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Abstract. This paper deals with a multi-objective optimization of high speed railway tracks. 

The model of the track benefits from several simplifications; it is presented in two dimensions 

and developed in the commercial explicit dynamic software LS-DYNA. The design space is 

formed by the ballast height and by parameters representing the dynamic properties of the 

rail-pads. The objective function covers minimization of the maximum displacement and ve-

locity in the main structural elements, namely the rail, the sleepers and the ballast. A genetic 

algorithm implementation is used to reach the goal. 
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1 INTRODUCTION 

The study and design of high-speed train tracks usually relies on the numerical simulation 

of its dynamic behaviour, such as the finite element method [1]. Both parametric (Yanga et al. 

[2]) and statistical (Jesus et al. [3]) analyses have been applied to the problem of optimization 

of the track properties, with good results. However, they require intensive search on the solu-

tion space, which might be prohibitive when multiple variables are considered. 

Metaheuristic methods may perform better in finding quasi-optimal solutions, since they 

make no assumptions about the nature of the problem: solutions are obtained through a sto-

chastic approach, and the search process is guided by the adequacy of previous solutions. 

This study aims to optimize the results obtained by a simplified two dimensional model of 

the railway track, based on Zhai et al. [4], implemented in the commercial software LS-

DYNA. The design space includes the ballast height and the properties of the rail-pads. 

Since most published work on railway track simplified models uses parameters obtained 

empirically, several expressions are proposed to obtain them from known mechanical and ge-

ometrical properties. They aim to provide values close to the experimental ones, while being 

based on the theoretical mechanical behaviour of the involved media. 

The objective functions cover minimization of maximum displacement and velocity in the 

rails, sleepers and ballast, when subjected to moving loads representative of railway vehicles. 

The chosen metaheuristic optimization method is a genetic algorithm for single and multi-

objective optimization (Fonseca and Fleming [5]). Each objective is optimized individually, 

and then in pairs to obtain Pareto frontiers (or a single optimal solution, where possible). 

2 MODEL 

The main elements of common railway tracks are: 

1. Rails (parallel steel profiles that support the train); 

2. Rail-pads (contact elements between the rails and sleepers); 

3. Sleepers (wood or concrete that support the rails and keep the rail gauge); 

4. Ballast (layer of granular material upon which the sleepers are laid); 

5. Subgrade (native material underneath the railway, also referred as the foundation); 

To model the railway track in a simplified yet representative manner, rails are represented 

by beams supported by a system of springs, dampers and discrete masses, as shown in Figure 

1a. This is the approach employed by Zhai et al. [4]. 

Since the track is symmetric, a single rail is modelled. The cross-sectional area (Ar) and in-

ertia (Ir) depend on the rail profile. The mass density (ρs), Young modulus (Es) and Poisson 

rate (νs) are physical properties of steel. Kp and Cp are the stiffness and damping of a single 

rail-pad. Ms is the mass of half sleeper. Kb, Cb and Mb are the stiffness, damping and mass of 

the stress distribution cone of the ballast (see 2.1). Kw and Cw are the shear stiffness and 

damping of the ballast. Kf and Cf are the stiffness and damping of the subgrade. 

2.1 Stress Distribution Cone 

The geometry of the stress distribution cone can be seen in Figure 1b. It is actually a trape-

zoidal solid, but it will be referred to as a cone, to preserve the name found in [4]. 

The effective supporting length of half a sleeper, le, is proposed by Doyle [6] as 

 ,el l g   (1) 
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a) 

 

b) 

 

Figure 1: a) simplified model of the rail track; b) ballast stress distribution cone; [4] 

where l is the length of the sleeper and g is the rail gauge (the distance between the rails). The 

remaining variables are the width of the sleeper (lb), the height of the ballast layer below the 

sleeper (hb) and the angle of stress distribution (αb, assumed to be equal to the angle of repose). 

Without superposition of the stress cones, these parameters are enough to define their ge-

ometry. When there is overlay, the stress distribution is a truncated trapezoidal solid. 

To determine if there is overlay in the longitudinal direction (parallel to the rail orientation), 

the sleeper spacing, ls, must be known. This value is defined by the national railway infra-

structure manager. Superposition in the transversal direction (parallel to the sleeper’s orienta-

tion) depends on the distance between the effective sections of the sleepers (d): 

 2 2 .sd l l g l     (2) 

It is then possible to determine the height of the ballast were superposition in the longitu-

dinal direction (hx) and transversal direction (hz) doesn’t occur. The following expression was 

adapted from Zhai et al. [4]: 

        min 2 tan , ,  min 2 tan , .
x s b b b z b b

h l l h h d h     (3) 

The mechanical properties of the ballast (stiffness, damping and mass) depend also on the 

following properties of the ballast: Young modulus (Eb), Poisson’s rate (νb), mass density (ρb), 

and hysteretic damping coefficient (ξb). These parameters will be discussed later. 

The mass of the cone (Mb) is the sum of three components (adapted from [4]): 
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 (4) 

The vertical stiffness of the stress cone is defined as the inverse of the flexibility, which is 

also the sum of three components (adapted from [4]): 
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(5) 

Hysteretic damping was chosen, since it is considered to be a good model for soil damping 

(Bardet [7]). Since the explicit dynamic integration employed doesn’t support complex analy-

sis, an equivalent viscous damping formulation was used: 

 2 .b b b bC K M  (6) 

2.2 Shear Behaviour of the Ballast 

The shear stiffness and damping of the ballast were obtained with simplified considerations 

similar to the ones above. For effects of shearing, the whole transversal section of the ballast, 

with cross-sectional area Aw, is considered. The length of the element subjected to shear is as-

sumed to be the distance between sleepers, ls. The simplified shear expression is: 

 ,w w b sK A G l  (7) 

where Gb is the ballast’s shear modulus (computed from Eb and νb). The transversal area is: 

  2 21
2

tan 2 .w b b b z z e bA h h h h l h     (8) 

The shear damping off the ballast is obtained in the same way as the compression damping: 

 2 .w b w bC K M  (9) 

2.3 Subgrade Properties 

The subgrade stiffness is defined by Zhai et al. [4] as the product between the area of the 

base of the stress distribution cone (Af) and the subgrade modulus. This is equivalent to a for-

mulation used before by the authors ([8, 9]), which requires the bulk modulus of the subgrade 

soil, Bf, as well as the depth of the subgrade, hf (the vertical distance to the underlying rock 

stratum or the so called active depth of the subgrade – see Bowles [10]): 

 .
f f f f

K A B h  (10) 

The area of the base of the stress distribution cone is simply: 

       2 tan tan .
f b b x e b b z

A l h l h h      (11) 

The damping of the subgrade requires further consideration. 
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2.3.1. Radiation Damping 

Radiation (or geometric) damping is the attenuation of the dynamic response of a structure 

due to the radiation of mechanical waves away from it to the surrounding media, and is a 

well-known phenomenon (see Celebi [11] and Mylonakis et al. [12]). 

In the case in study, the energy abandons the system through the subgrade. Both [11] and 

[12] state that the necessary condition for radiation damping to occur is that the fundamental 

frequency of the foundation (ff) must be lower than that of the structure (fs). 

Mylonakis et al. [12] defines the vertical frequency of a homogeneous stratum as: 

  La 4 ,f ff v h  (12) 

where vLa is the Lysmer’s analog wave velocity of the foundation soil (see Mylonakis et al. 

[12]), which relates to the shear wave velocity (vS,f) according to: 

   La ,3.4 1 .S f fv v v   (13) 

According to the ATC3-06 [13] building codes (referred by [11]), the fundamental fre-

quency of the structure should be estimated “assuming the base of the building to be fixed”: 

     2 .s p b s b s r sf K K M M l A       (14) 

The mechanism of radiation damping is modelled in [12] as the absorbing boundary pro-

posed by Lysmer and Kuhlemeyer [14], using Lysmer’s analog wave velocity: 

 
, La

,
Z f Z f f

C c A v  (15) 

where cZ is the ratio of absorption and ρf is the mass density of the foundation soil. 

The values for cZ proposed by Milonakis et al. [12] lead to substantially greater damping 

coefficient than that employed by Zhai et al. [4], presumably because the former assumes a 

rigid interface (a footing) between the structure and the foundation. 

The building code ATC3-06 [13] models the damping by applying a critical damping ratio, 

where the component due to the radiation damping exhibits the following trend: 

  
3

.
rad s f

f f   (16) 

Given that for ff > fs, cZ = 0, and Eq. (16), the following formulation is proposed: 

   
3

max 1 ,0 .
Z f s

c f f   (17) 

This expression leads to results closer to the ones used by Zhai et al. [4]. 

2.4 Rail-pad Properties 

The rail-pad stiffness is obtained from Kaewunruen and Remennikov [15], who provide 

values for various types of rail-pads. However, it is known that the rail-pad behaviour is not 

linear elastic, but instead the tangent stiffness increases with load (see Szurgott et al. [16]).  

With that in mind, a cubic relationship between displacement and force was adopted from 

Jesus et al. [3]. Given the linear elastic stiffness, Kp, the displacement and elastic energy for 

the axis load (P) are computed. The cubic relation must have the same elastic energy for that 

displacement. The elastic force for the cubic formula for half the load P is assumed to be a 

fraction (X) of the linear one (if X = 1, both formulations are linear). The cubic relation is: 
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       3 3 2
2 1 4 1 .p PF X K X K P       (18) 

Damping is considered to be hysteretic, with damping coefficient ξp obtained from J.J. 

Kalker et al. [17]. The mass associated to the vibration is that of the applied load, since the 

mass of the rail and rail-pad are negligible in comparison. The viscous damping becomes: 

  2 ,p p pC K P g  (19) 

where g is Earth's standard acceleration due to gravity (9.81 m/s2). 

2.5 Weight and Non-linear Elasticity 

The inertial properties of the track components are simulated by discrete mass elements. 

Since both the rail-pads and the ballast (as will be seen below) present non-linear elasticity, 

the weight of the components must also be applied. Each node is quasi-statically loaded with 

a weight equivalent to its mass. After the load is applied, the track is considered to be the in 

equilibrium, and all displacements are measured from this starting point. 

3 GEOLOGICAL AND MECHANICAL PROPERTIES OF THE BALLAST 

Being a granular medium, the ballast can be studied trough the Hertz-Mindlin contact theo-

ry [18], assuming that the particles are elastic spheres with a friction coefficient μ = tan αb. 

According to Tang-Tat Ng [19], the normal contact stiffness between two elastic spheres is 

  * *
2 1 ,nk G a v   (20) 

where G* and v* are the shear modulus and Poisson ratio of the material of the particles, and a 

is the radius of the contact surface of the two particles. For particles with the same radius r: 

    * *3 3 1 8 .na v F r G   (21) 

Fn is the normal force between the two particles, which, according to Jack Dvorkin and 

Hezhu Yin [20], depends on the isotropic pressure p0 acting on the particles: 

   2

04 1 ,nF r p n    (22) 

where n and ϕ are the average number of contacts per grain and the average porosity of a pack 

of particles, respectively. Some simple geometrical considerations on the arrangement of the 

particles are provided by A.V. Shroff and D.L. Shah [21]. Since assuming any particular par-

ticle arrangement is as arbitrary as selecting a value for the number of contacts and the porosi-

ty, a median value was assumed: 

 9,  0.368.n    (23) 

With the parameters defined above (the isotropic pressure will be discussed below), the 

contact stiffness can be computed. However, to define the mechanical behaviour of the ballast, 

the Young modulus and either the Poisson ratio or the shear modulus are needed. According 

to Ching S. Chang et al [22], these parameters can be obtained using the data above: 

  
2 2 3 1

,  2 3 ,  .
4 5 4

n n
b b b

k k
E G v

r r

 


   

  
    

  
 (24) 

In which υ is a parameter depending on particle arrangement (see [22]): 
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 3
3 2 10.243.V r    (25) 

By taking Eq. (24) and applying the definitions (20) to (22), it is clear that the mechanical 

properties of the ballast don’t depend on the particle size: 
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 (26) 

They do depend on the isotropic pressure, and therefore on the applied load. This means 

that a non-linear spring with stiffness increasing with the load will be implemented. Since 

hysteretic damping was adopted (see Eq. (6)), the damping was assumed to be proportional to 

the stiffness of the fully loaded ballast, since the moving axis is the only dynamic load. 

Assume the stiffness of the spring that represents the ballast (Eq. (5)) can be expressed as 

 ,b b bK k E  (27) 

where kb is obtained by applying Eq. (5) with Eb=1. Consider also that the definition of the 

Young modulus presented in Eq. (26) is equivalent to 
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 (28) 

The average isotropic pressure on the ballast can be computed from a force F acting on the 

spring and the effective cross sectional area considered (Aef). Assuming only vertical stress:  

  0 3 ,efp F A  (29) 

where Aef is assumed to be the average of the top and bottom area: 

   2.ef b e fA l l A   (30) 

It should be noted that the finite element model adopted doesn’t apply the weight of the 

ballast over the spring that represents its stiffness, but to the node below it, so the spring’s 

stiffness must take into account an average isotropic pressure due to the weight of the ballast: 

 3

3

,
3

b
b b

ef

k
K F P

A


   (31) 

where Pb is the equivalent weight of the ballast distributed over the area Aef. Instead of using 

the previously computed ballasts mass (Mb), which represents only the mass of the stress dis-

tribution cone, the isotropic pressure due to the weight of the ballast is derived from the verti-

cal pressure (σv) as is usually defined in soil mechanics: 

  2 ,v b b b sg h g h h      (32) 

where h is the depth below the surface at which the pressure is being evaluated (half the bal-

last height) and hs is the average height of the sleepers. The sleepers are assumed to be almost 

completely buried in the ballast material (which is the case in normal working conditions). 

The isotropic pressure is one third the vertical stress, assuming the stresses in the remain-

ing directions are negligible, as in Eq. (29). From this, the equivalent weight in Eq. (31) is 

  3 3 2 .b av v av b b sP A A g h h     (33) 
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The displacement curve can now be expressed as 

 
3

3

3
.

av

b b b

AF F

K k F P



 


 (34) 

This formulation ensures that the stiffness isn’t zero when there is no load applied. 

4 GENETIC ALGORITHM FOR A SINGLE OBJECTIVE FUNCTION 

A genetic algorithm is a particular case of the class of evolutionary algorithms, which are 

metaheuristic procedures for solving optimization problems. 

This algorithm generates a random “population”, a set of candidate solutions (“individu-

als”). Each individual is encoded using a binary string (the “genome”), and its quality as a so-

lution (“fitness”) is determined. Pairs of individuals are then randomly selected, with higher 

fitness individuals having a greater chance of selection, and parts of their genome are com-

bined (“crossover”) to produce a new population (the next “generation”). 

Besides using the information from previous generations, a small random variation of the 

new individual genome (“mutation”) is usually applied. To ensure that the best solution found 

is not lost, it is customary to preserve the best individuals of each generation. 

The process repeats for a pre-defined number of generations, or until an individual presents 

a fitness value equal to or higher than a selected threshold. 

4.1 Specifications 

The genetic algorithm was implemented using the Parametric Design Language of the 

commercial finite element software Ansys, running the LS-DYNA module. 

The individuals’ genome has 16 bits for each variable to be optimized. The population 

consists of 20 individuals, for 20 generations. The best four individuals are always preserved. 

Since the objective is minimization, the solutions are ordered in ascending order of fitness 

and the given a probability of selection for crossover, based on tournament selection [25]. The 

probability of selection for the individual i is: 

  
1

1 .
i

ip p p


    (35) 

The value p is determined by equalling the sum of the probabilities to a value close to one: 

  
20

1

1 2 3

1

1 0.99 20.6%,  16.3%,  13.0% ...
i

i

p p p p p




        (36) 

The crossover is uniform and produces two offspring from two parent individuals: the par-

ent who provides the genetic information for the first children is selected randomly for each 

bit. The other parent provides the corresponding bit to the second children. 

After crossover, each bit of the offspring has a 1% probability of being mutated, which 

means that the value of that bit might change from 0 to 1 or vice versa. 

5 GENETIC ALGORITHM FOR MULTIPLE OBJECTIVE FUNCTIONS 

For multiple objective functions there isn’t a single criteria for optimization. Therefore, 

there won’t be a single solution, but a set of them that are better than all the other possible 

candidates. This set is known as the Pareto frontier, and it is formally defined as the set of so-

lutions that dominate the remaining possible solutions.  
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5.1 Dominance 

Given a set of objective functions fi(X), i = {1,…,m} to minimize, a solution X1 is said to 

dominate another (X2) if, and only if 

        1 2 1 2
: : .

i i i i
i f X f X i f X f X      (37) 

This means that the solution X1 must be at least as good as X2 for all objective functions, 

and better than it for at least one.  

5.2 Ranking 

Since it is not possible to test all possible solutions, the Pareto frontier is approximated by 

ranking the candidate solutions obtained stochastically, following the method proposed by 

Fonseca and Fleming [5]. Each solution Xi is given a rank in relation to the population of his 

generation, according to: 

   1,
i i

rank X r    (38) 

where ri is the number of solutions in the population that dominate Xi. 

The fitness function is no longer directly dependent on the value of the objective functions, 

but it is instead defined as the number of solutions that don’t dominate it (including itself). 

The probability of a given solution being selected is therefore: 

  
1

pop

i i jj
p X pop r pop r


     (39) 

5.3 Specifications 

Apart from the ranking method discussed above, the parameters are the same as for the 

single objective optimization, except that the individuals preserved are all that have rank 1. 

The optimization stops when all individuals in the population have rank 1, or when the speci-

fied number of generations is reached. 

6 MODEL PARAMETERS 

The values of the parameters needed to implement the model are presented in Table 1. 

Parameter Sym. Value Source 

Axle load P 83.385 kN [23] 

Train speed vP 200 km/h - 

Rail Young modulus Er 210 GPa [23] 

Rail Poisson ratio νr 0.3 [23] 

Rail cross sectional area Ar 76.84 cm2 [23] 

Rail moment of inertia Ir 3055 cm4 [23] 

Rail specific weight ρr 7800 kg/m3 [23] 

Half-sleeper weight Ms 157.5 kg REFER 

Sleeper spacing ls 0.600 m [23] 

Sleeper width lb 0.285 m [23] 

Sleeper height hs 0.200 m [23] 

Eff. length half sleeper le 1.000 m [23] 

Dist. btw. eff. sections d 0.500 m [23] 

Parameter Sym. Value Source 

Rail-pad stiffness Kp 20–800 MN/m [15] 

Rail-pad damping coeff. ξp 1–2 % [17] 

Granite Young modulus E* 56 GPa [24] 

Granite Poisson ratio ν* 0.11 [24] 

Granite specific weight ρ* 2700 kg/m3 [24] 

Ballast volumic factor υ 10.243 [22] 

Contacts per particle n 9 [22] 

Ballast porosity ϕ 0.368 [22] 

Ballast height hb 0.1–0.6 m - 

Found. Young modulus Ef 48.1 MPa [23] 

Found. Poisson ration νf 0.3 [23] 

Found. specific weight ρf 1850 kg/m3 [23] 

Found. effective depth hf 2 m - 
 

Table 1: Model parameters. The variables are identified in italics. 

As show in Table 1, the variables that form the design space are the rail-pad stiffness and 

damping coefficient, as well as the ballast height. 
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7 RESULTS  

For single objective optimization, the results are summarized in Table 2: The symbols U 

and V stand for displacement and velocity; the subscripts R, S and B are rail, sleeper and ballast; 

the superscripts + and – are for ascending and descending, respectively. 

Objective Best, gen. 1 Best, gen. 20 Improvement hb [m] Kp [Mpa] ξp 

UR
+ 2.49×10-5 2.81×10-5 11% 0.600 783 1.83% 

UR
- 1.24×10-3 1.25×10-3 1% 0.388 798 1.85% 

US
+ 2.30×10-5 2.49×10-5 7% 0.600 796 1.36% 

US
- 9.81×10-4 1.08×10-3 9% 0.356 20 1.01% 

UB
+ 7.52×10-6 8.61×10-6 13% 0.578 455 1.39% 

UB
- 5.21×10-4 5.80×10-4 10% 0.596 20 1.71% 

VR
+ 4.61×10-2 4.67×10-2 1% 0.354 798 1.06% 

VR
- 5.44×10-2 5.48×10-2 1% 0.464 799 1.74% 

VS
+ 3.30×10-2 3.68×10-2 10% 0.584 20 1.72% 

VS
- 3.77×10-2 4.41×10-2 15% 0.225 20 1.04% 

VB
+ 1.75×10-2 1.89×10-2 8% 0.600 788 1.84% 

VB
- 2.24×10-2 2.37×10-2 6% 0.600 785 1.95% 

Table 2: Results for single objective optimization. 

For the dual-objective optimization, out of the 66 possible combinations of variables, 11 of 

them show an overall trend close to direct proportionality, which means that it is possible to 

identify a single optimal solution. For 18 other combinations, one of the objective functions 

has a variation under 5%, and the other over 10%. These are easy to judge: by minimizing the 

function with higher variation, a better solution is attained. All 29 cases in which was possible 

to find a single solution are summarized in Table 3. It can be seen that, except for three of the 

combinations, the deviation from the uni-objective solution is small. 

f1 f2 Opt. f1 Opt. f2 δ f1 δ f2 hb [m] Kp [Mpa] ξp 

UR
+ UR

- 2.57×10-5 1.26×10-3 3.2% 1.2% 0.596 778 1.81% 

UR
+ US

+ 1.01×10-4 9.91×10-5 306% 330% 0.217 667 1.40% 

UR
+ UB

+ 1.32×10-4 1.17×10-4 431% 1456% 0.199 617 1.79% 

UR
+ UB

- 2.59×10-5 5.70×10-4 4.0% 9.4% 0.600 568 1.85% 

UR
+ VR

+ 2.67×10-5 4.80×10-2 7.4% 4.2% 0.583 570 1.72% 

UR
+ VR

- 1.01×10-4 2.64×10-2 307% 51% 0.228 783 1.96% 

UR
+ VB

+ 2.53×10-5 1.76×10-2 1.7% 0.3% 0.599 778 1.58% 

UR
+ VB

- 2.51×10-5 2.24×10-2 1.0% 0.3% 0.599 770 1.45% 

UR
- UB

+ 1.27×10-3 8.36×10-6 2.1% 11.2% 0.555 588 1.09% 

UR
- VR

- 1.24×10-3 5.46×10-2 0.1% 0.3% 0.367 795 1.39% 

UR
- VB

- 1.26×10-3 2.26×10-2 1.2% 1.1% 0.584 792 1.29% 

US
+ UB

+ 2.40×10-5 7.89×10-6 4.2% 4.9% 0.599 476 1.87% 

US
+ VR

+ 2.45×10-5 4.76×10-2 6.4% 3.2% 0.569 619 1.42% 

US
+ VB

+ 2.42×10-5 1.77×10-2 5.1% 1.1% 0.589 773 1.65% 

US
+ VB

- 2.38×10-5 2.26×10-2 3.3% 1.0% 0.585 786 1.22% 

US
- UB

- 1.06×10-3 5.54×10-4 7.6% 6.4% 0.559 33 1.88% 

US
- VR

+ 1.18×10-3 4.64×10-2 20.7% 0.7% 0.336 635 1.06% 

US
- VS

+ 9.96×10-4 3.44×10-2 1.5% 4.4% 0.354 23 1.89% 

UB
+ UB

- 7.74×10-6 5.71×10-4 2.9% 9.6% 0.599 358 1.95% 

UB
+ VR

+ 8.49×10-6 4.75×10-2 12.9% 2.9% 0.567 637 1.33% 

UB
+ VR

- 8.43×10-6 5.67×10-2 12.0% 4.1% 0.580 476 1.65% 

UB
+ VB

- 8.04×10-6 2.35×10-2 6.9% 5.2% 0.570 461 1.05% 

UB
- VS

+ 5.49×10-4 3.41×10-2 5.4% 3.4% 0.547 25 1.04% 

UB
- VB

+ 5.70×10-4 1.76×10-2 9.4% 0.3% 0.597 786 1.44% 

UB
- VB

- 5.70×10-4 2.24×10-2 9.4% 0.2% 0.599 785 1.71% 

VR
+ VS

+ 4.64×10-2 4.02×10-2 0.6% 21.8% 0.326 650 1.21% 

VR
+ VB

+ 4.74×10-2 1.77×10-2 2.7% 1.3% 0.590 754 1.03% 

VR
+ VB

- 4.71×10-2 2.34×10-2 2.0% 4.9% 0.529 765 1.14% 

VB
+ VB

- 1.80×10-2 2.28×10-2 2.6% 1.9% 0.598 580 1.92% 

Table 3: Single optimal solutions for dual-objective optimization, and deviation from uni-objective solution 
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The remaining 37 combinations have a wider range of variation in the Pareto boundary, 

which means that any design choice will be a trade-off between both objective functions. 

As an example, the Pareto boundary for the combination {US
+,US

-} is presented in Figure 2. 
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Figure 2: Pareto boundary for the combination {US
+,US

-} 

In this cases the choice of a solution must be done by the designer using his experience and 

other alternative optimization goals or constraints. For example, the ballast height is an im-

portant design consideration from an economic standpoint. 

In Figure 3, both objective functions (US
+ and US

-) are presented as a function of the ballast 

height. By analysing the graph, it seems reasonable to choose a ballast height of 0.48 meters, 

which leads to a compromise between both objective functions, while minimizing the ballast 

height, and therefore the cost of building and maintaining the track. Of course this is only one 

of many possible criteria. 
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Figure 3: Values of the Pareto boundary for the combination {US
+,US

-} as a function of the ballast height 
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8 CONCLUSIONS 

The simplified model of railway tracks proposed by Zhai et al. [4] was expanded and sev-

eral expressions were proposed to obtain the model parameters from known physical and me-

chanical properties of the materials and from the geometry of the track. 

The displacement and velocity of the main structural components (the rails, sleepers and 

ballast) where optimized using genetic algorithms, first individually and then in pairs. The 

genetic algorithms have proved to be effective in finding quasi-optimal solutions with a low 

search effort. 

The optimization of such parameters relies heavily on the designer experience and other 

physical and economic constraints, but the authors believe that the tools provided here give 

some insight into how the behaviour of the railway track is influenced by various design pa-

rameters. 
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