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Liquid Composite Molding (LCM) processes inject 

resin into a stationary bed of fiber preforms to 
manufacture fiber reinforced composites. Infiltration of 
the resin into empty spaces between the fibers is driven 
by the hydrodynamic pressure gradient originated by 
the inlet pressure [1]. Sometimes, when the resistance 
of the preforms to resin flow is so high that in certain 
regions the hydrodynamic pressure can become very 
low. This causes the capillary pressure to exceed it and 
the driving mechanism of the flow will change. This is 
plausible when preforms consisting of fiber tows are 
used, where the spacing between the fiber tows is an 
order of magnitude higher than the spacing of pores 
inside the tows, forming dual porosity performs. 

Little attention has been paid to unsaturated flows in 
dual scale porous media, where during infiltration a 
transition (partially filled) region is clearly visible, 
predicting that standard approaches to numerical 
simulation of filling phase using sharp resin front will 
not give satisfactory results. In order to describe the 
transition region, first of all, it is necessary to modify 
the macroscopic governing equations by introducing 
the relative permeability, k, and the macroscopic 
capillary pressure, cP , as functions of the saturation, s: 
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Dv  is called as the Darcy’s velocity and K, P, φ  and µ  
are the absolute permeability tensor, the macroscopic 
pressure, the porosity of the preform, the resin 
viscosity, respectively, and t designates the time. 

Unlike absolute permeability, no simple procedure 
is available to determine the relative permeability 
numerically. A semi-analytical approach is presented 
allowing its determination from microlevel analysis of 
macroscopically one-dimensional flow. Proposed 
approach is simple to use and it reveals that the relative 
permeability depends on both, surface tension as well 
as viscous force. Direct generalizations of the final 
result are also possible. 

Microlevel analysis is based on Stokes law (v and p 
are the local velocity and pressure field): 

0=⋅∇ v , v∆µ=∇p  
with the following boundary conditions (b.c.): 

at the resin front: 0nτ =⋅v  and γ−= H2p , 
at the fiber boundary: v=0, 

at the inlet: ( )t0vv =  or ( )tpp 0= . 
n is the unit normal to the resin surface, vτ  is the 
viscous shear stress, H is the mean surface curvature 
and γ is the surface tension. Besides the b.c., the contact 
angle must be formed at the contact of the resin surface 
with the fiber. Resin progression is ensured by the free 
boundary condition 0ft/f =∇⋅+∂∂ v , where 

( )( ) 0t,tf =x  describes the position of the moving front. 
The term periodic solution can be introduced for the 

solution (v, p) of steady state microlevel problem in 
fully saturated basic cell with b.c. stated as: 

v fulfills periodicity b.c. on external cell boundaries, 
v=0 at the fiber boundary, 
ξ⋅= Gp  is prescribed on all boundaries. 

0G <  is the imposed macrogradient and ξ  is the 
spatial coordinate inside the cell in direction of the 
gradient. v is unique and p can be written as: 

cp~pp ++= , where p~  is unique and fulfills 
periodicity b.c. on the external cell boundaries, 

ξ⋅= Gp  inside the cell and c is constant. Viscosity 
enters the problem only as a linear analysis parameter. 

Numerical results to support the semi-analytical 
approach were obtained by free boundary program. It 
uses the general-purpose finite element code Ansys and 
it is written in the Ansys Parametric Design Language 
and Fortran. Its initial form without surface tension 
influence was presented in [2]. The program permits to 
run transient microlevel problems and it is based on 
moving mesh scheme. The new resin front position is 
calculated using the free b.c. and explicit methods. 

At an arbitrary flow front nodal point, the front is 
locally approximated by a smooth curve including two 
adjacent nodal points. Then the flow front can be 
described with respect to a local coordinate system by 
xn=g(xt) and the free boundary condition takes form: 
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The new front position is given by: 
( )

kk1k t,nk1kt,nt,n vttxx −+= ++
. 

The smooth curve approximation is repeated at the new 
front and the surface curvature is determined. Finally, 
Stokes problem is solved in the new domain. 

Without surface tension effects the resin front 
progresses along the fiber boundary when other frontal  

 



point will touch it (Fig. 1a). If surface tension is 
included, the contact angle is adjusted to its given value 
by creating an additional curved surface (Fig. 1b). 

 
 
 
 
 
 
 

Fig. 1: Resin front progression. 
In example of flow across an array of aligned 

cylindrical fibers different flow patterns are strongly 
related to the capillary number γµ= /vN xx,c . Flow 
progression for =x,cN  ∞ (bottom), 2.76, 0.276, 0.0276 
and 0.00276 (top), respectively, is reported in Fig. 2. 

 

 

 

 

 
Fig. 2: Flow front progression 

For the semi-analytical approach it is necessary to 
introduce additional terms. The uniform basic cell, is 
the basic cell, in which during the resin infiltration the 
saturation increases from 0 to 1, while the previous cell 
is fully saturated and the next cell is empty. The 
uniform cell in transition stage is called as the 
transition cell. After the transition cell is filled, it will 
take additional time until the distribution of v and p 
inside it will correspond to the periodic solution. We 
will call uniform filling a filling with constant flow rate, 
where (i) immediately after a transition cell is filled, v 
and p resemble periodic solution, (ii) phase averaged 
velocity is linear with respect to the spatial variable 
corresponding to resin front, sξ , and (iii) 
macropressure gradient is constant. In uniform filling 
the relative permeability is linear function of sξ . 

The principal assumption in the semi-analytical 
approach is that after a transition cell is filled, (v, p) 
will resemble immediately the periodic solution. A 
reference cell must be chosen and 

0sξ  will mark a 
position of the uniform cell with respect to it. 

The derivation of xxk  is fully analytical except of 
one particular point that requires numerical results. It 
proceeds in the following way. In filled cells it holds: 
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( ) 2/GA
0s −ξ  is the initial value for sξ =0 and 0G <  is 

the periodic pressure gradient. ( )
0ss
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Other variables are expressed in similar way and 

average over 
0sξ  is done in order to ensure xxk  being 

independent on the uniform cell geometry. Finally: 
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where 
sc ,PA ε  is the mean value of the capillary pressure 

and sε  is dimensionless counterpart of sξ . Graph of 

xxk  for flow across an array of aligned cylindrical 
fibers with x,cN = 0.166 is shown below (Fig. 3). 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Relative permeability as function of sε . 
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