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1. Abstract 
Recent progress in material processing and manufacturing have motivated increased interest of the scientific community in material 
optimization. Tailoring material properties to achieve the optimal response to a given solicitation provides an important input to the 
new materials development. This paper is focused on material model identification and posterior optimization of its material 
parameters in order to achieve zero dynamic reaction (zero transmissibility) in passive vibration one-dimensional controllers. 
Material models that allow for zero dynamic reaction are identified by analytical evaluation of transmissibility. Then parameters 
characterizing non-linear behaviour of selected components of the chosen material model are optimized by generic probabilistic 
metaheuristic algorithm simulated annealing. The optimization procedure is programmed within MATLAB environment. It is 
concluded that optimized designs have no distinguished feature and moreover the corresponding reaction suffer from high reaction 
peak in the initial transient region. Therefore optimization is extended to the transient region as well. Then plateau at the equilibrium 
force level is clearly identifiable. 
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3. Introduction 
The theory of non-linear vibration isolation has witnessed significant developments due to pressing demands for the protection of 
structural installations, mechanical components, and sensitive instruments from earthquake ground motion, shocks, and impact loads. 
In view of these demands, engineers and physicists have developed different types of nonlinear vibration isolators [1]. Recent studies 
on quasi-zero stiffness isolators, i.e. isolators that have a plateau at the equilibrium force level in the force-displacement diagram, 
become the focus of research efforts and industrial interest [2, 3]. 
The latest developments in computational mechanics lead to integrated methodologies that permit not only the structural design and 
optimization of the mechanical component but also the tailoring of the material properties and consequently the design of new 
materials. The aim of this paper is to design a one-dimensional passive vibration controller with zero dynamic reaction. Passive 
vibration control typically addresses only attenuation of the steady-state regime of the structure dynamic response. However in some 
industrial applications, namely automotive applications, the transient regime should also be considered. The objective function 
implemented here accommodates contributions from both regimes. 
It is assumed that a mass of a given value is connected through a passive isolator to a fixed support. The mass is excited by a time 
dependent set of forces. In the first step material models that allow for zero dynamic reaction are identified by analytical evaluation 
of transmissibility. In the second step non-linear behaviour of the selected material model components is optimized by generic 
probabilistic metaheuristic algorithm simulated annealing. The design space is composed by non-linear load-displacement curves of 
each spring contained in the discrete material model, while all dampers are linear viscous. Dynamic stability is assured by non-
decreasing load-displacement curves. The optimization procedure is programmed within MATLAB [4] environment. Shooting 
method [5] is used for steady state response determination.  
The results obtained confirm important role of quasi-zero stiffness in passive vibration control. Optimized designs can have a direct 
and immediate impact on product design and development, especially in the project of new mechanical components such as engine 
mounts and/or new suspension systems. 
 
4. The computational tool 
The computational tool, developed in MATLAB environment, is described in details in [6]. It determines macroscopic optimized 
one-dimensional isolator behaviour assuming that the isolator is represented by a material model with non-linear components. The 
objective function controls displacement and/or force reaction and has contributions from both regimes; transient and steady state. If 
excitation is imposed by step force 0P  with harmonic component ( )1 sinP tω ϕ+ , then the value of the objective function related to 
some admissible isolator behaviour ( ),S u u  is calculated as: 
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where rt  is the time separating transient and steady-state regimes and ft  identifies the final time. 1P  is the amplitude of the 
harmonic component and ω , ϕ  are the circular frequency and the phase shift. In Eq. (1) trA  and stA  are the transient and steady-
state regime contributions to the objective function weighted respectively by the coefficients trγ  and stγ , satisfying 1tr stγ γ+ = . trA  
and stA  are given by: 
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The weights trα  and stα  express the relative importance of the reaction versus displacement in each regime and R , u  are 
convenient norms related to the particular application. All parameters and weights trγ , stγ , trα , stα  R , u  are user input values 
and permit the objective function specialization for a large set of practical situations.  
If a set of q  forces is imposed, then the objective function is given by: 
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must be defined according to given criteria such as importance of the particular load or probability of occurrence. 
Once defined the objective function, the optimization procedure searches for the optimal isolator behaviour ( ),*S u u , which solves 
the optimization problem 
 ( ) ( )* min
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where Ξ  defines the set of admissible isolator behaviours. 
The main objective of this paper is to identify and optimize material models that allow for zero dynamic reaction. To accommodate 
this, only the reaction contribution in the steady-state regime can be considered, i.e. 0trγ =  and 1stα = . Then the objective function 
value is proportional to the transmissibility T . In fact if one defines 12R P=  then: 
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5. Material model identification 
As mentioned before, material models that allow for zero transmissibility can be identified analytically. Transmissibility can be 
expressed for any material model with linear components in complex range by:  
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where R  is the reaction, P  is the applied harmonic load, *K  is the complex stiffness and ω  is the excitation frequency. For 
instance for Voigt and standard model (Figure 1) the transmissibility according to Eq. (7) is given by:  
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respectively.  
 

       
 

Figure 1. Voigt and standard model 
 
For non-negative spring rigidities this means that the minimum values for the above named models are 
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In conclusion, and as shown in [6], zero transmissibility is unachievable by Voigt model, but there are several material models that 
permit such an extreme value, like for instance the standard model. By analysis of Eq. (9) it is readily seen that in Voigt model this 
minimum value is increasing with the increasing damping coefficient. Regarding the standard model, from Eq. (9) it is seen that the 
rigidity 1K  is decisive for achieving the zero transmissibility. 
 
6. The set of admissible isolator behaviours 
For any material model it is assumed that dampers are linear viscous characterized by damping coefficients and that springs have 
non-linear behaviour. The non-linear behaviour is specified by load-displacement curves. According to practical applications, there is 
an initial and a final linear stage characterized by the initial iniK  and final finK  rigidity. Admissible designs follow the initial rigidity, 
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have the final rigidity finK  that is higher or equal to finK  and within the design window, specified by 0, 0,ma mau F×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , can possess 
any behaviour that is characterized by continues increasing curve. For numerical reasons the admissible designs are specified by 
piece-wise monotonic Hermitian polynomials, because continuous derivatives of the load-displacement curve are a necessary 
condition for the shooting method. Two admissible nonlinear spring designs are illustrated in Figure 2. The variable (dashed and 
dash-dotted) part of the load-displacement curve is the focus of optimization. The dotted line identifies the “reference” load-
displacement curve, piecewise linear defined by slope values iniK , refK  and fin finK K= , that will be used further on for evaluation 
of the effectiveness of the optimal solutions. Please note that the reference design does not have continuous derivatives, therefore the 
shooting method cannot be used and the steady-state response is obtained by the method of “long simulation”. 
 

 
Figure 2. Load-displacement curve for three possible non-linear spring designs. Fixed parts (solid) and variable/designable parts 

(dashed, dash-dotted, dotted) 
 
It is moreover assumed that the spring behaviour is perfectly hyperelastic, i.e. loading and unloading paths match exactly. For more 
details consult [6]. To analyze the optimal solution efficiency, a comparison with the value obtained for the “reference design” 
(defined in Figure 2 by the dotted line) is performed. Efficiency E is expressed as: 
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where optO  is the optimal design objective function value and refO  is the value obtained for the reference design. 

 
7. Numerical examples 
As specified before, the main objective is to obtain zero dynamic reaction, therefore only the reaction contribution in the steady-state 
regime is considered. For the sake of simplicity 1R = . The standard material model according to Figure 1 is chosen, because this 
model allows for the zero dynamic reaction as shown in Eq. (9). 
Design space is defined according to practical applications [7] as: 10mmmau = , 1500NmaF = , 1MN/mfinK = , thus giving 

150kN/mrefK =  (see Figure 2). It is moreover assumed that the mass of the object to be isolated is 50kgM =  and that the 
displacement is measured from the equilibrium position, when the isolator is loaded by the object weight. The damping coefficient in 
[6] was varied between 100, 200 and 400 N s/m⋅ . It was shown that in Voigt model high damping is less efficient in the steady-state 
regime (compare with Eq. (9)). For this reason here only 400N s/mC = ⋅  is considered. 
 
7.1 Case study 1 
The Case study 1 corresponds to application of single step force with harmonic component ( )400 200sin 300 NP t= + ⎡ ⎤⎣ ⎦ . The 
objective is to identify non-linear force-displacement curves for the two springs of the standard material model in order to achieve 
zero transmissibility. The optimized design is shown in Figure 3 and the objective function values for optimized and reference 
designs are summarized in Table 1. 
 

Table 1. The optimization analysis for the Case study 1 
trγ  optO  (N) analO  (N) refO  (N) E (%) 

0 0.0054 0.0000 8.8091 99.94% 
 
As shown analytically, Spring 1 should have a plateau at the equilibrium force level within the steady state displacement range, but 
for zero transmissibility, the steady-state range “does not exist”, therefore the plateau is not visible. Plateau in Spring 2 is not 
necessary. Steady-state displacement and reaction is shown in Figures 4 and 5. The phase plane is shown in Figure 6. In Figure 7 the 
reaction in the optimized design is compared with the reaction in the reference design, but now with the inclusion of the transient 
part, admitting the homogeneous initial conditions. It is seen that under these conditions the reaction in the optimized design does not 
show any improvement. Therefore the optimization search was extended to the transient range as well and several values of trγ  were 
tested. Results are summarized in Table 2. It is seen that then the objective function is higher, but this is mainly because of the 
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transient contribution. Nevertheless, it is necessary to point out that for initial conditions matching the existence of the periodic 
solution, such a reaction peak would be removed. 
 

 
Figure 3. Optimized design of the load-displacement curves in the Case study 1, 0trγ =  (Spring 1: solid curve, Spring 2: dashed 

curve) 
 

 
Figure 4. Steady-state displacement of the isolated object in the Case study 1, 0trγ =  

 

 
Figure 5. Steady-state reaction in the Case study 1, 0trγ =  



 
 

 
Figure 6. Phase plane in the Case study 1, 0trγ =  

 

 
Figure 7. Reaction including the transient part in the Case study 1, 0trγ = , under homogeneous initial conditions (Optimized: solid 

curve, Reference: dashed curve) 
 
Reaction comparison is shown in Figure 8 under homogeneous initial conditions. It is seen that the initial reaction peak is 
significantly reduced. It is also seen that there is an initial “amplitude” affecting the objective function value, but this part is rapidly 
attenuated. Optimized designs have now clearly defined plateau in Spring 2 (Figures 9-10). 
 

 
Figure 8. Reaction force comparison ( 0.01trγ = : Blue curve, 0.25trγ = : Black curve and Reference design: Red curve) 



 
 

Table 2. Summary of the optimization analysis for the Case study 1 regarding various trγ  

trγ  optO  (N) 

0.25 9.1488 
0.02 0.8215 
0.01 0.5793 

 

    
Figure 9. Optimized design of the load-displacement curves in the Case study 1, left: 0.25trγ = , right: 0.02trγ =  (Spring 1: solid 

curve, Spring 2: dashed curve) 
 

 
Figure 10. Optimized design of the load-displacement curves in the Case study 1, 0.01trγ =  (Spring 1: solid curve, Spring 2: dashed 

curve) 
 
7.2 Case study 2 
In the previous section optimization to one specific load was shown. This is rarely a case of practical interest. Therefore in this 
section the case study involving four loads with the same probability of occurrence 0.25 is considered. Four step forces with 
superimposed harmonic components are considered: namely the step loads 0,1 300NP = , 0,2 400NP = , 0,3 500NP = , 0,4 600NP =  
and the respective harmonic forces amplitudes 1,1 300NP = , 1,2 250NP = , 1,3 200NP =  and circular frequencies: 1 1200 /rad sω = , 

2 900 /rad sω = , 3 600 /rad sω = , 4 300 /rad sω =  which yield the common period of 0,021s.  
 

Table 3. The optimization analysis for the Case study 2 

trγ  Step ( )NoptO  ( )NanalO  ( )NrefO  ( )%E  

0 

O 0.0887 0.0000 3.2486 97.2693 

1 1Oλ  0.0207 0.0000 0.2771 92.5297 

2 2Oλ  0.0401 0.0000 0.6304 93.6389 

3 3Oλ  0.0086 0.0000 0.6492 98.6753 

4 4Oλ  0.0193 0.0000 1.6919 98.8593 



 
 
The phase angle is considered zero in all cases. Results for the case of 0trγ =  are summarized in Table 3.  
 

      

      
Figure 11. Steady-state reaction of the four forces in the Case study 2, 0trγ =  

 

      

      
Figure 12. Steady-state reaction of the four forces in the Case study 2 for the reference design 



 
 
Figures 11 and 12 compare the steady-state reaction of the four forces in the optimized and the reference design. Optimized design is 
shown in Figure 13. 
 

 
Figure 13. Optimized design of the load-displacement curves in the Case study 2, 0trγ =  (Spring 1: solid curve, Spring 2: dashed 

curve) 
 
 

      

      
Figure 14. Steady-state reaction of the four forces in the Case study 2, 0.25trγ =  

 
As in the previous section also the influence of trγ  was analyzed. Results are summarized in Table 4. It is seen that the objective 
function value is higher, but as before, this is caused by the transient contribution. Steady-state parts are shown in Figure 14, where 
the case of 0.25trγ =  is plotted.  
 
 



 
 

Table 4. Summary of the optimization analysis for the Case study 1 regarding various trγ  

trγ  Step ( )NoptO  trγ  Step ( )NoptO  

0.01 

O  9.669 

0.25 

O  151.098 

1 1Oλ  2.5960 1 1Oλ  22.2911 

2 2Oλ  1.5864 2 2Oλ  27.1009 

3 3Oλ  1.8091 3 3Oλ  41.9467 

4 4Oλ  3.6893 4 4Oλ  59.7591 
 
8. Conclusions 
The model described in this work, even though one dimensional, captures well the mechanical problem and the main issues that 
should be tackled in passive vibration control. From the results obtained it is apparent that optimal behaviour can be achieved, 
however it is also evident that the optimal solution is highly dependent on the problem data, namely applied forces and constraints. 
Thus a precise definition of existing forces and design constraints is crucial for its success in practical applications.  
The results obtained are also dependent on other parameters entering the objective function definition, like several weighting 
parameters and norms. Therefore the further research will be directed to implementation of multi-objective algorithm. 
The drawback of this approach is that there are no clear features of optimized designs that could be generalized and extrapolated to 
other situations. 
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