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Abstract. The response of rails to moving loads is of interest in the area of high-speed rail-
way transport. For determination of critical velocity of the train a theoretical concept that is 
based on the assumption that the track structure acts as a continuously supported beam (the 
rail) resting on a uniform layer of springs is traditionally used. In this contribution dynamic 
equilibrium of the soil in the vertical direction is implemented to obtain two frequency de-
pendent parameters that are capable of handling geometric damping and of accounting for 
the soil mass inertia activated by induced vibrations. The new approach is tested on finite 
beams and single moving force. It allows for determination of resonant velocities. Then the 
quasi-stationary deflection shape of an infinite beam can be determined from two semi-
infinite beams and critical velocities can be obtained from the nullity condition of the deter-
minant of the dynamic stiffness matrix of the structure. 
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1 INTRODUCTION 
The response of rails to moving loads is of interest in the area of high-speed railway trans-

portation. If simple geometries of the track and subsoil are considered, a theoretical concept 
that is based on the assumption that the track structure acts as a continuously supported beam 
(the rail) resting on a uniform layer of springs can be introduced. This layer of springs repre-
sents the underlying remainder of the track structure. The stiffness of such spring layer along 
the length of the track is named as the track modulus and defines Winkler’s model. The Win-
kler model is often referred to as a “one-parameter model”. Such a simplified model is tradi-
tionally used to estimate the critical velocity of moving trains.  

The first solution of steady-state dynamic response of an infinite beam on elastic founda-
tion traversed by moving load was presented by Timoshenko [1]. In [2], the moving coordi-
nate system is introduced to convert the governing equation to ordinary differential equation 
that can be solved by Fourier integral transformation. In [3], the concept of the dynamic stiff-
ness matrix is implemented. Two semi-infinite beams are solved and connected by continuity 
equations. Then the critical velocity can be determined as the velocity that ensures the nullity 
of the determinant of the dynamic stiffness matrix.  

The critical velocity of the load crv  is defined as the phase velocity of the slowest free 
wave, which in this case is the one that in undamped case induces infinite displacements di-
rected upward as well as downward. But in reality, this velocity should be compared to the 
Rayleigh-wave velocity of the ground [4], therefore it is strange that the mass of the founda-
tion is not accounted for.  

It can be proven that in the steady-state regime load exerts no inertial effects [2], which is 
probably the reason why also the mass inertia of the foundation was overlooked and the for-
mula for the critical velocity was used for many years. This classical formula, however, pre-
dicts very high critical velocity, giving impression that is unreachable by high-speed trains 
and consequently no attention was paid to this fact during expansions of high-speed railway 
network. Unfortunately, practical experience showed that the realistic critical velocity is much 
lower and therefore the classical formula must be revised. 

2 CRITICAL VELOCITY 
The critical velocity of the load traversing an infinite Euler-Bernoulli beam on an elastic 

foundation is given by the classical formula: 

 4 2
4
μ
kEIv BE

cr =−  (1) 

where μ  stands for the beam mass per unit length, EI  for the beam bending stiffness and k  
for the Winkler constant of the foundation. This formula is closely related to a finite beam. 
Following [5, 6], the resonant velocity of a finite beam corresponds to the velocity for which 
the excitation frequency of the passing load equals to the corresponding beam natural fre-
quency, thus: 

 res j
j

Lv ω
λ

=  (2) 

where L  is the beam length, /j Lλ  is the wave number and jω  is the corresponding natural 
frequency. Such a resonant velocity can be attributed to each vibration mode. The critical ve-
locity is the lowest resonant velocity. For a beam without an elastic foundation 1crj =  is al-
ways verified. When an elastic foundation is included, then one can consider the previous 
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equation as function of j  and establish the extreme value. For an Euler-Bernoulli beam Equa-
tion (2) is simply  
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and the minimum value is achieved for a non-integer crj : 
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where 1i = −  is the complex unit. Substituting crj  back into Equation (3), Equation (1) is 
verified, as expected. Thus, the closest integer to crj  indicates the critical velocity of the load 
passing over the finite Euler-Bernoulli beam. This value always overestimates the value relat-
ed to the infinite beam. 

3 GENERALIZATIONS 
Several studies were performed over the years in order to generalize Equation (1).  

3.1 Beam level 

Generalization at the beam level are simple to derive, when [5] is followed. By nullity 
condition imposed on the determinant of the dynamic stiffness matrix, for instance the value 
for the Timoshenko-Rayleigh beam can be obtained as: 

 
( )

( )( ) ( )( )2 2 2 4 2
22

1 2 2T R
crv k EI kr GA r GA GA kGA kr GA EI kr GA

kr GAμ
− = − − + − −

−
(5) 

where r  stands for the radius of gyration of the beam cross-section and GA  stands for the 
shear stiffness ( A  is the reduced cross sectional area by the Timoshenko shear coefficient). 

3.2 Soil level 

Improvements of Winkler’s model were obtained by introduction of another parameter in 
so-called Filonenko–Borodich, Pasternak or Hetenyi models. This parameter can be explained 
as shear contribution and thus removes the disadvantage of Winkler’s springs that do not in-
teract between themselves and is especially important when extremity of finite beam is ana-
lyzed. It can equally be understood as distributed rotational springs. This representation is 
easier to implement when finite element confirmation of theoretical developments is required. 
The model is named as a “two-parameter model”. 

Because the concern is not on the wave propagation inside the soil, but merely on the de-
formation properties on the surface, i.e. at the contact with the beam structure, the two param-
eters can be simply determined. Nevertheless, in order to account for variation of the vertical 
soil displacement and the active depth of the soil, which is the part of the soil that is deforma-
ble down to a rigid base, other generalizations were developed.  

It is assumed that the deflection w  varies inside the soil according to a function ( )f z  and 
( ) ( ) ( ), , , , ,w x y z t w x y t f z= , where ( ), ,w x y t  equals the deflection of the beam/soil contact 

point, , ,x y z  are spatial coordinates and t  is the time. Then ( )f z  must verify ( )0 1f =  and 
( ) 0f H = , where H  is the active depth. ( )f z  can be expressed with the help of another pa-

rameter γ  as: 
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This model introduced by Vlasov is usually referred to as a “three-parameter model”. In 
the original development the parameter γ  is arbitrary. One of possibilities of γ  determination 
establishes a relation involving the vertical displacement w , still unknown, and therefore an 
interactive procedure must be introduced in the solution. 
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This model is named as the modified Vlasov model [7]. In Equation (7) ν  is the Poisson ra-
tion and ∇  is gradient operator. The soil mass is added by a term assuming a linear distribu-
tion of function ( )f z  directly in the mass matrix of the structure. Analyzing relation (6) it 
can be concluded that the only viable shapes of the function ( )f z  are contained within the 
region restricted by the linear distribution, as shown in Figure 1. 

 
Figure 1: Dependence of function ( )f z on parameter γ . 

The two soil parameters are given by: 
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where the oedometer modulus is ( ) ( )( )( )1 / 1 1 2oedE E ν ν ν= − + −  and E  and G stand for the 
Young and shear modulus of the soil, respectively. For linear distribution of function ( )f z , 
i.e. 0γ =  previous parameters are given by 
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4 NEW APPROACH  

4.1 Frequency dependent soil parameters 

Generalizations on the soil level published in the literature do not account for the mass in-
ertia influence that is activated in the underlying soil. In order to remove this drawback the 
two soil parameters of the Pasternak model should be considered as frequency dependent, 
( )k ω  and ( )pk ω . This will also remove the need of determination of additional parameter γ . 

If a harmonic motion inducing only transversal displacements is assumed, then the deflection 
w  varies inside the soil according to a function ( )f z  and same assumptions as before can be 
adopted ( ) ( ) ( ), , , , ,w x y z t w x y t f z= . In the static case the function ( )f z  can be approxi-
mated by a linear function; improved values were shown in previous section. In the dynamic 
case, ( )f z  shape is frequency dependent and more variability to its from should be given. 
Function ( )f z  can be derived from the dynamic equilibrium of the soil in the vertical direc-
tion. Following [8]:  
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where σ  and τ  stand for normal and tangential stress components, respectively. The compo-
nents of the deformation tensor are given by: 
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where ε and γ stand for the extension and engineering distortion, respectively. Therefore, the 
stress components can be expressed as: 
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Assuming harmonic vibrations and neglecting the shear stress derivatives, the differential 
equation for the function ( )f z  reads as: 

 ( ) ( ) 0
d
d 2

2

2

=+ zfzf
z

λ  (14) 

where the wave number λ  is given by:  

 4
2

oed
p Ev

ρωωλ ==  (15) 

and pv  is the velocity of the pressure waves. The solution of Equation (14) is: 

 ( ) ( )( )sin
cos cotg sin
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H
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= − =  (16) 

The total energy (both potential and kinetic) of the soil can be expressed as: 
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If a sufficiently extensive area Ω is selected, the energy beyond this region can be neglect-
ed. In this formulation, the energy attributed to the Pasternak modulus in fact corresponds to 
the energy of distributed rotational springs. It follows: 
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and the vertical stress (the reaction pressure of the soil) at the contact is given by: 

 ( ) ( ) ( )
2 2

2 2s p
w wp k w k

x y
ω ω ω

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

 (20) 

If Hλ  tends to zero, static values of the Winkler and Pasternak parameters are verified 
(compare with Equation (10)).  

In summary, the effect of the viscoelastic foundation can be represented by the soil pres-
sure, which for beam structures takes the following form: 

 ( ) ( ) ( )
2

2s p
wp k w k

x
ω ω ω ∂

= −
∂

 (21) 

4.2 Natural frequencies of simply supported beam 

In order to derive the new formula for the critical velocity, a finite beam on a frequency 
dependent foundation will be considered first. The governing equation of undamped free vi-
brations of the Euler-Bernoulli beam on a Pasternak foundation is given by: 

 ( ) ( )
24 2

4 2 2 0n
p

ww wEI k k w
x t x

μ ω ω∂∂ ∂
+ − + =

∂ ∂ ∂
 (22) 

By implementing the Fourier method of variable separation and assuming the existence of 
free harmonic vibrations in form of: 

 ( ) ( ) tiexwtxw ω=,  (23) 

one can derive: 
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p
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Equation (24) is verified by pxe , thus: 

 ( ) ( )4 2 2 0pEIp k p kω μ ω ω− − + =  (25) 
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Considering a practical example, let the following values as specified in Table 1 be adopt-
ed.  

 
Property Values 

Beam bending stiffness EI  (MNm2) 6.4 
Beam mass per unit length μ  (kg/m) 60 

Soil Young’s modulus E  (MPa) 200 
Soil Poisson’s ratio ν  0 
Soil density ρ (kg/m3) 2000 
Beam length L  (m) 200 
Active depth H  (m) 12 

 
Table 1: Numerical data in a practical example. 

Because of the simple supports, the only beam deflection shape that verifies the boundary 
conditions is given by: 

 ( ) sinj
jw x x
L
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (26) 

thus /p j Lπ= . By substitution of this relation and Equations (19-20) in Equation (25), natu-
ral frequencies can be determined.  
 

sm1 sm2 sm3 sm4 sm5 
bm1 41,29 123,87 206,45 289,04 371,62 
bm2 41,29 123,87 206,45 289,04 371,62 
bm3 41,29 123,87 206,45 289,04 371,62 
bm4 41,29 123,87 206,45 289,04 371,62 
bm5 41,29 123,87 206,45 289,04 371,62 
bm6 41,29 123,87 206,45 289,04 371,62 
bm7 41,29 123,87 206,45 289,04 371,62 
bm8 41,29 123,87 206,45 289,04 371,62 
bm9 41,29 123,87 206,46 289,04 371,62 
bm10 41,29 123,87 206,46 289,04 371,62 
bm11 41,30 123,87 206,46 289,04 371,62 
bm12 41,30 123,88 206,46 289,04 371,62 
bm13 41,30 123,88 206,46 289,04 371,62 
bm14 41,31 123,88 206,46 289,04 371,62 
bm15 41,31 123,88 206,46 289,04 371,62 
bm16 41,32 123,88 206,46 289,04 371,62 
bm17 41,32 123,88 206,46 289,04 371,62 
bm18 41,33 123,89 206,46 289,04 371,62 
bm19 41,34 123,89 206,46 289,04 371,62 
bm20 41,35 123,89 206,47 289,05 371,63 

 
Table 2: Natural frequencies of the Winkler beam. 
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Natural frequencies values for the numerical example are shown in Table 2. In the legend 
“bm” stands for beam modes and “sm” for soil modes. It is interesting to see that when the 
Pasternak contribution is omitted, there are infinite natural frequencies for a fixed j  that have 
consecutive shapes of function ( )f z . By analysis of Equation (25) it can be concluded that 
the second soil mode frequency related to the fundamental beam mode shape will never be 
lower than any frequency of the first soil mode.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: First five soil modes of the Winkler beam. 

sm1 sm2 sm3 sm4 sm5 
bm1 41,14  82,86  123,82  165,61  206,42 
bm2 40,70  83,08  123,67  165,73  206,34 
bm3 39,95  83,45  123,43  165,91  206,19 
bm4 38,91  83,95  123,08  166,17  205,98 
bm5 37,56  84,58  122,63  166,50  205,71 
bm6 35,88  85,33  122,08  166,90  205,38 
bm7 33,87  86,20  121,43  167,37  204,99 
bm8 31,46  87,18  120,67  167,91  204,54 
bm9 28,60  88,27  119,79  168,52  204,03 
bm10 25,13  89,49  118,79  169,20  203,45 
bm11 20,80  90,83  117,64  169,95  202,80 
bm12 14,90  92,34  116,31  170,77  202,08 
bm13 94,07  114,75  171,68  201,28  252,51 
bm14 96,12  112,84  172,67  200,39  253,18 
bm15 98,84  110,25  173,77  199,39  253,90 
bm16 174,99  198,27  254,69  283,40  335,92 
bm17 176,37  196,99  255,55  282,61  336,55 
bm18 177,97  195,48  256,49  281,73  337,23 
bm19 179,95  193,59  257,52  280,76  337,97 
bm20 182,80  190,82  258,67  279,67  338,77 

 
Table 3: Natural frequencies of the Pasternak beam. 
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The first five soil modes related to the fundamental beam mode shape are represented in 
Figure 2. 

If the Pasternak contribution is included, the regular sequence shown in Table 2 is inter-
rupted. The first soil frequency decreases till the 12th beam frequency and then it jumps to a 
higher value. Some wave numbers of the first five soil modes yield very low value in function 
sin Hλ  and therefore some of the shapes are unrealistic, namely the 2nd and the 4th related to 
the fundamental beam mode shape. Valid modes are shown in Figure 3. Nevertheless, for the 
13th beam frequency all soil modes seem realistic and are shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Valid soil modes of the Pasternak beam related to the fundamental beam mode shape. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Soil modes of the Pasternak beam corresponding to the thirteenth beam frequency. 

Globally, first frequencies are much lower than the frequencies of the classical Winkler 
case. This can be seen from the cut-off frequency of the Winkler beam that is 

 527 /
oed

cut off
k E rad s

H
ω

μ μ− = = =  (27) 
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Having the natural frequencies and shapes it is possible to determine resonant velocities by 
standard procedures similar to [5, 6] and consequently the new value of the critical velocity. 

5 CONCLUSIONS  
In this contribution the disadvantages of the standard formula for critical velocity determi-

nation of a load moving on a beam with an elastic foundation were summarized. Generaliza-
tions of the theory already published were summarized. The new approach that can improve 
the formula was introduced and further direction that must be taken was established. 
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