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a b s t r a c t

The transient dynamic response of a beam supported on a foundation with sudden stiffness change and
subjected to a force moving with constant velocity is analysed. The abrupt change is located at the mid-
section of the beam of finite length. Two analytical approaches are implemented. In the first one, the
response is obtained by finite integral transformations incorporating global modes of vibration, while
in the second the analytical responses of each half of the beam are linked by continuity conditions.
The values obtained are used to study the influence of the abrupt change on the critical velocities. The
analyses carried out enable to reach results and draw conclusions directly related to the knowledge of
ground vibrations induced by high-speed trains.

� 2008 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical representation of relatively complex physical
phenomena plays a most important role in a vast number of tech-
nological problems that civil and mechanical engineering has to
deal with, of which the development and improvement of trans-
portation design is certainly one of the most challenging.

The constant growth of high-speed lines and the rapid evolution
of train vehicles capable nowadays of reaching more than 500 km/
h (138.9 m/s) gave raise to a number of specific related problems
and have motivated a significant amount of scientific work. Some
of the issues still demanding further attention can be listed: (i)
attenuation of ground-borne vibrations on nearby residential
areas; (ii) critical velocity analyses particularly pertinent when
train lines have to cross soft soil areas or inhomogeneous regions;
(iii) novel solutions guaranteeing low maintenance cost.

This paper deals with excessive ground and track vibrations in-
duced by high-speed trains when moving from a region to another
with a very different vertical stiffness of the system track-founda-
tion. These vibrations, which have been observed and recorded, de-
grade rolling equipment and track and raise questions related to
the vehicle stability and passengers comfort. Vertical stiffness
change can be caused by sudden change of geotechnical founda-
tions and/or structural solution, namely entering or leaving a via-
duct or a bridge. The latter case covers also tunnels and
transition from ballasted to concrete slab tracks and vice versa,
where the vertical stiffness changes can be quite sharp. These sce-

narios have been already studied numerically and soil remedial
solutions, attempting to gradually introduce the modifications of
stiffness, are presented in [1].

First insight into a problem of induced vibrations can be ac-
quired from simplified models that permit estimates of the re-
sponse to a moving load travelling over a supporting structure.
When the supporting structure changes, additional vibrations
hereafter called transition radiation are generated. If the changes
are abrupt, the amplitudes of these additional waves are significant
and the dynamic response may be significantly more severe.

Transition radiation is studied in [2] for an elastic string and in
[3] for several other systems including a beam subjected to a uni-
formly moving load, like the case presented below. The analytical
solution shown in [3] is limited to a range of subcritical velocities
and the effect of damping is not included. Other related analytical
study [4] adds a moving mass to the model and assumes periodic-
ity of the inhomogeneous characteristics of the foundation
stiffness. A large number of numerical studies analyzing the addi-
tional vibration originated by track/foundation stiffness variation
is also available, e.g. using the finite element method, [1], [5],
stochastic analyses, [6], or experimental techniques [7].

In this paper analytical transient solutions of the dynamic re-
sponse of one-dimensional finite systems with sudden change of
foundation stiffness are presented. Two approaches are proposed,
both without restrictions on load velocity and presence of damp-
ing. Results are expressed in terms of vertical displacement. The
procedures are programmed in Matlab [8] and Maple [9]. Some
of the results are confirmed using the general purpose finite ele-
ment code ANSYS [10]. Nevertheless, it should be pointed out that,
when using ANSYS, the authors detected that the higher natural
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frequencies were not accurately evaluated. This is confirmed in
Cottrell et al. [11], who showed that such problem occurs for
standard finite element formulations that make use of cubic Her-
mite polynomials as shape functions of the beam elements. This er-
ror, which for a given beam length depends on the ratio of the
flexural rigidity to the mass per unit length of the beam, is inherent
to the standard finite element method and cannot be solved by
refining the mesh.

The procedures proposed in this paper consider exact values of
the natural frequencies; thus, for simple cases, they are more accu-
rate and faster than finite element analyses. Such procedures are
used in a parametric study for determining the critical velocity.
The study focuses on finite beams with arbitrary boundary condi-
tions at the ends. However, real applications usually require exten-
sion to infinite situations. It is then necessary to eliminate the
effect of the supports, mitigate the perturbation induced by the
boundary conditions and prevent the reflection of travelling waves.
This can be achieved without consideration of non-reflecting
boundaries. In fact, it was verified, for realistic case studies in the
subcritical velocity range, that the maximum displacement of the
steady-state solution can be achieved within 100 m from the sup-
port. However, when the velocity is close to the critical value, this
length must be extended.

In Section 2, the analytical form of the general transient dynamic
solution for a beam subjected to a moving force [12] is extended to
account for elastic foundation and damping, whereas in Section 3
the abovementioned two approaches are described. The first ap-
proach considers global modes of vibrations, which can be obtained
by the displacement (sometimes called deformation) method ex-
tended to dynamics [13,14]. Having obtained the natural frequen-
cies and modes, vertical displacements can be expressed
analytically by generalized methods of integral transformations. A
limiting factor is the laborious numerical calculation required for
the determination of the natural frequencies, which can only be
performed in codes such as Maple, due to the possibility of flexible
numerical digits precision. Moreover, these frequencies are only va-
lid for the particular structure under consideration. The main
advantage of this approach, however, is that results can be evalu-
ated only in places of interest, saving significant computational
time. The second approach is based on the analytical expressions
for the vertical displacement of two half-beams simply supported
or clamped at one end and with non-homogeneous natural bound-
ary conditions at the other (free) end. It is assumed that the Winkler
constant is different in these two half-beams. Both solutions are
made compatible and balanced through continuity conditions, that
is, equality of vertical displacement and slope is prescribed in order
to determine the unknown internal forces. The main advantage of
this approach is that the natural frequencies of the two half-beams
are known a priori. A disadvantage is that the internal forces must
be determined numerically at each time step.

Both approaches permit to study the effects of the travelling
force on chosen locations with different foundation stiffness in
the full velocity range and presence of damping. As expected, sim-
ple supports are easier to deal with, especially in the first approach.

Section 4 contains the case studies definition and the interpre-
tation of results. Section 5 is devoted to the critical velocities anal-
ysis and conclusions are given in Section 6.

It must be recognized that, in order to obtain a more realistic
dynamic response, a vehicle spring–mass–damper system interact-
ing with the rail must also be considered. This issue will be object
of future developments.

2. Problem statement

In order to study transition radiation as the effect of sudden
change of vertical stiffness of a railway track, transient analysis

must be performed. With the purpose to obtain first insight into
the problem, a simplified model composed of beam on elastic foun-
dation is used. The study focuses on finite beams with either sim-
ple supports or clamped ends.

The governing displacement equation describing the dynamic
response, under a constant moving load, P, of an Euler–Bernoulli’s
beam can be written as [12]:

EI
@w4ðx; tÞ
@x4 þ l @w2ðx; tÞ

@t2 þ c
@wðx; tÞ
@t

¼ dðx� vtÞP: ð1Þ

It is further assumed that the beam follows the linear elastic Hooke’s
law, has constant cross-section and constant mass per unit length, l.
As usually, small displacements, Navier’s hypothesis and Saint-Ve-
nant’s principle are adopted. E, I and c stand for Young’s modulus,
moment of inertia and coefficient of viscous damping, respectively;
w(x, t) represents the vertical deflection measured from the equilib-
rium position and oriented downwards, x is the spatial coordinate
measured from left to right end of the beam, t is the time and d(x)
stands for the Dirac function of the abscissa x. It is assumed that
the load moves with constant speed v. As usual in similar works, load
inertia is omitted, although a methodology to account for the influ-
ence of the mass of the load is currently under development.

In order to include the effect of elastic foundation, characterized
by Winkler’s constant k, an additional term must be introduced
into Eq. (1):

EI
@w4ðx; tÞ
@x4 þ l @w2ðx; tÞ

@t2 þ c
@wðx; tÞ
@t

þ kwðx; tÞ ¼ dðx� vtÞP: ð2Þ

The boundary conditions will be given further and the initial condi-
tions (given below) are homogeneous:

wðx; 0Þ ¼ 0;
@wðx; tÞ
@t

����
t¼0
¼ 0: ð3Þ

If, as in [12,13], the circular frequency of damping xb is introduced,
the coefficient of damping c can be replaced in Eqs. (1) and (2) by
the term 2lxb. The difference is the following: the coefficient of
damping can be interpreted as the damping of the foundation mod-
elled by distributed dashpots. The circular frequency of damping
can account for mass damping in the beam, i.e. 2xb expresses the
mass damping coefficient. The circular frequency of damping sim-
plifies some of the expressions given below (Eqs. (8) and (9)) and
has the advantage that is connected with the concept of critical
damping, because then the viscous damping factor n corresponds
to the ratio xb=xðjÞ. However, the circular frequency of damping
actually varies with the natural frequency, therefore the symbol
xbj, usually linked to the logarithmic decrement # by xbj ¼ #fðjÞ
(where f(j) is the jth natural frequency), will be used from now on.

The solution of Eq. (2) is assumed as an expansion in series:

wðx; tÞ ¼
X1
j¼1

Wðj; tÞwðjÞðxÞ
Wj

; ð4Þ

where the transform W(j,t) of the original w(x,t) reads as:

Wðj; tÞ ¼
Z L

0
wðx; tÞwðjÞðxÞdx; ð5Þ

w(j) stands for the jth beam natural undamped vibration mode:

wðjÞðxÞ ¼ Aj sin
kjx
L
þ Bj cos

kjx
L
þ Cj sinh

kjx
L
þ Dj cosh

kjx
L

ð6Þ

and

Wj ¼
Z L

0
lw2

ðjÞðxÞdx: ð7Þ

By use of the Laplace–Carson transformation applied to the govern-
ing equation (2) expressed in terms of W(j,t), it yields:
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Wðj; tÞ ¼ 1
bðjÞ

Z t

0
PwðjÞðvsÞe�aðt�sÞ sinðbðjÞðt � sÞÞds; ð8Þ

where

a ¼ xbj; bðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ðjÞ �x2

bj

q
: ð9Þ

x(j) stands for the jth natural frequency of the beam and bðjÞ repre-
sents the frequency of the damped free vibration.

In regions with a constant Winkler foundation, x(j) can be ex-
pressed as:

xðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

j

L4

EI
l
þ k

l

s
: ð10Þ

If the Winkler foundation is constant along the beam, kj is uniquely
defined by the corresponding characteristic equation, and kj=L is
usually designated as the flexural wave number of the beam. For
simple supports:

kj ¼ jp; Aj ¼ 1; Bj ¼ Cj ¼ Dj ¼ 0 8j: ð11Þ

For clamped ends kj corresponds to the roots of the following
equation:

cos kj cosh kj � 1 ¼ 0; ð12Þ

Bj is calculated as:

Bj ¼ �
sin kj � sinh kj

cos kj � cosh kj
ð13Þ

and Aj = 1, Cj = �1 and Dj = �Bj, 8j.If a cantilever beam is assumed,
irrespectively of the beam being clamped on the right or on the left
hand side, kj corresponds to the roots of:

1þ cos kj cosh kj ¼ 0; ð14Þ

Bj is calculated by:

Bj ¼ �
sin kj þ sinh kj

cos kj þ cosh kj
ð15Þ

for right clamping Aj = Cj = 1, Dj = Bj 8j and for left clamping Aj = 1, Cj

= �1 Dj = �Bj 8j.

3. The case of sudden change of vertical stiffness

It is assumed that there is an abrupt change of the Winkler con-
stant at mid span of the beam, k1 and k2 designating its value on
each region of length L.

3.1. Superposition of global modes

The global modes of vibration can be obtained from the solution
of the equations formulated by the displacement method for frame
structures extended to dynamics [13,14]. Eq. (6) is applied to each
region, with distinct arguments k1 and k2 and distinct constants
affecting the trigonometric and hyperbolic functions. As the natu-
ral frequency must be unique for each mode:

xðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

1;j

L4

EI
l
þ k1

l

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

2;j

L4

EI
l
þ k2

l

s
; ð16Þ

permitting to express k1 as a function of k2 or vice versa. In a stan-
dard way, k1 or k2 can be seen as roots of the determinant of the glo-
bal dynamic stiffness matrix composed by the coefficients of the
equilibrium conditions in terms of the unknown displacement
and rotation at the middle beam section [13]. The expression of
the determinant is rather simple, because only two global degrees

of freedom are involved. Alternatively, the determinant of the coef-
ficients of the four continuity conditions could be used. The analyt-
ical solution is expressed by Eqs. (4), (7), and (8) can be used in the
same form as before, but over the full beam length 2L.

However, Eq. (16) is not simple to implement into the determi-
nant and the roots are quite difficult to find. Generally, if k2 > k1,
the first global modes of vibration affect only the softly supported
part of the beam. These modes are distinguished by the fact that k1

is a small real positive number, yielding negative k4
2. This is only

possible if k2 is a complex number, in which the real and the imag-
inary part are the same in absolute values. Consequently, some of
the constants from Eq. (6) are also complex numbers, although not
implying imaginary components in the displacement field. In such
cases, finding the roots becomes numerically very sensitive. For in-
stance, assuming k1 = 427 kN/m2 per unit beam length, k2/k1 = 8
and other beam characteristics as described in Section 3, displace-
ments in the soft part are dominant for the 22 first modes. In this
case, it was sometimes necessary to use a 60 digits precision to find
the corresponding roots. In addition to numerical difficulties, the
modes of vibration obtained this way are only valid for the partic-
ular structure under consideration. Nevertheless, the main advan-
tage of such approach is that, results can be directly evaluated only
in places of interest.

The procedure for finding the roots was programmed in Maple,
where the numerical precision is easy adjustable. More difficul-
ties were encountered for clamped ends, because of the more
complex expression of the determinant of the global dynamic
stiffness matrix. The number of modes needed for accurate results
depends on the total beam length and on the expected minimum
wave length in the analysis. It was verified that high number of
modes must be used in examples presented in this paper in order
to approximate well the transient displacement field. The reason
is that the quasi-steady-state deflection shape must be formed in
the first part of the structure, and then this shape is perturbed by
radiation waves. 350 modes were used to obtain the results pre-
sented in this paper. It was confirmed by convergence study that
200 modes would have been sufficient for most cases, in which
the total beam length was assumed as 200 m. Then dominating
displacement values around the discontinuity in the elastic foun-
dation were approximated with 3% precision with respect to the
numerical results from ANSYS. However, 350 modes were neces-
sary to implement in the analysis in order to reach the same pre-
cision in the deflections of the beam with the total length of
800 m.

3.2. Joint solution of two half-beams

In order to avoid the difficulties in finding roots described in the
previous section, an alternative procedure is proposed. In this pro-
cedure, the dynamic responses of two half-beams are solved sepa-
rately and joined together by continuity equations. The point of
Winkler constant discontinuity corresponds to the point of beam
continuity, therefore equilibrium of internal forces must be pre-
served and equality of vertical displacement and of its spatial
derivative (slope) must be maintained at that point. The solution
of the continuity equations is not straightforward and must be
done numerically.

It was verified that a half-beam with simple support on one side
could be considered, because both kinds of boundary conditions,
essential and natural, are used to determine the natural modes of
vibrations according to Eq. (6). Nevertheless, since this half-beam
is geometrically indeterminate, a mode of vibration corresponding
to a rigid body motion (rotation around the support), must also be
taken into account. In such case, xð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
k1=l

p
for the left half and

analogously xð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k2=l

p
for the right half. Further modes have as

argument kj, corresponding to roots of:
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cos kj sinh kj � sin kj cosh kj ¼ 0; ð17Þ

Cj is calculated as:

Cj ¼
sin kj

sinh kj
ð18Þ

Aj = 1 and Bj = Dj = 0, 8j .Finding the roots of Eqs. (14) and (17) is
simple. In addition, after the 10 or 20 first roots, depending of the
precision required, further values can be estimated by
kjþ1 ¼ kj þ p for Eq. (14) and by kj ¼ jpþ p=4 for Eq. (17). Moreover,
for each kind of boundary conditions, k-values are uniquely defined
independently of other beam input data and assumed value for
Winkler constant.

Then, the two ‘‘half” solutions, corresponding to beams
supported on left and right hand side, with different values of
Winkler constant, are connected together by compatibility
conditions.

First of all, the dynamic response must be expressed for non-
homogeneous natural boundary conditions at the free end. Hence,
the transform, W(j, t), given previously by Eq. (8), must be modified
to:

Wðj; tÞ ¼ 1
bðjÞ

Z t

0
ðPwðjÞðvsÞ � EIzð0; L; sÞÞe�aðt�sÞ sinðbðjÞðt � sÞÞds:

ð19Þ

where

zð0; L; tÞ ¼ �VðL; tÞ
EI

wðjÞðLÞ þ
MðL; tÞ

EI
dwðjÞðxÞ

dx

����
x¼L

;

zð0; L; tÞ ¼ Vð0; tÞ
EI

wðjÞð0Þ �
Mð0; tÞ

EI
dwðjÞðxÞ

dx

����
x¼0

ð20Þ

for the left and right supports, respectively. V and M stand for trans-
verse force and bending moment with usual conventions from
Mechanics of Materials. Since it was assumed that both half-beams
have the same length L, it is convenient to introduce a spatial vari-
able measured from the supported ends. This way, Eq. (19) has the
same form for the left and the right half of the full beam and the
only difference is in b(j), given by Eqs. (9) and (10). Thus:

WLðj; tÞ ¼ 1

bL
ðjÞ

Z t

0
PwðjÞðvsÞe�aðt�sÞ sinðbL

ðjÞðt � sÞÞds
�

þ
Z t

0
VðL; sÞwðjÞðLÞ �MðL; sÞdwðjÞðxÞ

dx

����
x¼L

� �
e�aðt�sÞ

� sinðbL
ðjÞðt � sÞÞds

o
¼ ð21Þ

WRðj; tÞ ¼ 1

bR
ðjÞ

Z t

0
PwðjÞðvsÞe�aðt�sÞ sinðbR

ðjÞðt � sÞÞds
�

þ
Z t

0
VðL; sÞwðjÞðLÞ þMðL; sÞdwðjÞðxÞ

dx

����
x¼L

� �
e�aðt�sÞ

� sinðbR
ðjÞðt � sÞÞds

o
¼ ð22Þ

where the superscripts L and R stand for the left and the right hand
side of the full beam, respectively. The main difficulty lies in the fact
that the internal forces must be integrated over time when their ac-
tual values and their time variation are unknown. Therefore,
assumption about time variation of internal forces at the section
of discontinuity must be adopted and the time interval must be
discretized.

Assuming piece-wise constant distribution of the internal
forces at the elastic stiffness change, it can be written for the left
part:

WLðj; tÞ ¼ 1

bL
ðjÞ

Z t

0
PwðjÞðvsÞe�aðt�sÞ sinðbL

ðjÞðt � sÞÞds

þ 1

bL
ðjÞ

Xk

s¼0

VðsÞwðjÞðLÞ �MðsÞdwðjÞðxÞ
dx

����
x¼L

� �

�
Z tsþ1

ts

e�aðt�sÞ sinðbL
ðjÞðt � sÞÞds

¼ 1

bL
ðjÞ

Z t

0
PwðjÞðvsÞe�aðt�sÞ sinðbL

ðjÞðt � sÞÞds

þ 1

bL
ðjÞ

wðjÞðLÞ
Xk

s¼0

VðsÞ
Z tsþ1

ts

e�aðt�sÞ sinðbL
ðjÞðt � sÞÞds

� 1

bL
ðjÞ

dwðjÞðxÞ
dx

����
x¼L

Xk

s¼0

MðsÞ
Z tsþ1

ts

e�aðt�sÞ sinðbL
ðjÞðt � sÞÞds

¼ ~PLðj; kÞ þ ~VLðj; k� 1Þ þ VðkÞ
bL
ðjÞ

wðjÞðLÞ

�
Z tkþ1

tk

e�aðt�sÞ sinðbL
ðjÞðt � sÞÞds� ~MLðj; k� 1Þ

�MðkÞ
bL
ðjÞ

dwðjÞðxÞ
dx

����
x¼L

Z tkþ1

tk

e�aðt�sÞ sinðbL
ðjÞðt � sÞÞds: ð23Þ

Using an analogous expression for the right hand side one obtains:

Wðj; tÞ ¼ ~PRðj; kÞ þ ~VRðj; k� 1Þ þ VðkÞ
bR
ðjÞ

wðjÞðLÞ
Z tkþ1

tk

e�aðt�sÞ

� sinðbR
ðjÞðt � sÞÞdsþ ~MRðj; k� 1Þ

þMðkÞ
bR
ðjÞ

dwðjÞðxÞ
dx

����
x¼L

Z tkþ1

tk

e�aðt�sÞ sinðbR
ðjÞðt � sÞÞds: ð24Þ

In Eqs. (23), (24), V(s) and M(s) stand for the values of the internal
forces at the discontinuity in the time interval t 2 ðts; tsþ1�, with
t0 = 0.

At a new time step t = tk+1, the values for s = 0, . . . , k are known,
because they were computed in previous time steps and the only
unknowns V(k) and M(k) can be determined from continuity of dis-
placement and slope at the place of the stiffness change. It is more
convenient to perform this calculation numerically. Nevertheless,
expressing the solution of these two equations analytically, a full
solution would be possible to obtain by recursive analytical form.

The procedure is programmed in Matlab. For the sake of sim-
plicity, it is assumed that the time interval is divided uniformly
in small steps (since obviously an accurate solution requires a fine
time discretization). As Matlab does not allow increasing of numer-
ical precision, a full calculation was possible only with 200
vibration modes involved. This represents a limitation of the proce-
dure. Convergence studies were performed as in the previously de-
scribed approach. It was again confirmed that 200 modes are
sufficient in cases, in which the total beam length is assumed as
200 m. However, in the analysis of the beam with the total length
of 800 m implementation of only 200 modes yield approximately
30% error in dominating displacements around the discontinuity
in foundation, with respect to the numerical results from ANSYS.
Because of this limitation, the procedure described in this section
was also programmed in Maple, in order to take advantage of the
flexible numerical digits precision, required in higher frequencies
modes.

4. Validation and analysis of results

In order to validate the procedures proposed above, an equiva-
lent model was created using ANSYS [10]. Element BEAM 54 of the
ANSYS library, with the capacity of introduction of elastic founda-
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tion, was used. Since ANSYS does not allow direct moving load
implementation, for each time step a new force position had to
be considered, according to the load speed and the element size.
Having in mind possible errors depicted in [11], it was decided to
analyse a simply supported beam with 100 m length and a coeffi-
cient of the elastic foundation stiffness ranging from 0.5 to
100 MN/m2 (typical values for practical applications). For full track
beam models (high ratio of the flexural rigidity to the mass per unit
length), independently of the foundation stiffness, the error in the
natural frequencies of the flexural modes obtained by ANSYS with
respect to the analytical values was 25.9% in the 100th mode and
78.5% in the 500th mode. Moreover, for a foundation stiffness of
10 MN/m2, the first three modes were interchanged, in the way
that the expected first mode shape appeared in the third position.
For a foundation stiffness of 100 MN/m2 the first 11 mode shapes
were interchanged among themselves. However, when two stan-
dard European rails UIC60 were modelled (low ratio of the flexural
rigidity to the mass per unit length) the error in the natural fre-
quencies became much lower, i.e. 1.9% in the 100th mode and
29.0% in the 500th mode. In this case, for a foundation stiffness
of 100 MN/m2, only the first five mode shapes were interchanged.
For these reasons, verification analyses were performed only in
cases where the beam is modelled as two standard European rails
UIC60 supported by relatively soft foundation.

Damping was modelled in two ways; first, the element damping
parameter c of distributed dashpots was used, and then the mass
coefficient a = 2xb of Rayleigh damping was implemented. In both
cases, only constant values without dependence on natural fre-
quencies were used. With the purpose to test the analytical formu-
las from Section 2, several tests were run; covering sub- and
supercritical damping cases as well as sub- and supercritical veloc-
ity cases. It was found that the computed displacement field
matched exactly the analytical solution, confirming the suitability
of the strategy adopted for the analysis and suggesting that it is
possible to solve numerically other situations impossible to treat
analytically, but with the limitations previously outlined.

In order to show the generation of radiation waves, two scenar-
ios are examined herein. Damping is not considered in these anal-
yses in order to better visualize the induced vibrations.

The first example (Case study 1) uses input parameters similar
as in [3] and the second one is related to rather strong foundation
conditions (Case study 2). In both cases, the beam models two
standard rails UIC60 and the elastic foundation includes the prop-
erties of the full railway system and soil. The applied load was
approximated by a total axle mass of 17000 kg corresponding to
a locomotive of the Thalys high-speed train. All numerical input
data are summarized in Table 1.

Very weak foundation conditions are implemented as in [3],
namely k1 = 427 kN/m2 is used in the soft region and k2 = 854 kN/
m2 in the strong one. According to [12], the critical velocities
corresponding to steady-state situations with homogeneous
foundation k = 427 kN/m2 and k = 854 kN/m2 are: 197.6 m/s and
235.0 m/s, respectively. Parts with different foundation have
400 m length and the origin of the spatial coordinate system is
connected to the section of discontinuity. As in [3], a velocity
v = 188.65 m/s was chosen, which is very close to the critical veloc-
ity of the soft region. Attention is paid to transition radiation. It is
known, that in the steady-state situation with homogeneous
foundation, when the load velocity approaches the critical value,
the ratio between the upward and the downward maximum dis-
placement is large (around 0.5). Therefore, if there is an abrupt
change in the vertical stiffness, the radiation waves will have large
amplitude. This will be seen in the following figures.

Load positions corresponding to 1 m before discontinuity, 7 m,
60 m and 90 m after discontinuity were chosen as representative.
It is seen in all cases that the solution obtained by Maple following

the procedure highlighted in Section 3.1 is in excellent agreement
with the results presented in [3]. Deflection curves are summarized
in Figs. 1–4. Figs. 1 and 2 illustrate the high increase in downward
and upward displacement right before and right after the disconti-
nuity, respectively. Figs. 3 and 4 show the development and sepa-
ration of the transition wave.

Further verification was performed for the same situation as de-
scribed above but with double velocity (377.3 m/s). Such velocity is
above the critical velocities for both parts and is impossible to be
reached by any high-speed train. In this case, the solution from
[3] is not valid any more and therefore the comparison is done

Table 1
Numerical input data used in case studies

Property Beam (2 rails
UIC60)

Young’s modulus (GPa) 210
Moment of inertia (m4) 6110 � 10�8

Density per unit length (kg/m) 119.87
Foundation

Winkler constant per unit length in soft region – case study 1
(kN/m2)

427

Winkler constant per unit length in strong region – case study 1,
test value 1 (kN/m2)

854

Winkler constant per unit length in strong region – case study 1,
test value 2 (kN/m2)

1708

Winkler constant per unit length in strong region – case study 1,
test value 3 (kN/m2)

3416

Winkler constant per unit length in soft region – case study 2
(kN/m2)

20000

Winkler constant per unit length in strong region – case study 2
(kN/m2)

40000

Load
Test load (kN) 166.8
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Fig. 1. Deflection curves for load position at �1 m. Solution from [3] (full line) and
solution according to Section 3.1 (dashed line), v = 188.65 m/s.
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Fig. 2. Deflection curves for load position at +7 m. Solution from [3] (full line) and
solution according to Section 3.1 (dashed line), v = 188.65 m/s.
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against ANSYS software. Only force positions �1 and +60 m were
chosen. The results are summarized in Figs. 5 and 6. From this
comparison, it can be proven that the proposed methodology is va-
lid irrespectively of the velocity of the moving load.

The case study 2 aims to reproduce the situation of a high-speed
train on rather strong foundation conditions. Reference values of
20 MN/m2 and 40 MN/m2 per unit beam length were chosen in
the soft and in the strong regions of equal length 100 m, respec-
tively. The critical velocity corresponding to the steady-state situ-
ation with a homogeneous foundation of 20 MN/m2 is 517 m/s. It
was assumed that the train travels at a velocity of 200m/s, which
is greater than the maximum operating high-speed train velocity
ever recorded. It can be seen that, for this velocity, the radiation
waves are hardly noticeable.

The results are given in Figs. 7–11. First of all, it is shown that
downward maximum displacement of the corresponding steady-

state solution is reached in both regions and the effect of end sup-
ports is small, but visible, as expected in the transient solution.
This is visualized in Fig. 7, where the response is plotted for load
position at �40, �1, +8 and +60 m, respectively. In order to show
small radiation waves, the same case in augmented scale is given
in Fig. 8.

Next, still in subcritical velocity range, but for a much higher va-
lue v = 500 m/s, which has now only academic meaning, transition
radiation is clearly visualized, but also the effect of supports and
reflecting waves is more significant. It is seen again that just before
the discontinuity there is a sudden increase in downward displace-
ments (Fig. 9) and right after the discontinuity there is a sudden in-
crease in upward displacement (Fig. 10).

After the load passes the section of discontinuity in foundation,
transition radiation waves are generated in form of additional
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Fig. 3. Deflection curves for load position at +60 m. Solution from [3] (full line) and
solution according to Section 3.1 (dashed line), v = 188.65 m/s.

Load at +90m

-250

-200

-150

-100

-50

0

50

100

150

200

-100 -80 -60 -40 -20 0 20 40 60 80 100

beam length [m]

di
sp

la
ce

m
en

t [
m

m
]

Fig. 4. Deflection curves for load position at +90 m. Solution from [3] (full line) and
solution according to Section 3.1 (dashed line), v = 188.65 m/s.
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Fig. 5. Deflection curves for load position at �1 m. Solution by ANSYS (full line) and
solution according to Section 3.1 (dashed line), v = 377.3 m/s.
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Fig. 6. Deflection curves for load position at +60 m. Solution by ANSYS (full line)
and solution according to Section 3.1 (dashed line), v = 377.3 m/s.
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Fig. 7. Deflection curves for load position at �40, �1, +8 and +60 m, respectively
(v = 200 m/s).
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Fig. 8. Deflection curves for load position at +50 m (full curve) and +60 m (dashed
curve) (v = 200 m/s), showing transition radiation.
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waves emerging from this section and travelling in both directions,
but mainly visible in the soft part of the structure (Fig. 11).

In some of the figures above, the displacements are quite high
and therefore the assumption of small deflection theory may be
questionable. Nevertheless, it is most likely that in the non-linear
range these figures would be qualitatively similar and would con-
tinue to highlight the potential danger of displacement increase
due to the sudden change in foundation stiffness.

Displacements in all figures are plotted with negative sign, in
order to preserve their orientation upward or downward.

5. Critical velocities by parametric analysis

Global critical velocities are examined by parametric analysis.
The procedure is programmed in Maple and it exploits the method-
ology described in Section 3.2. Input data correspond to the Case

study 1, as specified in Table 1, namely k1 = 427 kN/m2 is imple-
mented in the soft region and then three cases with k2/k1 = 2, 4
and 8 are considered. In these three situations the load is supposed
either to move from the soft to strong part or vice versa, giving in
total six test cases. The critical velocities corresponding to the load
moving on the same beam, but with homogeneous foundation of
k = 427 kN/m2, k = 854 kN/m2, k = 1708 kN/m2 and k = 3416 kN/
m2, are: 197.6m/s; 235.0 m/s; 279.5 m/s and 332.4 m/s,
respectively.

Results are summarized in Figs. 12–17. In Figs. 12–14 passage
from the soft to the strong part with three assumed rations of Win-
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Fig. 10. Deflection curves for load position at �1 m (full curve) and +8 m (dashed
curve), respectively, (v = 500 m/s).
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Fig. 11. Deflection curves for load position at +30 m (full curve) and +40 m (dashed
curve), respectively, (v = 500 m/s).

Passage from the soft to the strong, Ratio 2
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Fig. 12. Maximum downward and upward displacements with respect to velocity
for force passage from the soft to the strong region of ratio 2, maxima in the soft
part (full thick curves), maxima in the strong part (dashed thick curves) and
maxima from steady-state solutions on homogeneous foundation (thin curves).
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Fig. 9. Deflection curves for load position at �60m (dashed curve) and �1 m (full
curve), respectively, (v = 500 m/s).

Passage from the soft to the strong, Ratio 4

-600

-400

-200

0

200

400

600

0 100 200 300 400 500 600 700
velocity [m/s]

di
sp

la
ce

m
en

t [
m

m
]

Fig. 13. Maximum downward and upward displacements with respect to velocity
for force passage from the soft to the strong region of ratio 4, maxima in the soft
part (full thick curves), maxima in the strong part (dashed thick curves) and
maxima from steady-state solutions on homogeneous foundation (thin curves).

Passage from the soft to the strong, Ratio 8
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Fig. 14. Maximum downward and upward displacements with respect to velocity
for force passage from the soft to the strong region of ratio 8, maxima in the soft
part (full thick curves), maxima in the strong part (dashed thick curves) and
maxima from steady-state solutions on homogeneous foundation (thin curves).
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kler constant 2, 4 and 8 are considered. Maximum displacement di-
rected downward as well as upward is plotted separately for the
first and the second half of the beam. In order to identify critical
velocities of the full beam and amplification of additional displace-
ment, other four curves are included. They correspond to maxi-
mum displacement directed downward and upward of an infinite
beam of soft foundation and of strong foundation separately. Anal-
ogous results are presented in Figs. 15–17, but now for passage
from the strong to the soft region.

From the figures it can be concluded, that there are two factors
adversely affecting the response: first, the stronger region exhibit
both critical velocities, which implies that for instance in the case
with ratio 2 the strong region of critical velocity 235.0 m/s also
gained critical velocity of 197.6 m/s. Also, it should be pointed
out that in passage from softer to stronger region with factors 2
and 4, high displacements in both regions are obtained when the
load is already in the second part of the structure. Second, it is
clearly seen that maximum displacements are highly amplified
as compared to the homogeneous situation, which, in the upward
direction, has negative influence on vehicle stability and, in the
downward direction augments foundation soils settlement and
may induce track irregularities.

On the other hand analytical peaks from steady-state solution
are smoothed in all cases. Generally, passage from stronger to soft-
er region is less harmful, as expected.

6. Conclusions

Analytical transient solutions of dynamic response of one-
dimensional systems with sudden change of foundation stiffness
were analyzed and used for determination of critical velocities.

Two methodologies are proposed. One is based on the superpo-
sition of global modes of vibration, the other one is based on link-
ing together analytical solutions of two separate parts of the
structure. The results are expressed in terms of vertical displace-
ment. There are no limitations on load velocity and presence of
damping in both methodologies.

Although related to one-dimensional case, this study provides
a first insight into the problem of excessive ground vibrations in-
duced by high-speed trains in regions with vertical stiffness
abrupt change. The transition radiation vibrations can be clearly
visualized in the full range of velocities. The results obtained
are used to study the influence of this abrupt change on critical
velocities. This analysis is performed in a parametric way. It is
shown that in the passage from softer to harder region, both crit-
ical velocities are clearly marked in the harder region. Moreover,
the amplitudes of the maximum displacements are highly ampli-
fied. In the passage from harder to softer region this effect is not
so evident.

Results and conclusions have direct application on estimates of
ground vibrations induced by high-speed trains, and permit to
evaluate the level of the additional loading factor to which high-
speed trains and tracks must be designed. In these preliminary
tests only a moving constant force is considered, and therefore
the structure response is not always in accordance with what is
experienced in high-speed railway practice. However, the interac-
tion of the spring–mass–damper system of the vehicle with the rail
and consequently with the track structure cannot be omitted. This
subject is considered for further developments.
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