill two conditions: (I) atξs = 0 it reflects mainly
the influence of the capillary pressure on the initial interstit
phase-averaged value and this influence rapidly diminishes w
increasingξs; (II) on the other hand, close toξs = L, local fields
are approaching the periodic stage, capillary pressure influe
is going to be completely removed, and its influence will shift
the next transition cell. The value of functiong close toξs = L
can thus be estimated from the condition that the macrosco
pressure gradient must reach valueG, which will be used later
on. From continuity,

Pft
(
L , ξs0

) = −GL/2+ g
(
L , ξs0

) = A
(
ξs0

)− GL/2. [17]

Then condition (I) yield

Pft
(
0, ξs0

) = g
(
0, ξs0

) = A
(
ξs0

)+ Pc
(
0, ξs0

)
2

= g
(
L , ξs0

)+ Pc
(
0, ξs0

)
2

. [18]
sed as (Fig. 9)
tions (I) and (II) functiong can be assumed in theMacroscopic pressure gradient can be expres
FIG. 12. Functional de
ures calculated in each uniform cell separately.
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following form,

g
(
ξs, ξs0

) = g
(
0, ξs0

) · f1
(
ξs
)+ g

(
L , ξs0

) · f2
(
ξs
)

= g
(
L , ξs0

)+Pc
(
0, ξs0

)
2

f1
(
ξs
)+g

(
L , ξs0

) · f2
(
ξs
)
,

[19]

where functionsf1(ξs) and f2(ξs) express the respective impo
tance of these statements.

Capillary pressure can be determined analytically as a fu
tion of the resin front-fiber contact point location. For our pu
poses, we will need the total horizontal capillary force distribu
uniformly along the vertical distanceηs (see Fig. 8). At this point
we will need numerical results of the front progression, in
der to relate contact point locations withξs andηs. Analytically
determined values related to numerically obtainedξs in the ref-
erence cell are plotted in Fig. 13. Capillary pressure is uniqu
related to the front position. Thus,

Pc
(
ξs, ξs0

) = P̃c
(
ξs+ ξs0

)
for ξs+ ξs0 ≤ L [20]

and

Pc
(
ξs, ξs0

) = P̃c
(
ξs+ ξs0 − L

)
for ξs+ ξs0 ≥ L .
pendence ofPv(ξs, ξs0).
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FIG. 13. Capillary pressure dependence.

Ḡ
(
ξs, ξs0

) = −2
(
Pft
(
ξs, ξs0

)− Pc
(
ξs, ξs0

))/
ξs. [21]

Its average overξs0 must be performed. Since denominator
Eq. [21] is independent ofξs0, the average of the numerator
straightforward. The phase-averaged velocity can be expre
as

vD
x

(
ξs, ξs0

) = ṽD
x

(
ξs+ ξs0

)− ṽD
x

(
ξs0

)
ξs

for ξs+ ξs0 ≤ L [22]

and

vD
x

(
ξs, ξs0

) = ṽD
x

(
ξs+ ξs0 − L

)+ ṽD
x (L)− ṽD

x

(
ξs0

)
f

for ξs+ ξs0 ≥ L ,

where ṽD
x (L) = vD

x,p is the periodic value from the principa
assumption. Values ˜vD

x (ξs0)ξs and ṽD
x (ξs0)f are generally differ-

ent; for both, velocities are integrated over the same area
in the first case the reference cell is in the transition st
while in the second case it has achieved the saturated s
Continuity must be preserved; thus both values coincide w
ξs+ ξs0 = L. One can integrate the local velocity over an a
including one filled reference cell and a reference transition
in two ways. Either by selecting the reference cell as the unif
cell or by selecting the other cell as the uniform cell such t
ξs+ ξs0 < L. Taking into account the principal assumption, it
sults inṽD

x (ξs0)ξs = ṽD
x (ξs0)f . Therefore local velocity distribution

does not vary during filling. This does not mean thatvD
x (ξs, ξs0)

is linear with respect toξs for arbitraryξs0, but (as will be shown
below) linearity is fulfilled for the averaged value〈vD

x (ξs, ξs0)〉ξs0
.

Simple analytical derivation reveals that (for anyPv(ξs, ξs0)
fulfilling (14))〈

Pc
(
ξs, ξs0

)〉
ξs0

= 〈P̃c(ξs)〉ξs = APc,ξs/L = APc,εs;〈
Pv
(
ξs, ξs0

)〉
ξs0
= 0 [23]

and
〈
vD

x

(
ξs, ξs0

)〉
ξs0
= ṽD

x (L) · ξs/L = vD
x,p · ξs/L = vD

x,p · εs,
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whereAPc,εs is the mean value of the capillary pressure related
front progression andεs = ξs/L is the dimensionless counterpa
of ξs.

Using Eqs. [16], [19], and [23], it can be shown that

〈
Pft
(
ξs, ξs0

)− Pc
(
ξs, ξs0

)〉
ξs0

=−G · ξs/2− APc,εs +
〈
g
(
L , ξs0

)〉
ξs0
+ APc, εs

2

· f1(ξs)+
〈
g
(
L , ξs0

)〉
ξs0
· f2(ξs). [24]

Still unknown term〈g(L , ξs0)〉ξs0
can be determined from the

condition (II) ensuring forξs = L the result in Eq. [24] equals
−GL/2. Sincef1(L) = 0 and f2(L) = 1, it holds〈g(1, ξs0)〉ξs0

=
APc,εs. Thus,

〈
Ḡ
(
ξs, ξs0

)〉
ξs0
= G+ 2APc,εs

1− f1(ξs)− f2(ξs)

ξs
. [25]

Now functions f1(ξs) and f2(ξs) appear in sum, and they ca
be estimated simultaneously. One of the possibilities is

f1(ξs)+ f2(ξs) = (2ξs/L − 1)q, [26]

whereq is even. Whenq = 0, there is no non-uniformity and
saturated gradientG is reached in the full range, i.e., filling is
uniform. The higher the value of q, the sharper the implem
tation of conditions (I) and (II). AdoptingvD

x,p = −(Kxx/µ)G
one can finally express the relative permeability from Eq. [3
as

kxx = G · ξs/L

G+ 2APc,εs
ξs

(1− (2ξs/L − 1)q)

= Ĝ · εs

Ĝ+ 2APc,εs
εs

(1− (2εs− 1)q)
, [27]

whereĜ = GL.
Relative permeability in our example as function ofξs is

shown in Fig. 14 forq = 2 and q = 8. It is seen that the
difference between these two curves is not crucial. The m
information from the final result is the maximum distance
kxx(ξs) from the linear function (also included in Fig. 14), whic
is dictated byAPc,εs depending on front progression. As an inte
mediate result, macroscopic capillary pressure〈Pc(ξs, ξs0)〉ξs0

=
APc,εs was obtained independent ofξs.

Relative permeability should have tensorial character in
same way as absolute permeabilityK . Therefore in Eq. [3b] it
should not appear as a scalar parameter, but different compon
of K should be multiplied by corresponding relative permeab

ity components. It would be more appropriate to use in Eq. [3b]
effective permeability tensor. For the sake of completeness,
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FIG. 14. Relative permeability as a function ofξs for n = 2 and 8.

our geometry has three principal directions; thus,kxy = kyz =
kxz = 0, kyy = kxx and kzz would have to be determined
differently.

Now we can summarize the methodology and make so
generalizations. From the previous discussion and derivati
it is clear that for the relative permeability determination it
sufficient to calculate analytically the local horizontal capilla
force as a function of the resin front-fiber contact points. Th
it is necessary to determine front progression in at least
uniform cell, distribute uniformly the capillary force alongηs,
and express it as a function ofξs. Next it is possible to calculate
APc,εs as the mean value of the previous distribution, determ
saturated gradientG, and use Eq. [27] with a selected non-ze
and even value ofq. The methodology presented here ensu
that the final curve will always have values below the line
function as soon asAPc,εs is negative and that the boundary valu
will be 0 and 1. Macroscopic capillary pressure was determi
asAPc,εs.

The same geometry was retained but other parameters
changed to test the universality of the methodology. Below
state some of our conclusions.

(a) For this case study, with the same capillary number
different surface tensionγ it was concluded that front progres
sion was the same, althoughAPc,εs is proportional toγ . In the
same way for the modifiedG, consequently the relative perme
ability curve is exactly the same.

(b) For this case, the contact angleθ was varied with the
same capillary number and the same value of surface tensioγ .
It was concluded that front progression was almost the sam
studied casesθ has small influence on bulk front progression
althoughAPc,εs is strongly influenced byθ .

(c) The case with the same surface tensionγ but different
capillary numbers revealed that local capillary pressure will
the same as a function of the resin front-fiber constant poi

Front progression will be different. For larger capillary numb
than the original value contact point dependence ofξs andηs
AND ADVANI
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will be different andAPc,εs will be higher. However, this chang
is not as large as the change inG and therefore the relative
permeability curve is less curved than the original.

(d) With dimensional change in the cell where all resin p
rameters and capillary number are the same it was conclu
that the relative permeability curve did not change.

7. CONCLUSIONS

In this paper, free boundary program and methodology for
termination of relative permeability and macroscopic capilla
pressure were presented. Free boundary program permits o
study resin progression at the microlevel and in this way defi
for example, the range for the capillary number for a particu
geometry, which will ensure air displacement by the prima
mechanism.

Methodology to determine relative permeability and mac
scopic capillary pressure was presented with the help of a sim
example. It was concluded that surface tension as well as
cous forces influence relative permeability. More work must
done to study cases where more cells will be in transition st
simultaneously and cases with dual porosity geometry.
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