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Abstract 
 

Undesirable void formation during the injection phase of the liquid composite 

moulding process can be understood as a consequence of the non-uniformity of the 

flow front progression, caused by the dual porosity of the fibre perform. Therefore 

the best examination of the void formation physics can be provided by a mesolevel 

analysis, where the characteristic dimension is given by the fibre tow diameter. In 

mesolevel analysis, liquid impregnation along two different scales; inside fibre tows 

and within the open spaces between them; must be considered and the coupling 

between these flow regimes must be addressed. In such case, it is extremely 

important to account correctly for the surface tension effects, which can be modelled 

as capillary pressure applied at the flow front. Numerical implementation of such 

boundary conditions leads to ill-posing of the problem, in terms of the weak 

classical as well as stabilized formulation. As a consequence, there is an error in 

mass conservation accumulated especially along the free flow front. This 

contribution presents a numerical procedure, which was formulated and 

implemented in the existing Free Boundary Program in order to significantly reduce 

this error. 

 

Keywords: void formation, surface tension, capillary pressure, mass conservation, 

free boundary flow, mesolevel analysis, dual porosity 

 

 

1  Introduction 
 

Liquid Composite Moulding is a composite manufacturing process in which fibre 

preforms consisting of stitched, woven or braided bundles of fibres, known as fibre 

tows, are stacked in a closed mould and a polymeric resin is injected to impregnate 

all the empty spaces between the fibres. Fibre tows are usually millimetres in 

diameter and consist of bundles of 2000 to 5000 fibres of few micrometers in 
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diameter [1]. An important step is to ensure saturation of all the fibre tows and 

regions in between them in order to avoid voids formation, which can drastically 

reduce the mechanical properties of the manufactured part. Due to the dual porosity 

of the fibre preform, resin progression is not uniform, and a transition region where 

the flow is not yet stabilized and saturated, is formed along the macroscopic flow 

front. This region is very sensitive to voids formation. The best way to analyze this 

flow is at the mesolevel, i.e. at the scale of the fibre tows [2]. 

The understanding can be separated into two basic flow directions: flow across 

and along fibre tows. In the case of flow across the fibre tows, experimental 

evidence shown in [3-5] and numerical results presented in [6-7] clearly demonstrate 

that filling of the fibre tows is delayed. Resin advance, although helped by strong 

intra-tow capillary pressure, must overcome a fibre arrangement with much lower 

intra-tow permeability; thus there could hardly exist some scenario, which would 

move the front more or less uniformly. It is also known [8] that very high 

surrounding pressure acting on the tows can significantly change the single fibres 

positions and actually close some spaces between them. Usually only a thin strip 

along the fibre tow circumference is filled when the primary resin front envelopes it, 

then the air is compressed inside the tow until it is balanced with the surrounding 

resin pressure. Hence the capillary action becomes the only factor that can drive the 

resin inside the tow. When the air pressure becomes higher than the surrounding 

pressure, the air can escape from the tow in the form of microvoids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Inter-tow (a) and intra-tow (b) void formation 

 

Flow direction 

Flow direction 

a) 

b) 



3 

Nevertheless this is just an academic case. If the resin is not forced to flow only 

across the fibre tows, it will naturally choose the easier (higher permeability) 

direction, i.e. along the fibre tows in this case. In flow along fibre tows, permeability 

is much higher (four to ninety times) and capillary action is generally twice as strong 

as in flow across the tows. Therefore two situations can be found in flow along fibre 

tows [9-11]. Wicking flow front inside the fibre tow can be either advanced or 

delayed with respect to the primary front in the inter-tow spaces, which also pre-

determinates the location and shape of emerging voids (Figure 1). 

Because capillary action does not depend on the externally applied inlet 

conditions, but it is purely a function of the resin surface tension, contact angle and 

geometry, these two scenarios can be explained as follows. When the externally 

applied pressure or flow rate is relatively high, viscous action is dominant, wicking 

gradient is not so strong when compared to the hydrodynamic pressure gradient and 

therefore inter-tow spaces (the higher permeability regions) are filled first. On the 

other hand, under lower externally applied action, wicking flow can become 

dominant and resin advances more rapidly inside the tows. There must naturally 

exist a situation, when these actions are “equilibrated” and resin progresses more or 

less uniformly. It should be remarked in this context, that higher external conditions 

are used with the objective to reduce the filling time, as a main cost factor. On the 

other hand it is well known that lower external conditions are favourable for better 

accomplishment of the infiltration phase and quality of the part, because sufficient 

time must be given to the resin-fibre interaction to form an interface increasing the 

adhesion between the two phases. However, in very slow filling it is conceivable 

that the resin will cure and solidify before all the empty pores are filled. More about 

role of capillary driven flow in composites manufacturing can be found in [12].  

In summary, it is obvious that in modelling of physics of the voids formation it is 

extremely important to account correctly for the capillary pressure influence.  

 

 

2  Mesolevel analysis 

 
2.1 Governing equations and the flow domain 
 

In mesolevel analysis, liquid flowing along two different scales must be considered. 

Single scale porous media (fibre tows represented in Figure 2 by grey half-circles) 

and open spaces (white spaces), corresponding to different flow regimes, are 

presented together in the flow domain. Therefore these two flow regimes have to be 

coupled in one analysis. 

Fibre tows have uniformly distributed pores, therefore sharp flow front can be 

assumed as the resin impregnates. As the flow is slow, inertia terms can be 

neglected, implying that one can assume Stokes flow in the currently filled inter-tow 

spaces 
S

t k
  (white space between 

in
  and 

S

t k
 ) and Darcy’s flow in the saturated 

intra-tow region; 
B

t k
  which need to be coupled and solved at each discretized time 

tk. In fact, Darcy’s law must be modified to Brinkman’s equations, in order to 
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account for the viscous stress at the interface between these two regions ( BS

t k


 ). 

Viscous stress rapidly decreases with the distance from BS

t k


 . In summary, the 

following equations must be satisfied at each time step, tk: 

Stokes equations in the inter-tow spaces: 0 v  and vp      in S

t k
 , (1) 

Brinkman’s equations in the intra-tow spaces: 0
D
 v  and 

D1Df
p vKv 

      in B

t k
 , 

(2) 

where v is the local velocity vector, p is the local pressure,  is the resin viscosity 

and  stands for the spatial gradient, =. v
D
 is the Darcy’s velocity vector, i.e. 

the phase averaged velocity related to the intrinsic phase average v
f
 by v

D
=tv

f
, 

where t is the intra-tow porosity. p
f
 stands for the intrinsic phase average of the 

local pressure and K is the absolute permeability tensor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow domain, regions and boundaries designation 

 

If fibres inside the tows are rigid, impermeable and stationary, the following 

boundary conditions, under the usual omission of the air pressure, must be fulfilled 

at the free front: 

0σ 
v

t  and   H2pppp c

v

n

v
 nnσ      at 

S

t k
 , (3) 

p
f
=Pc     at 

B

t k
 . (4) 

Here 
v
σ  is the local viscous stress, v

tσ  and v

nσ  are the tangential vector and the 

normal component of the viscous stress vector at the free front, respectively, and n is 

the outer unit normal vector to the free front in Stokes region 
S

t k
 . pc and Pc stand for 

the local and the global (homogenized) capillary pressure, γ is the resin surface 

tension and H is the mean curvature. Progression of the free boundary can be 

determined according to: 

0f
t

f

Dt

Df





 v      at 

S

t k
 , (5) 

0f
t

f

Dt

Df

t

D










v
     at 

B

t k
 , (6) 
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where f(x(t),t)=0 is the implicit function describing the moving sharp flow front 

(bold blue line in Figure 2), x is the spatial variable and t is the time. Other boundary 

conditions such as symmetry, periodicity and inlet conditions at in
  are related to 

the particular problem under consideration. 

 

 

2.2 The Free boundary program 
 

We have formulated the governing equations for the free boundary flows in intra- as 

well as inter-tow spaces and developed numerical techniques to address the 

movement of the flow at the mesolevel scale, which we call the Free Boundary 

Program (FBP). Numerical simulations can track the advancement of the resin front 

promoted by both hydrodynamic pressure gradient and capillary action [2, 7, 12-14]. 

Quasi steady state assumption can be exploited in the full flow domain and explicit 

time integration is adopted along the time scale. FBP is thus concerned with the 

moving flow front, which requires results at time tk; approximation of the front at tk 

locally by a smooth curve in order to determine outer normals for use in the 

kinematic free boundary condition (5-6); determination of the new resin front 

position at tk+1; approximation of this front locally in Stoke’s region again by a 

smooth curve in order to determine its curvature; and application of the boundary 

conditions. Then the base analysis is solved by ANSYS FLOTRAN module and the 

process is repeated. FBP has to deal with the usual problems of moving mesh 

algorithms with re-meshing of the filled domain at each time step, like boundary 

identification, preventing of normal crossing, free boundary looping, etc.  

ANSYS FLOTRAN can account for porous media influence by introduction of 

distributed resistance. Averaged values in Equations (2, 4, 6) are therefore important 

mainly from the theoretical viewpoint, while numerically either velocity or pressure 

maintain their meaning as nodal variables in both regions, preserving all necessary 

continuity requirements at 
BS

t k


 . In mesolevel simulations it is extremely important 

to account correctly for the surface tension effects, as pointed out in the 

Introduction. 

Surface tension effects can be modelled as capillary pressure applied at the flow 

front. Unfortunately essential boundary conditions imposed on the local pressure 

and/or on the intrinsic average of the local pressure values make the problem stated 

in Equations (1-6) ill-posed, in terms of the weak classical as well as stabilized 

formulation. As a consequence there is an error in mass conservation accumulated 

especially along the free front. This can affect significantly normal velocities at the 

free front and distort the next front shape. Because of the explicit integration along 

the time scale, such errors are irreversible. Several stabilization techniques were 

implemented in FBP to eliminate this effect [2, 7, 14]. In this article we will present 

more appropriate techniques for stabilization, based on the weak formulation of the 

problem. The methodology implemented in Darcy’s region is well-known, although 

rarely used in real simulations. It is presented e.g. in [15]. The recalculated outlet 

velocities have superior convergence properties [16]. In Stoke’s region the 
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correction of the outlet velocities we are presenting have not yet been published to 

our knowledge. Both methodologies are implemented in FBP.  

 

 

3  Mass conservation enhancement techniques 

 
3.1 Darcy’s domain 
 

We can remark that the domain, where the Brinkman’s term is important, forms only 

thin strip around the fibre tow surface and it is not therefore considered for some 

particular mass conservation enhancement methodology. In the region where the 

Darcy’s flow is fully developed, the following technique can be used. Following 

[15], outlet normal velocities can be recalculated in Darcy’s region according to: 

      hhhh,fhh,D

n

h
P̂qqLp,qBv~,q B

kt



. (7) 

B and L represent bi-linear and linear form of the weak formulation, new outlet 

velocities with superior convergence properties are h,D

nv~ , q
h
 is trial pressure and p

f,h 

is the pressure solution, already obtained in a standard way. Trial pressures space, 
h

P̂ , consists now solely from functions originally omitted because of the pressure 

essential boundary condition. Right hand side of Equation (7) can be thus calculated 

directly and the set of equations can be easily solved for the unknowns h,D

nv~ . 

Efficiency of this technique can be shown on a simple example: 

   1,11,1in1  , 

    1,11,1boundarytheat0  . 
(8) 

Numerical results were obtained by thermal analysis in software ANSYS, exploiting 

the analogy of thermal analysis with the Darcy’s flow, θ thus represents the 

temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Normal thermal fluxes of the problem specified in (8) 
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In Figure 3 results are compared on one of the straight boundaries of the problem 

specified by Equation (8). Mesh of quad elements was used as 66, 1010 and 

200200 elements. The corresponding fluxes are denoted in the legend of Figure 3 

as “tf 6“, “tf 10“ and “tf 200“, respectively. Normal heat flux “tf 200” for 200200 

quad mesh can be already assumed as exact result, as was verified by a convergence 

analysis. Recalculated normal fluxes on 66 and 1010 meshes are designated as 

“tf-cal 6” and “tf-cal 10”. It is seen that these recalculated fluxes do as good a job as 

a mesh of 200x200 and that their coincidence with the “exact” values is just 

excellent.  

 

 

3.2 Stoke’s domain 
 

In the Stoke’s region the following scheme is used: 

    hhhhh

n

h
P̂q,qw,q S

kt



v , 

h

n

h

n

h

n wvv~  . 
(9) 

Here h

nw  is an auxiliary value of the normal velocity, used to correct the originally 

obtained normal velocities, h

nv . Originally obtained velocity field is v
h
 and the new 

normal velocities are designated as h

nv~ . Equation (9) is similar to Equation (7), but 

in this case the incompressibility condition is completely separated from the full 

weak formulation and treated separately.  

Efficiency of this technique, to our knowledge not yet published, was verified 

directly on ANSYS fluid element FLUID 141, where pressure and velocity 

components are nodal variables. Two test problems for unit viscosity and mass free 

fluid are specified in Figure 4, results of original and recalculated normal velocities 

are shown in Figures 5 and 6, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Two test fluid problems definitions 

p=0 

inlet v=10 

2
nd

 order polinom 

vn=0 no-slip 

v=0 

p=10000 

outlet 

inlet v=10 

p=0 
p=100 

vn=0 no-slip 

v=0 

Linear distribution 



8 

No units are stated in the test problems, because only relative comparison is 

important. Moreover pressure in these test problems does not correspond to the 

capillary pressure, because the aim is only to test the efficiency of such 

methodology. Also here meshes of quad elements were used, now as 5x5, 10x10 and 

50x50. The 50x50 mesh results can be assumed as the “exact” solution. In the 

legend of Figures 5 and 6 original values of normal velocities are designated as “vy 

5“, “vy 10“ and “vy 50“ on 5x5, 10x10 and 50x50 quad meshes, respectively, and 

the recalculated values are stated as “vy-calc 5“ and “vy-calc 10“. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Results of the first test fluid problem  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Results of the second test fluid problem  
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meshes 5x5 and 10x10 fit the “exact” solution well.  
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In order to additionally support the scheme presented in Equation (9), it can be 

proven, that in one-dimensional even compressible case, this scheme will always 

produce the exact analytical result, no matter what number of elements is used. Let 

us assume for the sake of simplicity Stoke’s problem on the interval [0, 1] with 

uniform discretization to “m” linear elements. Compressibility function will be 

designated as g(x) and boundary conditions will be stated as v(x=0)=
0v~ , p(x=1)=

1p~ , 

where 
0v~  and 

1p~  are given values. Expressing the velocity v in the usual way, one 

gets 



m

1i

ii00

h
NvNv~v , where Ni, i=1,..,m stand for the shape functions and vi, 

i=1,..,m for the nodal unknowns. Simple calculation permits to obtain the set of 

equations in the following form: 

    dxNxgv~v
2

1
001  , 

    dxNxgv~v
2

1
102  , 

    dxNxgvv
2

1
213  , 

... 

    dxNxgvv
2

1
1m2mm   , 

(10) 

Having the solution in the following form: 

    ...dxNxg2dxNxg2v~v 3m1m0m    , 

    ...dxNxg2dxNxg2v~v 4m2m01m    . 

… 

(11) 

In accordance with Equation (9) and by substitution of Equation (11) one can finally 

obtain: 

        ...dxNxgdxNxgdxNxgdxNxgw 3m2m1mm

h

   , 

     

   dxxgv~dxNxg...

...dxNxgdxNxgdxNxgv~v~

00

2m1mm0

h







 

 
(12) 

which finalizes the proof. 

 

 

4  Conclusion 
 

Presented stabilization techniques are very efficient as shown in the simple test 

examples. They permit calculation of frontal normal velocities with sufficient 

precision even for coarse meshes. They are included in the post-processing part of 

FBP. Their implementation ensures better mass conservation at the global as well as 

the local level. It makes it possible to obtain a front shape that is not only more exact 

but also smoother. The computational time is reduced as coarser meshes can be used 
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to obtain stable and accurate answers and it also allows one to step through larger 

time steps during the impregnation process.  
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