
ABSTRACT: In this contribution, a new method for a deflection shape determination of an infinite beam on a visco-elastic 

foundation traversed by uniformly moving mass is presented. The method invokes the dynamic stiffness matrix concept and for 

the sake of simplicity the results are shown on Euler-Bernoulli beams. The solution is presented in the context of a review of 

some methods for solution of uniformly moving mass and load problems on finite and infinite beams. Advantages and 

disadvantages of these methods are summarized. 
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1 INTRODUCTION 

Dynamic analyses of beam structures under moving loads 

have attracted the engineering and scientific community from 

the middle of the 19th century, when railway construction 

began. Increasing demands on the railway network capacity 

leads to a necessity of better understanding of dynamic 

phenomena related to train-track-soil interactions and 

therefore questions regarding the moving load and moving 

mass problems are the still important subjects in nowadays 

investigations. New modelling approaches, as well as their 

solving methods, are needed to perform simulations that could 

reflect important features of dynamic systems. In this context 

analytical and semi-analytical solutions have the undoubted 

advantage of possibility of direct sensibility analysis on 

parameters involved in the problem. 

Moving force problem is far simpler. It has a semi-

analytical or analytical solution available for finite as well as 

infinite beams. Generalizations affecting the beam theory and 

foundation models, like extension from the Euler-Bernoulli 

theory to the Timoshenko-Rayleigh theory, or generalizations 

of Winkler foundation to Pasternak or other foundation 

models, introduction of foundations of finite depth or 

alterations from viscous to hysteretic damping models do not 

present substantial difficulty [1], except in cases when 

numerical solution of complex frequencies is necessary. In 

finite beams eigenvalue expansion techniques can be used and 

in infinite beams either Fourier transform or the concept of the 

dynamic stiffness matrix can be exploited [2, 3]. In the latter 

case two semi-infinite beams are connected by the continuity 

conditions at the load application point. Such a solution can 

easily be extended to the moving force with harmonic 

component [4] or non-uniform foundation [5, 6]. 

The inertial effects of both the beam and the moving vehicle 

were studied as early as in 1929 by Jeffcott [7] by the method 

of successive approximations. The moving mass problem does 

not have fully analytical solution. Analysing finite beams, it is 

seen that the governing equations in modal space remain 

coupled [3]. There is however a classical work [8], which is 

often taken as a bench-mark solution, but this solution does 

not consider all effects at the contact point as already depicted 

by others [9]. There are other papers repeating the same error 

[10], some of them corrected by Letters to the Editor [11].  

If a steady-state solution exists for an infinite beam, then it 

exactly matches the solution for the moving force and the 

mass has no contribution as indicated in [2, 12]. If the solution 

is not steady, there is an oscillation around the steady-state 

deflection and the amplitude and frequency of this oscillation 

has to be determined. In this paper a new method for their 

determination is presented.  

2 PROBLEM STATEMENT 

Let a uniform motion of a constant vertical force and a mass 

along a horizontal beam on a linear visco-elastic foundation 

be assumed (Figure 1). The foundation is modelled as 

homogeneous distributed spring-and-dashpot sets. 

Simplifications for the analysis of vertical vibrations are 

outlined as follows: 

(i) the beam obeys linear elastic Euler-Bernoulli theory; 

(ii) the beam damping is proportional to the velocity of 

vibration; 

(iii) the beam and mass are in continuous contact; 

(iv) no other loading is added; 

(v) the vertical displacement is measured from the equilibrium 

deflection position caused by the beam mass; 

(vi) the velocity is maintained constant and no restriction is 

imposed on its magnitude. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure under consideration. 
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The objective is to solve the time dependent deflection 

shape w(x,t). 

3 FINITE BEAMS 

Equations If the previous model has a finite length designated 

as L, then several boundary conditions can be considered. 

Here we will show examples only for simply supported beam 

and left cantilever. Thus:  
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respectively, and, for the sake of simplicity initial conditions 

are assumed as homogeneous 
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The equation of motion for the unknown field w(x,t) is 

written as: 
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For the constant mass and load 
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which means that the loading term can be written in terms of 

the unknown field w(x,t) as: 
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here EI and m represent the flexural rigidity and the mass per 

unit length of the beam, c and k are the damping coefficient 

and Winkler’s constant of the foundation, P and M are the 

travelling force and mass. w(x,t) and w0(t) stand for the 

vertical displacement of the beam and of the point of load 

application (mass contact point), v is the constant velocity, x is 

the spatial coordinate, t is the time and δ is the Dirac function. 

x has its origin at the left extremity of the structure. Zero time 

corresponds to load position at x=0. 

In Equation (6) the terms are as follows: the vertical loading 

force, the mass inertial force acting along the direction of 

deflection of the beam, the Coriolis force related to the rate of 

inclination of the beam; and the centrifugal force associated 

with the curvature of the beam. The last two terms are not 

used in [8, 10]. In some cases they can be neglected, but 

generally not. 

Solution can be obtained by implementing the Fourier 

method of variable separation and assuming the existence of 

free harmonic vibrations: 
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The frequency ω of these vibrations is named as the natural 

frequency and it is determined from the eigenvalue problem 

obtained from the homogeneous governing equation. Then the 

transient response in the time domain is expressed as infinite 

series of these modes, where each vibration mode (function of 

the spatial coordinate x) is multiplied by a generalized 

displacement (modal coordinate, amplitude function) that is a 

function of time. 
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For the moving load problem, the modal analysis is facilitated 

by the uncoupling in the modal space. Nevertheless, even in 

self-adjoint systems, modal expansion is commonly governed 

by undamped vibration modes, because this allows their 

determination within the real domain and completeness of the 

eigenspace is guaranteed.  

In moving mass problem the previous statements are not 

valid. Two methods can be used: (i) usually the expansion is 

performed over beam modes calculated without the moving 

mass contribution; (ii) the other possibility would be to 

include the moving mass in the beam mass. In the former case 

modal equations cannot be uncoupled; have the following 

form: 
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where matrices M, C, K are defined by introduction of 

vibration modes in their exact analytical form (without any 

discretization) as: 
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Here δij is the Kronecker delta and upper primes stand for the 

derivation with respect to the spatial variable. Standard 

techniques [2, 5, 6] can be used for wave numbers λj/L 

determination, it is only recalled that 
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The modes in equations above are normalized by 
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The system cannot be solved analytically, but numerically. 

Computational time increases exponentially with the number 

of modes involved. Precision of a solution obtained for a 

certain number of modes cannot be simply increased by 

including one more mode, but the whole system must be 

completely recalculated. If there is no elastic foundation, 

usually low number of modes is sufficient (around 10). With 

foundation included the number of modes must be much 

higher, depending on several factors it ranges around 100-200 

or more [3]. Numerical solution can be obtained in 

commercial software, it is convenient to rewrite the system as 

a set of first order equations and use Matlab [12], but then the 

numerical precision is compromised, [2, 5, 6]. Double 

precision may not be sufficient for higher number of modes, 

especially when hyperbolic functions are involved in mode 

shapes. 

As an example, solution of the moving mass and its 

corresponding weight on a cantilever is shown (Figure 2). 

This is the example presented in [8], [9]. It is seen that in this 

case the effect of Coriolis and centrifugal forces is significant. 

Numerical data are taken from [9] as: L=7.62m, P=25.79kN, 

M=2629kg, EI=9480.6kNm
2
, m=46kg/m, v=50.8m/s. This is 

however not a very good example, since the deflection is quite 

large and the validity of the Euler-Bernoulli beam theory is 

compromised. 

 

Figure 2. Deflection of the cantilever free end, “partial” means 

that some terms were omitted as in [8], “full” means that all 

terms are included. 

 

Figure 3. Deflection of the simply supported beam on an 

elastic foundation, initial 40m of the full length, defelections 

related to mass position at each 2m. 

Another application is a simply supported beam on an 

elastic foundation (Figure 3). The input data are: L=100m, 

P=100kN, M=10ton, EI=6.4MNm
2
, m=60kg/m, k=4MN/m

2
, 

v=100m/s. The beam and foundation data are related to 

railway applications. The beam stands for one single rail. In 

this case 150 modes were necessary for a good accuracy of the 

solution, but for over 50 modes (even if in this case with 

purely sinusoidal shape) accumulated numerical errors caused 

unphysical excessive oscillations when the load approached 

the right support. 

If the moving mass is added to the beam mass, then it is 

necessary to solve the vibration modes at each mass position. 

The modes are orthogonal at each such a position and can be 

determined following [3, 5, 6]. Due to adaptable numerical 

precision, Maple [13] is one of the most adequate software. 

Then the modes change their shape and frequency with the 

moving mass position and in fact only moving force problem 

should be solved [14]. It is necessary to introduce sufficiently 

small time discretization and it is possible to assume linear 

modes variation between discrete force positions. For uniform 

discretization Δt=ti-ti-1 is constant. An intermediate value 

reads as: 
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where τ is a local time starting at ti-1  and wj(vti) designates j-th 

mode determined for mass position at xi=vti. It holds: 
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with 
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After some manipulations: 
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where 
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Expressions above are only approximations to the analytical 

solution, but their advantage is that they are very quick to 

evaluate. The other advantage is that the precision can simply 

be improved by adding more modes. There are some 

alterations that must be introduced. One of them is switching 

the modes in the way that the same order moves smoothly its 

shape and does not jump to the other side of the structure. 

Some results are shown in Figure 4, numerical data are related 

to the previously introduced cantilever. 

 

Figure 4. Deflection under the moving mass. 

It is seen, however, that even for fine discretization, there is 

an error in the deflection under the load, which does not get 

better with finer discretization. These values are governed by 

the first vibration modes at each separate position. 

4 INFINITE BEAMS 

If an infinite beam is under consideration, a moving 

coordinate system can be introduced by x x vt  , t=t. Then 

the left hand side of Equation (4) can be written as: 
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where  ,w x t  is the unknown deflection field and the right 

hand side simplifies to: 
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If M=0, then the problem can be solved following [2] or 

other known literature. Other possibility is to use the dynamic 

stiffness matrix. The definition is usually introduced in 

structures separated into n-subdomains. The local dynamic 

stiffness matrix of the n-th sub-domain can be calculated in 

the following way. The degrees of freedom are represented in 

Figure 5a). Excitation with unit amplitude and given circular 

frequency   is assumed in the direction of one of the degrees 

of freedom, while the other degrees of freedom are kept fixed. 

Figure 5b) exemplifies implementation of the first degree of 

freedom and orientation of the corresponding terms of the 

stiffness matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. a) Degrees of freedom, b) construction of the local 

dynamic stiffness matrix of the n-th sub-domain. 

For such an excitation, member-end generalized harmonic 

forces in the steady-state regime can be calculated. The 

procedure is repeated for the other degrees of freedom. More 

details can be found in [5]. If semi-infinite sub-domains are 

considered, then only two degrees of freedom have to be 

considered, as shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Degrees of freedom of semi-infinite sub-domains: a) 

negative, b) positive. 
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Wave equation is determined based on Equation (23). Four 

roots are separated according to the sign of the real part. Only 

the real negative-valued ones are used in the positive semi-

infinite sub-domains to ensure vanishing of the displacements 

and rotations for x tending to positive infinity, and vice versa. 

General form of all involved terms for moving harmonic 

force fi t
Pe


 where 

f  is the excitation frequency is presented 

in [4]. Four constants defining deflection shapes of the two 

semi-infinite sub-domains are then determined from the four 

continuity equations, which are the continuity of 

displacements, rotations and bending moments and, in 

addition, internal shear force must be in equilibrium with the 

externally applied force. In the case of the harmonic force, the 

constants are time-dependent. For excitation directed by sine, 

imaginary part of the solution corresponds to the beam 

deflection. 

The case with a moving mass can be solved in a similar 

way. According to [15], if the final solution is steady, then the 

mass effect is cancelled and the solution has the same form as 

if only moving force was introduced. When the solution is not 

steady, but stable, then periodic oscillation occur in the 

deflection shape around the steady state line. The frequency 

and amplitude of this additional movement has to be 

determined. The frequency can be solved by exploiting the 

fact that in the point of mass contact the vertical force exerted 

on the beam is equal to 
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where M  is the corresponding frequency of these 

oscillations. Therefore, the infinite beam can be solved for an 

externally applied harmonic force and tested that the force 

value is correct. One can just start with some frequency 

estimate, solve the wave numbers, establish the four 

continuity equations and compare the force with the expected 

result. Since the problem is linear, the actual estimated force 

value is not import, because for the same frequency the ratio 

of the introduced and obtained value will be the same. This 

allows defining a simple iteration procedure, where after the 

first iteration the forcing frequency is recalculated, and so on. 

This procedure has very quick convergence ratio and is also 

very stable. Frequencies do not have to be searched in a 

complex domain as suggested in [15].  

 

Figure 7. Deflection of the simply supported beam on an 

elastic foundation, initial 40m of the full length, deflections 

related to mass position at 18m and 36m. 

Naturally, a good initial estimate will always help. In such a 

case one can use results on finite beams. In the case shown in 

this paper (Figure 3) it is seen that the lowest deflection 

shapes happen when the mass is at positions equal to 18m, 

36m, etc. In this particular case it is seen that the deflection 

practically vanishes (Figure 7).This prediction indicates that 

the frequency should be around 34.91rad/s. In two steps this 

value can be corrected to 34.857rad/s, with difference 

between the two approximations less than 0.003%. This result 

also fits well the relation established [15]. Other cases were 

tested and same conclusions were taken. Then the solution 

procedure is finished following [15]. 

5 CONCLUSION  

In this contribution several aspects related to the dynamic 

analysis of beam structures under moving loads were 

summarized. Differences in solution techniques and results 

were given for moving force and moving mass problems, as 

well as for finite and infinite beams. The concept of the 

dynamic stiffness matrix was posted as a general principle for 

finite, semi-infinite and infinite beams. This forms the base 

for the new solution technique for moving mass problem on 

infinite beams. 
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