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Abstract

New aspects are introduced into the numerical simulation of the mold ®lling phase of the Resin Transfer Molding
process of composites manufacturing. The problem formulation is based on homogenization techniques. The well-
known analogy with the micro-level analysis is mentioned and the permeability determination in the case of single

and double porosity is shown. Regarding the macro-level analysis, the analogous problem, which has not been used
earlier for such purpose, is discussed. The determination of a resin front position in orthotropic and multiple-layer
preforms is addressed. Results obtained by the ®nite element code ANSYS are compared with previous
works. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Resin Transfer Molding (RTM) process has
recently become one of the most important processes

of ®ber reinforced composites manufacturing. The pro-
cess consists of three phases: an arrangement of ®ber

mats in a mold cavity, a mold ®lling by a polymeric

resin and a curing phase. The last two phases may be
considered as independent, since the characteristics of

the RTM process (resin properties, applied pressure or
¯ow rate at injection gates, applied temperature, lo-

cation of injection gates and air vents, etc.) are usually

chosen in such a way that the curing phase starts after
the mold ®lling phase is completed.

The main objective in the numerical simulation of

the mold ®lling phase is to determine the progression

of the resin front position and the evolution of the

pressure and the temperature distribution. The numeri-

cal simulation should also discover hard-to-®ll regions

and regions of possible void formation. Advanced

simulations should permit an optimization of the injec-

tion gates and air vents locations, of the mold geome-

tries and of other RTM process characteristics mainly

with respect to the mold ®lling time, which is one of

the principal cost factors of the full RTM process.

Due to the large number of ®bers and very low ratio

of their characteristic cross-sectional size to the size of

the mold, direct numerical solution of the ®lling-phase

problem (accounting for all ®ber geometry details) is

almost impossible. Homogenization techniques are

often used in order to reformulate the original problem

in terms of the micro-level (local) and the macro-level

(global, e�ective) analyses.

Sometimes, it is possible to neglect the temperature

in¯uence. Then, for resins that usually come into

account, the resin ¯ow can be viewed as slow ¯ow
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(low Reynolds number ¯ow) of an incompressible iso-

tropic Newtonian liquid with high viscosity and con-
stant properties. In this case the micro-level and
macro-level analyses have forms that allow ®nding

problems analogous with them, which are included in
many general-purpose commercial ®nite element (FE)
codes, e.g. in ANSYS or ABAQUS. It should be

remarked that ABAQUS allows for, under some
restrictions, direct solution of the macro-level problem

(coupled pore ¯uid ¯ow and stress analysis), as already
mentioned in Ref. [1]. This paper is mainly devoted to
the implementation of the RTM ®lling phase in

ANSYS and ABAQUS is only brie¯y commented.
Most of the FE codes suited for the RTM ®lling-

phase simulation deal only with the global analysis,
where the progression of the resin front is based on
the control volume (CV) approach [2,3]. Another

recent idea, which has been proposed in Ref. [4],
exploits for this purpose non-conforming FE. These
approaches are not included in the general-purpose

commercial FE codes, such as ANSYS (see [5±7]) or
ABAQUS (see [8±10]). It must be emphasized that in

the analogous problem for the macro-level analysis,
discussed in this paper, the progression of the resin
front is resolved di�erently than in FE/CV and non-

conforming FE approaches, exploiting at this point the
approach utilized in the pore ¯uid ¯ow analysis in
ABAQUS.

The paper is organized in the following way. In Sec-
tion 2 the basic facts required from homogenization

techniques in view of the RTM ®lling phase are brie¯y
summarized. Section 3 is devoted to the micro-level
analysis and Section 4 to the macro-level analysis.

Namely, in Section 3 the well-known analogy is men-
tioned, some results of the permeability tensor (which
determination is the main objective of the micro-level

analysis) are shown and compared with the results pre-
viously published. Numerical stability of the results is

discussed and comments to the permeability determi-
nation in the case of double porosity (see [11±13]) are
added. In Section 4.1 the analogous problem for the

macro-level analysis, which (according to the authors'
knowledge) has so far not been used for such purpose,
is presented. In Section 4.2 the numerical stability of

the results is discussed and the advantages and disad-
vantages of the proposed approach with respect to the

FE/CV and the non-conforming FE approaches are
summarized. In Section 4.3 two examples taken from
Ref. [4] and a study of an orthotropic preform are pre-

sented in order to verify the proposed approach. Sec-
tion 4.4 introduces an approach to the determination
of a non-uniform resin front in multiple-layer pre-

forms. The paper is concluded in Section 5.
The ®rst contribution of this paper lies in the sum-

mary of the one of the simplest approaches to the per-
meability determination. Regarding the macro-level

analysis, a di�erent resolution of the resin front pro-
gression bringing several advantages, however, also

some disadvantages with respect to the FE/CV and
non-conforming FE approaches is the second contri-
bution of this paper. The third contribution is in the

introduction of a di�erent conception in the multiple-
layer preform analysis than in Refs. [14,15]. In this
paper the correctness of the thickness-averaged per-

meability is justi®ed and the calculation of the non-uni-
form front characteristics is proposed in a di�erent way.
Analytical predictions are in better coincidence, than

the ones presented in Refs. [14,15], with the numerical
results of specimens accounting for di�erent layer prop-
erties. It is also concluded that when the analytical pre-
dictions of the non-uniform front are required,

distinction between unsaturated and saturated per-
meability (proposed in Ref. [16]) is not necessary.

2. Homogenization techniques

At ®rst, the original problem is formulated. Due to

the simplifying assumptions speci®ed in Section 1, gov-
erning equations will be related only to the resin ¯ow
and the terms corresponding to the chemical reactions

and heat transfer will be disregarded. As usual, the in-
¯uence of the surface tension and the air pressure on
the resin front is neglected. Together with the other
features (slow ¯ow of incompressible isotropic Newto-

nian liquid with constant properties) the conservation
of mass (the continuity equation) and the conservation
of momentum (the equilibrium equation) can be writ-

ten as [17]:

r � v � 0 and r
@v

@ t
� ÿrp� mDv� F, �1�

where v, t, p, F stand for the velocity vector, time,

pressure and the volumetric force vector, respectively;
r and m are the resin density and the coe�cient of the
resin viscosity. As usual r � f@=@x 1, @=@x 2, @=@x 3g, x
is the spatial variable, D � r � r and ``�'' stands for the
tensor multiplication (with one repeated index if indi-
cial notation is used). It may be remarked that the
time derivative in Eq. (1) is partial. Fibers are assumed

impermeable, rigid, with perfectly ®xed location and
since the air in¯uence was already neglected, the
boundary conditions take simple forms [17]:

at the resin front: @ f=@ t� v � rf � 0, s � n � 0,

at the mold walls and the fiber boundary: v � 0,

at the injection gates: v � v0 or p � p0, �2�

Z. DimitrovovaÂ, L. Faria / Computers and Structures 76 (2000) 379±397380



where n is the unit normal vector to the corresponding
surface, sss stands for the stress tensor and subscript 0

refers to the imposed values. The function f �x�t�, t� � 0
describes the moving front position. The ®rst condition
at the resin front (simply written as df=dt � 0� is

known as the free boundary condition and the condition
v = 0 is called the no-slip condition [17].
As already mentioned in Section 1, direct numerical

solution of the problem (1)±(2), with all ®ber geometry
details included, is almost impossible. In order to for-
mulate the micro- and macro-level problems equivalent

to (1)±(2), either asymptotic expansion (see [12, 18±
20]) or local averaging (see [20]) methods of homogen-
ization techniques can be used. When the geometry of
the preforms is periodic, under the assumptions

already adopted, the two methods yield similar formu-
lations. In periodic media, a basic cell W can be intro-
duced as the smallest part of the medium, which can

generate the full one by a periodic repetition, and the
averaging operator, h�i, de®ned as h�i � 1

jWj
�
W �dW �jWj is

the volume of the basic cell), can be de®ned.

It turns out, that the macro-level problem is in fact
the well-known Darcy's law for incompressible ¯ows
through porous media (determined also empirically,

see [21]). If the volumetric forces are neglected, it is
usually written in the form:

r � vD � 0 and vD � ÿK

mmm
� rP, �3�

where the ®rst relation is the macroscopic equation of
the homogenization theory corresponding to the conti-
nuity equation inside the saturated regions, vD is known

as the vector of the Darcean velocity and P is the
macroscopic (global) pressure; K stands for the per-
meability tensor and has to be determined from a

micro-level problem. Both, vD and P, are obtained
from the microscopic (local) values, v and p, by aver-
aging, i.e. vD � hvi and P � hpi:
The boundary conditions for the macro-level pro-

blem are:

at the resin front: @ f=@ t�
ÿ
vD � rf

�
=f � 0, P � 0,

at the mold walls: @P=@n � 0,

at the injection gates: vD � hhv0ii or P � hhP0ii, �4�

where f is the porosity and hh�ii stands for the area

average at the injection gates, which is in fact not
necessary, since no ®bers will be present in this region.
Actually, the no-slip condition vD = 0 should hold at

the mold walls. Taking into account the continuity
equation, vD = 0 is usually simpli®ed to @P=@n � 0,
but exact satisfaction of vD = 0 is not ensured by

@P=@n � 0: The error is negligible only when K=m is
small.

The micro-level problem resulting from the
asymptotic expansion method is formulated e.g. in
Refs. [12,18±20]. Steady-state form (Stokes ¯ow) of

(1)±(2) is taken as a starting point, into which asymp-
totic expansion of the velocity vector and pressure is
substituted. The ®rst non-zero term from the asympto-

tic expansion of the velocity vector (for the sake of
simplicity with the square of the small parameter
included), v(0), is given by (summation convention is

adopted):

v�0� � wwwm

m

 
Fm ÿ @p

�0�

@xm

!
,

where wwwm is a characteristic solution of the microscopic
equation of the homogenization theory, ful®lling Kim �
hwmi i: p�0� is the ®rst non-zero term from the pressure
expansion and vD � hv�0�i and P � hp�0�i: wwwm is, in fact,
the velocity vector related to Stokes ¯ow of the unit-
viscosity liquid in the (fully ®lled) basic cell, if either

negative unit macro-pressure gradient or positive unit
uniform volume force in direction m is applied on the
basic cell. Periodicity boundary conditions must be

imposed on wm components and on the pressure.
Although, when the pressure gradient is applied, the
periodicity must be satis®ed by the boundary pressure

reduced by the value corresponding to the imposed
gradient. The main advantage of the micro-level pro-
blem in this case is that the problem is linear and the

permeability tensor depends only on the geometry of
the ®ber mats.
Obviously, the geometry of the preforms is not

strictly periodic, but it is always possible to take typi-

cal cells from di�erent regions, calculate the per-
meability tensor for them and allow the permeability
to vary with respect to the macroscopic spatial coordi-

nate.
Nowadays, the numerical calculation of the per-

meability tensor is still not common, mainly due to the

complicated geometry of the ®ber mats, therefore
values obtained from experimental measurements are
usually introduced into the macro-level problem.
It should be emphasized that the typical specimens

are relatively thin, allowing the macro-level problem to
be stated only on a two-dimensional surface. However,
preforms consist of various (macroscopically homo-

geneous) layers, stacked together, whose directional
properties are usually very di�erent. In order to restrict
the analysis to a two-dimensional surface, another

homogenization step must be done in the transversal
(thickness) direction. This problem is addressed in Sec-
tion 4.4.
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3. Micro-level analysis: analogous problem and

numerical results

Since Stokes ¯ow in a (fully saturated) basic cell has

to be solved, the well-known analogy with incompressi-

ble elasticity can be used (see e.g. [22]). Thus the vel-

ocity vector from the original problem is related to the

displacement vector in the analogous problem. Conti-

nuity equation (incompressibility) can be satis®ed (with

su�cient exactness) by introduction of the Poisson's

ratio of the related elastic material very close to 0.5.

Regarding the input of the analogous problem to FE

codes, it is more convenient to prescribe the unit uni-

form volume force (as the macroload) than the press-

ure gradient. Periodicity conditions can only be

imposed on the boundary displacements, since due to

the variational formulation of the problem, they

enforce the periodicity of the boundary pressure.

Among disadvantages of ANSYS, with respect to the

solution of the analogous problem, can be included:

. The hybrid formulation is not available for linear

elastic elements and thus the pressure is calculated

from the stress components at Gauss points.

Detailed discussion of the problems, which can

appear in this case, namely the mesh locking and

the necessity of satisfaction of the Babuska±Brezzi

condition, can be found in Ref. [22].

. The generalized plane strain option is not available

for two-dimensional basic cells, but, since a rigid

®ber cut must be present in the cell, assumptions of

either generalized plane strain or plane strain yield

the same results.

From several advantages of ANSYS, it should be es-

pecially mentioned:

. Availability of the macro ``PERI'' allowing for

direct introduction of the periodicity boundary con-

ditions, see [5].

. Powerful preprocessor, very well organized for an

interactive usage, allowing for an introduction of

complicated geometries and for an easy creation of

a FE mesh.

. ANSYS Parametric Design Language permitting an

automatization of the preprocessing.

. No need of a special subroutine calculating averaged

values. The command ``ETABLE'' and commands

for operations can be used for this purpose, see [6].

Other possibility of calculation of the average value in

the basic cell can be mentioned. Exploiting the conti-

nuity equation in the part of the cell occupied by the

resin, Wr, and the no-slip condition on the resin-®ber

interface, Srf, it holds (in terms of the original pro-

blem):

jWjhvii �
�
Wr

vi dx �
�
Wr

vk
@x i

@xk
dx � ÿ

�
Wr

@vk
@xk

x i dx

�
�
Srf

vknkx i dS�
�
@W

vknkx i dS �
�
@W

vknkx i dS,

where @W is the boundary of W:
As a two-dimensional example, permeability values

for a perpendicular ¯ow across aligned circular ®bers

with in-line arrangement were calculated. This is a
well-known example whose results are published e.g. in
Ref. [12] Ð calculation using FE, in Ref. [20] Ð calcu-

lation using ®nite di�erences, in Ref. [11] Ð calcu-
lation using boundary elements, etc. This simple case
also has an analytical solution as demonstrated in Ref.

[23]. Permeability results are not presented here, since
they can be found in the above references. Only the
graph of the numerical sensitivity of the dimensionless
permeability on the Poisson's ratio of the related elas-

tic material is plotted in Fig. 1. The particular chosen
case is the one, where the dimensionless (with respect
to the cell dimension) ®ber radius is 0.25 and the per-

meability values are divided by the full area of the cell,
to get a dimensionless form. It is seen that the numeri-
cal stability of the permeability results is very good.

Relating to the absence of the hybrid formulation
for linear elastic elements in ANSYS, it can be
remarked that in the studied cases small variations in

the pressure values but no variations in the velocity
(displacement) values for di�erent Poisson's ratios
were obtained. Since only the velocity (displacement)
values are required for the permeability determination,

this ANSYS disadvantage does not in¯uence the
intended results. Validation of the results by ABA-
QUS, where the hybrid formulation is available [9,10],

was also performed.
Some velocity (displacement) components in the

opposite direction than applied volumetric forces

were found in the example described above, demon-
strating the existence of the recirculation regions, as
already mentioned in Ref. [11]. The values are

Fig. 1. Numerical sensitivity of the dimensionless permeability

on the Poisson's ratio of the related elastic material for per-

pendicular ¯ow across aligned circular ®ber (dimensionless

radius of the ®ber is 0.25).

Z. DimitrovovaÂ, L. Faria / Computers and Structures 76 (2000) 379±397382



plotted in a dimensionless form along the basic cell
face in Fig. 2 for porosities f � f0:4, 0:5, 0:6g:
When the problem of double porosity (if ®bers are

in fact ®ber-tows consisting of several ®brils, see [11±

13]) is addressed, in some cases it is not necessary to
solve the macro-level problem in two levels, but the
cell-averaged permeability can be directly introduced

into the macro-level problem. In order to calculate it,
all the single ®brils constituting the ®ber-tows have to
be modeled in the basic cell. Due to the ANSYS

powerful preprocessor, this is a straightforward pro-
blem and results are easily obtainable from the linear
analogous problem as before. Let the perpendicular
¯ow across aligned circular ®ber-tows with in-line

arrangement be assumed again. FE mesh in the basic
cell for the inter-tow porosity 0.5 (when assuming the
®ber-tows as full), the intra-tow porosity 0.4 (within

the ®ber-tow) and number of ®brils 21 is presented in
Fig. 3. The coincidence of the results with the ones
published in Ref. [11] was veri®ed.

It can be concluded that in ANSYS the components
of the permeability tensor are obtainable directly and
quickly by a linear and numerically stable calculation.

The results depend only on the geometry of the ®ber
mats. Recirculation regions can be detected in addition
to these results.

4. Macro-level analysis

4.1. Analogous problem

Problem (3) with boundary conditions (4) can be

reformulated. The continuity equation r � vD � 0, valid
only inside the saturated regions as already mentioned
in Section 2, can be extended to a more general form,

valid inside the full mold domain. Such a form (de-
rived e.g. in Ref. [10] in a more general context)
accounts directly for the transient e�ects and allows
for a direct determination of the resin front position at

each time stage. Then the reformulated Darcy's analy-
sis resembles the heat transfer analysis [24]. The gov-
erning equations are the following:

g

�
f�x� @

@ t
s�x, t� � r � vD�x, t�

�
� 0, �Darcy's analysis�

rc
@

@ t
U�x, t� � r � q�x, t� � 0, �Heat transfer analysis�

vD�x, t� � ÿK�x�
m
� rP�x, t� �Darcy's analysis�,

q�x, t� � ÿT�x� � rY�x, t� �Heat transfer analysis�:
�5�

Fig. 2. Velocity values (dimensionless with respect to the corresponding maximum value along the face) on a part of the basic cell

face, justifying the existence of the recirculation regions (the assumed porosities are f � f0:4, 0:5, 0:6g�:

Fig. 3. FE mesh in the basic cell used in the calculation of the

cell-averaged permeability for perpendicular ¯ow (the inter-

tow porosity is 0.5, intra-tow porosity is 0.4 and the number

of ®brils is 21).
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The ®elds not yet de®ned in Darcy's analysis are: g
and s, denoting the resin speci®c weight and the satur-

ation in the porous medium. Relating to the analogous
problem: rc, U, q, T and Y stand for the density, in-
ternal energy (the heat content per unit mass), heat

¯ux vector, thermal conductivity tensor and the tem-
perature, respectively.
In this case the boundary conditions (4) do not have

to be reformulated, only the free boundary condition
can be omitted. It may be remarked that the free
boundary condition is also not utilized directly in the

other (FE/CV [2,3] and non-conforming FE [4])
approaches.
The continuity equation in (5), in fact, expresses the

equation of the moving front, f �x�t�, t� � 0: In the fully

saturated regions saturation reaches its limit, value 1,
and becomes time independent, giving the continuity
equation as r � vD � 0: At the resin front both terms in

the continuity equation in (5) tend to in®nity. Let us
assume a one-dimensional case with one inlet. Time
derivation of the saturation (under the assumption of

increasing saturated length L(t )) obviously tends to
ÿd�L�t��, where d is the Dirac function. The only
``non-zero'' spatial derivative of the velocity is d�x�t��,
marking the position x(t ), where there is a discontinu-
ity in the velocity ®eld. Thus

f�x�t�, t� � x�t� ÿ L�t� � 0 �6�

is the resin front equation in one-dimensional case.

Roughly speaking for the general case, the drop in sat-
uration must be in the place where there is a drop in
the normal to the front component of vD:
Going back to the problem (5), let us assume rc � 1

in the heat transfer and g � 1 in the Darcy's analyses.
Then Table 1 states the possible analogy �g was intro-
duced into Darcy's analysis only in order to obtain

similar relations between the corresponding units).
Since the saturation, s, is restricted to the interval [0,

1], the same kind of restriction must be ensured in the

analogous (heat transfer) problem, thus U must always
belong to the interval �0, f]. In order to explain how
to do it, a ®ctitious medium has to be introduced, for

which a special kind of heat transfer properties will be
de®ned and for which some equivalents of the terms

``porosity'' and ``saturation'' should be introduced.
However, for the sake of simplicity, these terms will be

kept, but when related to the heat transfer analysis
they will be written in quotes. Also the notation f will
be used in the analogous problem with its ``original''

meaning.
Furthermore, a front region with ®nite width has to

be de®ned.

The relation (see e.g. [10])

@

@ t
U�x, t� � c�x, t� @

@ t
Y�x, t�, where c�x, t�

� d

dY
U
ÿ
Y�x, t��

will be exploited (c being the speci®c heat) in order to
de®ne the ®ctitious medium. Under assumption of lin-
ear ``heat gaining'', c is piece-wise constant with two

di�erent values, non-zero �c � c0� and zero (c = 0)
de®ning two regions like that. They are: the region
where the ®ctitious medium is not yet ``fully saturated''

(including the front region, where the medium already
started to gain heat) and the region where the medium
is already ``fully saturated''. In order to model such
situation, an initial temperature, Yi, must be intro-

duced in the ®ctitious medium, and a temperature, Ys,
that will correspond to the ``saturated state'' has to be
stated. Both values cannot vary throughout the med-

ium, since they cannot originate some additional heat
¯uxes; only c0�x� can re¯ect the variation of the ``por-
osity'' f�x�, meaning that the regions with higher ``por-

osities'' gain heat faster. It holds:

f�x� � �Ys ÿYi �c0�x� �7�

and the front region is characterized by Y 2 �Yi, Ys�:
Since the temperature in this analogous problem is

related to the pressure from the original analysis, intro-
duction of Yi could be viewed as some initial pressure.
In this context one could refer to the pore ¯uid ¯ow

analysis in ABAQUS [8,10], where it is moreover
necessary to introduce some initial saturation (actually
the minimum allowed is 0.01, which is quite high). In

the proposed approach this is not needed and it was
veri®ed that the results are basically independent on

Table 1

Correspondence between ®elds in the heat transfer and Darcy's analyses

Field in Darcy's analysis Unit Field in heat transfer analysis Unit

gfs �g � 1) [MLÿ3] rcU �rc � 1) [JLÿ3]
gvD [MLÿ2Tÿ1] q [JLÿ2Tÿ1]
gK=m [T] T [JLÿ1Tÿ1 yÿ1]
P [MLÿ1Tÿ2] Y [y]
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the choice of c0, in other words independent on the
choice of Yi and Ys: It is only necessary to adjust c0
in order to re¯ect as much as possible the original pro-
blem.
It turns out that c0 is related directly to the width of

the heat ¯ux front region as can be shown in a rough
calculation. The heat ¯ux can be taken as constant, q0,
in the region close to the front at time t � t0, and lin-

ear inside the front region, see Fig. 4. Let us denote by
l the heat ¯ux front width in the normal direction to
the front and for the corresponding component of T

let us use Tn. Assuming this problem as one-dimen-
sional, one gets:

Ys ÿYi � q0l

2Tn

and together with (7):

c0 � 2Tnf
lq0

: �8�

If some appropriate value of l is chosen, relation (8)
can be used to obtain c0 estimate. It does not mean
that by adopting a suitable front width l, c0 has to

vary in accordance with q0, which is anyway mostly
unknown. Roughly speaking, a low c0 yields a large
width, which distorts the results of the original pro-

blem (resin front is badly de®ned), but on the other

hand a low c0 usually ensures faster convergence of the
transient analysis. For very high c0 one should be

aware of the numerical stability of the results and
sometimes of slow convergence.
After some c0 estimate was taken, the governing

equation to be solved in the ®ctitious medium is
�rc � 1):

c
@

@ t
Y�x, t� ÿ r � ÿT�x� � rY�x, t�� � 0:

It can be reminded (see Table 1), that relating to the

Darcy's analysis �g � 1), the thermal conductivity ten-
sor T corresponds to the ratio of the permeability ten-
sor over the viscosity K=m and the temperature, Y, to

the pressure, P. In SI units, the ratio K=m has usually
low value, on the other hand, pressure values are quite
high. This fact could in¯uence the numerical stability

of the results. One can multiply K=m by 10m with some
suitable m, then the c0 estimate should be done for
�K=m� 10m and the resulting pressure has to be multi-
plied by 10m:
The analogy described in this section performs well.

ANSYS time integration in the analogous problem is
unconditionally stable, the transient integration par-

ameter, b, can vary within [1/2, 1], see [7]. The import-
ant thing is that b � 1=2, de®ning the central di�erence
method, is allowed (it is default). This high accuracy

of the time integration is necessary in dealing with the

Fig. 4. Simpli®ed assumptions about the heat ¯ux and the temperature distribution in the front region, allowing the estimation of

the value c0.
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discontinuity in the time derivative of the internal
energy. In ABAQUS such choice is not possible, only

backward di�erence algorithm �b � 1� is available in
the analogous analysis, see [10], making the results
highly unreliable (see Section 4.2).

4.2. The numerical stability of the analogous problem

results

In order to examine the numerical stability and re-
liability of the analogous problem results, simple one-
dimensional examples, permitting an analytical sol-

ution, are examined.
A specimen with the total length D = 0.3 m, K=m �

25 m3s/kg and f � 0:5 is chosen and two FE meshes,

either with 10 or 30 linear elements along the specimen
are introduced. Two cases are studied. Either P0 �
5Eÿ 5 Pa (example 1) or vD

0 � 1Eÿ 3 m/s (example 2)

is imposed at one end of the specimen (injection gate).
Above-speci®ed input values are shown in already mul-
tiplied forms, as described in Section 4.1. Results will
be presented in terms of the original problem,

although, the examples are solved exploiting the ana-
logy.
Regarding the analogous problem described in Sec-

tion 4.1, pressures Pi and Ps must be stated in the orig-
inal problem with the correspondence to Yi and Ys:
For the sake of simplicity, the notation c and c0 from

the analogy is kept in the original problem and no par-
ticular term is introduced for an analogue of the
speci®c heat. Since examples with negative Pi and zero

Ps have bad numerical properties, Pi � 0 is stated and
the resulting P�x� is reduced by Ps. Such a change is
acceptable, since the constant pressure ®eld does not
in¯uence the velocity results. Clearly, when P0 has to

be imposed, it must be imposed P0 + Ps instead.
The in¯uence of c0 on the numerical ®lling time,

TN, is examined and the comparison of TN with the

analytical ®lling time, TA, is provided in examples 1
and 2. TA can be calculated either from the free
boundary condition or from the condition�T A

0

vD
in�t� dt � Df,

where vD
in�t� is the Darcean velocity at the injection

gate. Let us adopt the former possibility and introduce

(6) into the free boundary condition. One obtains:

d

dt
�L�t�� � vD

fr

f
,

where vD
fr is the Darcean velocity at the ``saturated

region-front region'' interface. It holds

vD
fr �

K

m
P0

L�t� or vD
fr � vD

0

and thus the saturated lengths are

L�t� � a
��
t
p

with a �
�������������
2KP0

mf

s
or L�t� � vD

0

f
t �9�

in example 1 or 2, respectively. Consequently the ana-
lytical ®lling time is

T A, 1 � mfD2

2KP0
� 18 s and

T A, 2 � Df
vD
0

� 150 s,

�10�

where superscripts 1 and 2 relate to examples 1 and 2,
respectively. It may be reminded the well-known fact

that the ®lling time depends on the permeability only
in example 1 and that the ®lling-time dependence on
the total length (or more generally on the correspond-

ing saturated length) is quadratic (linear) in example 1
(example 2).
The ANSYS default convergence criteria and auto-

matic time step incrementation were invoked in the
calculation, a restriction on a large pressure variation
between the time substeps was ensured by relatively

small maximum time increments, 0.05 and 0.5 s, in
examples 1 and 2, respectively. When the specimen is
fully saturated, i.e. at the exact numerical ®lling time,
the problem with central di�erence algorithm in the

time integration cannot converge, thus from the nu-
merical results one can only extract the last ``conver-
gent time'', lesser than the exact numerical ®lling time.

Moreover, a ®lling-time error resulting from the nu-

Fig. 5. Analytical ®lling time and the dependence of the nu-

merical ®lling time on log (c0) in examples 1 and 2.
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merical errors in the time integration contributes to the

total error.

The dependence of the numerical ®lling time on

log (c0) is plotted and compared with the analytical ®ll-

ing time for the two examples in Fig. 5. Several values

of c0 were used for this purpose; in example 1:

c0 �Paÿ1� � f1E3, 1E4, . . . ,1E13g, Ps �Pa� � f5Eÿ 4, 5Eÿ
5, . . . ,5E ÿ 14g and l calculated using (8) for the last

stage of the resin velocity is l �m�� f6E0, 6Eÿ1, . . . ,6E

ÿ 10g: In example 2: c0 �Paÿ1� � f2:5E2,

2:5E3, . . . ,2:5E13g, Ps �Pa��f2Eÿ3, 2Eÿ4, . . . ,2Eÿ14g
and l (which is now constant) is l �m� � f1E2,

1E1, . . . ,1Eÿ9g: In both examples low c0 values, yield-

ing l larger than D, are inappropriate. Moreover, in

these cases in example 1 the imposed value P0 is close

to or even lower than Ps.

Very good results are obtained for higher c0, where

values of the numerical ®lling time stabilize at 17.392

and 148.375s with errors 3.4 and 1.1%, respectively.

Results in example 1 exhibit larger errors and they are

also more mesh sensitive than the ones in example 2.

However, until the resin front reaches the end of the

specimen, the numerical front progression shows very

good coincidence with the analytical predictions, as it

is shown later on in this section and again in Section

4.3. It must be stressed that in ABAQUS, example 1

has very bad convergence properties and the stabilized

time in example 2 (for 30 linear elements) is 115s. It is

thus seen that the backward di�erence algorithm in the

time integration is inappropriate and the results cannot

be utilized in these cases. One can verify that the

stabilized time for example 2 in ANSYS is 133s for

b � 1 and 143s for b � 3=4:
The front region in example 1 is plotted in Fig. 6. It

is seen how the sharpness changes with increasing c0,

but it is also seen that the parabolic shape used in deri-

vation of (8) is not very appropriate. This does not

cause any problem, since Eq. (8) is only used to get

some c0 estimates. The numerical saturated length,

plotted in Fig. 6, exhibits for c0 = 1E8 Paÿ1 error 1%.

The front region in example 2 is shown in Fig. 7, two

saturated lengths show excellent coincidence with (9);

errors 0.03 and 0.01% for c0 = 2.5E8 (Paÿ1).
It can be concluded, that the range of acceptable c0

is very large, thus the results are generally stable.

Small error in the ®lling time is not important, since

the coincidence of the analytical and numerical pro-

gression of the resin front is very good.

The main advantage of the proposed approach with

respect to the FE/CV and non-conforming FE

approaches is that the FE code ANSYS can be used in

the RTM ®lling-phase simulation, bringing:

. Powerful postprocessor allowing good visualization

of the resin velocities and of the exact progression

of the resin front.

. Possibility of studying high variety of mold shapes,

in other words, plane, shell, layered plane or layered

shell as well as brick elements can be used in the

corresponding FE model.

Disadvantages of the proposed approach with respect

to the approaches mentioned above are:

. Slow convergence, however, ANSYS ``birth'' and

``death'' features (activating and disactivating of

some elements) could be used in reducing the com-

putational time, [7].

. Di�cult end-analysis criteria.

. Necessity of c0 estimate.

. Complicated introduction of the temperature in¯u-

ence, which could be only done in an uncoupled for-

mulation.

Fig. 6. The front region in example 1 for c0 (Pa
ÿ1) = {1E5, 1E6, 1E7, 1E8}, time is equal to 8.8s and the plotted part of the speci-

men is within [0.19 m, 0.3 m].
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4.3. Comparing examples and orthotropic preforms

In order to justify the reliability of the proposed

approach to the macro-level analysis, two examples

described in Ref. [4], whose results are compared there
with experimental measurements, are examined. In ad-

dition, front progression in orthotropic preforms is
compared with theoretical predictions.

As in Ref. [4] a plane rectangular mold (example 3)

and the same mold but with obstacles (example 4) are

assumed. The mold shape (characteristic dimensions
are 1 and 0.5 m) and the FE mesh is shown in Fig. 8,

linear quadrilateral elements are plotted there, since

for them faster convergence is obtained. The other
input values are: f � 0:89 and K=m � 3:41Eÿ 8 m3s/

kg. The multiplication (see Section 4.1) with m = 8 is
adopted and a constant ¯ow rate at the injection gate

is applied; sources ~v0 � 3:14Eÿ 3 m2/s and ~v0 �
3:2Eÿ 3 m2/s (in examples 3 and 4, respectively) are
uniformly distributed in normal direction along the

length of the injection gate, modeled as a ring with

radius 0.01 m.

In example 3 three values of c0 �10ÿ8 Paÿ1� �
f71:56E2, 71:56E3, 71:56E4g are tested, giving l �m� �
f9:5Eÿ3, 9:5Eÿ 4, 9:5Eÿ5g around the gate and l �m�
� f7:6Eÿ 2, 7:6Eÿ 3, 7:6Eÿ 4g in the right hand side

region, where (after the left hand side of the mold is

®lled) the resin velocity stabilizes around the value

3:14Eÿ 3=0:5 � 6:28Eÿ 3 (m/s). Isobaric curves of

Ps � 1:25Eÿ 4 (108 Pa) and Ps=2 � 0:625Eÿ 4 (108

Pa) are plotted for c0 � 71:56E2 (10ÿ8 Paÿ1) in Fig. 9.

Non-sharpness of the resin front illustrates that this c0
estimate is very low. The other two c0 values yield very

good results, see Fig. 10. Now the isobars of Ps and

Ps/2 would be indistinguishable, thus only isobars of

Ps � 1:25Eÿ 6 (108 Pa) are plotted. The isobars are

not smooth, as they are a�ected by the linear approxi-

mation over the elements, within which still a part of

the area corresponds to a constant Pi: The isobaric

curves for P�x� � Ps, plotted at t = 105 s in Fig. 10,

Fig. 7. The front region in example 2 for c0 (Paÿ1) = {2.5E6, 2.5E7, 2.5E8}, time is equal to 50 and 100s and the full specimen is

plotted.

Fig. 8. FE mesh used in example 3 and 4.
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are not a�ected by this fact and they are smooth. For
the sake of comparison, the resin front is drawn in

Figs. 9 and 10 at the same times as in Ref. [4]. In ad-
dition, the numerical saturated area �c0 � 71:56E4
(10ÿ8 Paÿ1)) is compared in Fig. 11 with the analytical

prediction. It is seen that the coincidence is very good.
An orthotropic preform with the ratio of the princi-

pal permeabilities K22=K11 � 2 is studied, as in Ref. [4].

In this case the resin front as well as the isobaric
curves form ellipsoids with the ratio of the principal
axes equal to

���
2
p

[2,24,25] (see Fig. 12).

4.4. Multiple-layer preforms

As already mentioned in Section 2, the macro-
level problem can be formulated in a layered-shell
type domain. Since typical composites are very thin,

one more homogenization step could be performed

in the thickness direction yielding a thickness-hom-

ogenized permeability HK: Consequently, the macro-

level problem may be de®ned on a two-dimensional

surface, reducing signi®cantly the memory and com-

putational time requirements. It should be empha-

sized that the analytical solution of HK on a fully
saturated layered basic cell (with homogeneous

layers), under periodicity boundary conditions results

in HK � AK, where AK is the thickness-averaged per-

meability.

Only recently (see [14,15]) detailed analytical studies

of the problem of multi-layer preforms have been pre-
sented. The thickness-homogenized permeability is

introduced in Refs. [14,15] as a function of a saturated

length (notation HRK will be used in this section),

which brings several complications. In addition, in

Ref. [16] the di�erence between the unsaturated �HRK�
and saturated �AK� in-plane permeability is justi®ed ex-

perimentally.

Fig. 9. Example 3 with c0 = 71.56E2 (10ÿ8 Paÿ1), isobaric curves for Ps = 1.25Eÿ4 (108 Pa) and Ps/2 = 0.625Eÿ4 (108 Pa) are

plotted.
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In this section new aspects are introduced into the

study of layered specimens and the calculation of non-

uniform front characteristics is proposed di�erently

than in Refs. [14,15]. The correctness of HK � AK is

justi®ed in the sense, that if theoretical predictions of

the ¯ow front are necessary, AK and characteristics of

the non-uniformity calculations, using the approach

proposed in this section are su�cient. In a sequel, it is

not necessary to distinguish the unsaturated and satu-

rated permeability and the dependence of the thick-

ness-homogenized permeability on the saturated length

is removed. The proposed approach is not in contra-

diction with the works [14±16]; it presents a di�erent

concept in the solution of the problem.

In order to properly understand the resin ¯ow in

layered specimens, the approach to the macro-level

Fig. 10. Example 3 with c0 = 71.56E4 (10ÿ8 Paÿ1), isobaric curves for Ps = 1.25Eÿ6 (108 Pa) are plotted at t(s ) = {5, 37, 52, 70,

83, 105} and the pressure distribution is shown at t = 105 s.
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analysis proposed in Section 4.1, allowing better visual-
ization of the results, was used. For the sake of simpli-

city, only two-layer medium with plane
(macroscopically homogeneous) layers is studied. As in
Refs. [14,15] no dependence on one of the layer direc-

tion is assumed. Initially, only a medium with layers of
equal thickness is examined. The simplifying assump-
tions about the resin behavior from Section 2 are kept

and the porosity is assumed to be constant throughout
the specimen. For the sake of comparison a specimen
with equal total thickness and thickness averaged per-

meability is included in the study (the homogenized
specimen).
In detail, a specimen with total length D = 2 m

made of two layers with equal thicknesses h = 0.05 m

and with porosity f � 0:5 is examined. Values (after
the suitable multiplication described in Section 4.1)
1K=m � 2 (m3s/kg), TK=m � 10 (m3s/kg) and
2K=m �m3s=kg��f98, 48, 8g (de®ning like that examples
5, 6 and 7) are introduced. 1K, 2K stand for the per-
meability in the longitudinal direction in the two layers

and TK denotes the transversal permeability between
the layers. The thickness of the homogenized specimen
is H = 0.1 m and AK=m �m3s=kg� � f50, 25, 5g in

examples 5±7, respectively. Either P0 = 5Eÿ5 (Pa) or
vD
0 � 1Eÿ 3 (m/s) uniformly distributed at one end of
the specimens (injection gate) was imposed, however, it
was veri®ed that in the latter case a small region

around the injection gate was developed, in order to
equilibrate the pressure values across the thickness.
Consequently, only the former case is treated.

It is published in Refs. [14,15] and it was concluded
from the performed numerical analyses:

. The transverse ¯ow takes place only in the region

close to the non-uniform front.
. The ¯ow behind this region is not in¯uenced by the

front shape.

Thus two regions: the homogenized region and the tran-
sition region, where the transversal ¯ow is trying to
equilibrate the ¯ow into the homogenized state (Figs.

13±15) can be distinguished in the specimen. We may

remark, that Figs. 13±16 are related only to the initial
part of the specimen with the length 0.3 m, for the

sake of better visualization. Notation 1P�x�, 2P�x�,
LP�x� and HP�x� is used for the pressure distribution
along the specimens, superscripts 1, 2, L, H stand for

layer 1, layer 2, layered and homogenized specimens,
respectively, and the distribution is always assumed at
the respective middle axis (Figs. 15 and 16). Moreover,

notation for saturated lengths is introduced as: d in the
transition region and L in the total specimen. Meaning
of the superscripts is maintained, thus 1d, 2d, Ld, Hd

and also 1L, 2L, LL, HL are used. In addition HD
stands for the length of the homogenized region �HL �
HD� Hd � and hdi and hLi denote the average of 1d, 2d
or 1L, 2L, respectively. Notation is speci®ed in Fig. 15.

The new aspects, that are introduced, are the follow-
ing:

. In the homogenized region the ¯ow takes place only

in layers direction with constant but di�erent vel-
ocity in each layer (Fig. 13). The pressure is inde-
pendent of the transversal direction (Figs. 14 and

15), thus the ratio of the resin velocities in layer 1
�1vH� and in layer 2 �2vH� is
1v

H

2v
H
�

1K
2K
: �11�

Eq. (11) justi®es that the homogenized region is su�-
ciently described by AK:

. The characteristics of the transition region, Ld, 1d,
2d and also the ¯ow front di�erence, 2dÿ 1d, do not
depend on the distance from the injection gate (Figs.

14 and 16), thus consequently do not depend on the
transition pressure, Ptr, which is de®ned as the press-

Fig. 12. Isobaric curves in orthotropic preform.

Fig. 11. Saturated area in example 3 obtained analytically and

numerically c0 = 71.56E4 (10ÿ8 Paÿ1).
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ure on the interface between the two regions

(Fig. 15).

. The area between LP�x� and 1P�x� is the same as

between 2P�x� and LP�x� and the distribution of
1P�x� and 2P�x� can be approximated as piece-wise
linear with di�erent slopes in the homogenized and

transition regions (Figs. 15 and 16). The slope in the

homogenized region is the same for each: 1P�x�,
2P�x� and LP�x� and coincides with the slope of
HP�x�: LL � HL or Ld � Hd, while hdi 6� d L or
equivalently hLi 6� LL: Last two conditions show

that at a speci®c time the total saturated volume in

layered and homogenized specimens is di�erent, i.e.

the ®lling of the transition region in the layered spe-
cimen is ®rstly slower and then it equilibrates.

Simple analytical calculation of the transition region

characteristics is performed in the following way. It is

assumed that if the homogenous region is removed

and the ®lling process starts from the prescribed tran-
sition pressure, Ptr, then it takes time, ttr, to fully form
the transition region. The mass balance (see [14,15])

can be written �1K < 2K� as:
1v� 21v �2 vÿ21 v, �12�

where 1v, 2v and 21v are the volume rates in the tran-
sition region longitudinally in layer 1, in layer 2 and in
direction from layer 2 to layer 1, respectively.

Obviously:

1v�t� � 1K
Ptrh

1d�t�m and 2v�t� � 2K
Ptrh

2d�t�m :

The pressure gradient originating 21v can be formu-

lated in terms of the area of the pressure di�erence,

Fig. 13. Resin velocity in the homogenized and transition regions in example 7, t = 20 s.

Fig. 14. Progression of pressure for t(s ) = {20, 40, 60} in example 7, the homogenized region is marked according to analytical

results.
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2P�x� ÿ 1P�x�, which is Ptr

2 �2d�t� ÿ1 d�t��, see Fig. 17. It
can be assumed, that this di�erence is uniformly dis-
tributed over some length (e.g. 2d�t� or 2d�t� ÿ1 d�t�),
where the transverse ¯ow takes place. However, the
actual choice does not in¯uence 21v�t� and simply:

21v�t� � TK

ÿ
2d�t� ÿ 1d�t�

�
Ptr

2mh
: �13�

Only the reduced area (Fig. 17) is taken into account
in the analysis in Refs. [14,15] and the ¯ow front
di�erence is calculated there directly from Eq. (12),

where instead of 1d and 2d, 1L and 2L are used.
Besides of assuming 1d and 2d (related only to the
transition region) the more important di�erence in
the approach proposed here is, that 1d and 2d are

assumed time dependent allowing determination of
other equations, permitting the resolution of all par-
ameters describing the non-uniform front, i.e. 1d�ttr�,
2d�ttr� and HD:
It is assumed that the time dependence can be

expressed as in Eq. (9), now with an unknown, but

time independent a: This is certainly not fully correct
(compare with Eq. (12)), but it is an acceptable
assumption. Total volumes of the ¯owing resin can be

then calculated by the time integration over the inter-
val �0, ttr� giving:

1V � 1K
2Ptrhttr

1dm
, 2V � 2K

2Ptrhttr
2dm

and

21V �
ÿ
2dÿ 1d

�
Ptrttr

TK

3mh
,

where for the sake of simplicity 1d � 1d�ttr� and 2d �
2d�ttr� is used. It must be satis®ed:

1V� 21V � 1dhf and 2Vÿ 21V � 2dhf: �14�

Eqs. (14) and (12) with t = ttr substituted form the
basic equations to be solved. The solution is:

Ptrttr � 3fmh2

4TK
�15�

Fig. 15. Pressure distribution along the specimens and the spe-

ci®cation of homogenized and transition regions with the

introduction of notation (example 5, t = 6.1 s).

Fig. 16. Pressure distribution along the specimens in example 6, t(s ) = {8.4, 13.5}.
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and

1d � h

2
�����
10
p

���������������������������������������������������������������������������
2K� 491K�

������������������������������������������
2K

2 � 982K1K� 1K
2

q
TK

vuut

2d � 5h

2
�����
10
p

2K� 1K�
������������������������������������������
2K

2 � 982K1K� 1K
2

q
��������������������������������������������������������������������������������������
TK

�
2K� 491K�

������������������������������������������
2K

2 � 982K1K� 1K
2

q �s
�16�

Let time t0 be given. The non-uniform characteristics
corresponding to this time can be determined in the
following way. 1d and 2d are given by Eq. (16). Eqs.

(10) and (15) yield:

Ptr � h

���������������
3fmP0

4TKt0

s
and ttr � Ptr

t0
P0
: �17�

Obviously also:

Fig. 17. Area of the pressure di�erence used in the determination of 21v:

Fig. 18. Flow front di�erence in example 5.

Fig. 19. Flow front di�erence in example 6.
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LL � HL �
�������������������
2AKP0t0

fm

s
and

HD � HL

�
1ÿ Ptr

P0

�
:

�18�

It is necessary to verify, if the above-speci®ed solution
holds in the limit cases. First limit case happens when
1K � 2K, then from (16) 1d � 2d and one can verify
that

1d

Ptr

�
HL

P0
,

as it should be, since Hd � 1d in this case. The above
relation holds also for TK � 0, since TK is not invoked
there. Second limit case occurs when TK � 0, then it

can be assumed 1K 6� 2K, thus Ptr tends to in®nity (see
Eq. (17)) which corresponds to the actual state: the
homogenized region is never formed. Third limit case

is for TK tending to in®nity. Then 1d � 2d � 0, ¯ow is
immediately equilibrated and the transition region is
never formed.
Comparison of the numerical results from

examples 5±7 with the derived results (16) and (18)
and with the results from [14,15] is provided in the
following ®gures. Figs. 18±20 compare the ¯ow

front di�erence (in a dimensionless form related to

H) obtained by the above-speci®ed three ways,
plotted with respect to 1L=H: It is seen that the co-
incidence of Eq. (16) with the numerical results is
very good; the error increases with the di�erence

between 1K and 2K: Values obtained from Refs.
[14,15] reach very soon the limit h

���������
��2K

p
ÿ 1K�=TK�

(already for 1L1H� thus discrepancies between them

and Eq. (16) are caused mainly by the fact that only
reduced area (Fig. 17) was introduced in Refs. [14,15].
This is also demonstrated in Fig. 21, where 2d is

plotted with respect to 1d, using Eq. (16) and accord-
ing to Refs. [14,15] with 1L and 2L replaced by 1d and
2d, respectively. The same comparison is done in

Fig. 22, but with TK=m � 0:1 (m3s/kg) (the correspond-
ing examples were not treated numerically) in order to
show, that practically no di�erences between the corre-
sponding curves are noticeable for low TK: Since the

front di�erence according to Eq. (16) overestimates the
numerical values (especially for high di�erence between
1K and 2K), it can be concluded, that Ptr proposed by

(17) should be higher and HD from Eq. (18) should be
shorter.
Figs. 23±25 justify that the ¯ow front progression

described by LL corresponds to AK, namely the nu-
merical LL=H and HL=H are compared with the
theoretical prediction according to Eq. (18). The
curves are plotted with respect to time and it is

Fig. 20. Flow front di�erence in example 7.

Fig. 21. Dependence of 2d on 1d in examples 5±7 according to

Eq. (16) (full line) and [14,15] (dashed line).

Fig. 22. Dependence of 2d on 1d in examples 5±7 (but with
TK= � 0:1 m3s/kg) according to Eq. (16) (full line) and Refs.

[14,15] (dashed line).
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seen that they are practically indistinguishable. Only

in example 5 LL slightly overestimates the result
from Eq. (18).

Finally, Figs. 26±28 compare AK and HRK calcu-

lated from the numerical solution. It is seen that
HRK di�ers signi®cantly from AK, the reason being

the fact, that HRK is related to hLi while AK re¯ects
HL � LL �LL 6� hLi as already emphasized).

It can be concluded that AK su�ciently describes the
theoretical prediction of the resin front position in

layered preforms. The front position �LL� can be calcu-

lated from Eq. (18) and the non-uniform character-
istics �1d, 2d and HD� from Eqs. (16) and (18).

Additionally also hLi can be determined. Thus, the

approach proposed in this section brings valuable sim-
pli®cations.

Neither the approach from this section nor from
Refs. [14,15] can be utilized, when the most advanced

front reaches the end of the specimen or a region of
some other inhomogeneities.

5. Conclusion

In this paper some new aspects into the numerical

simulation of the mold ®lling phase are introduced,
namely, the utilization of general-purpose commercial
FE codes, particularly ANSYS, is demonstrated. The

utilization is made possible by stating an analogy
between Stokes ¯ow and incompressible elasticity and
between Darcy's problem with moving boundary and

Fig. 25. Comparison of the numerical and analytical (accord-

ing to Eq. (18)) LL=H and HL=H, plotted with respect to time

(in example 7).

Fig. 26. Comparison of numerically obtained HRK=m with
AK=m, the curves are plotted with respect to 1L=H in example

5.

Fig. 27. Comparison of numerically obtained HRK=m with
AK=m, the curves are plotted with respect to 1L=H in

example 6.

Fig. 28. Comparison of numerically obtained HRK=m with
AK=m, the curves are plotted with respect to 1L=H in

example 7.

Fig. 23. Comparison of the numerical and analytical (accord-

ing to Eq. (18)) LL=H and HL=H, plotted with respect to time

(in example 5).

Fig. 24. Comparison of the numerical and analytical (accord-

ing to Eq. (18)) LL=H and HL=H, plotted with respect to time

(in example 6).
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transient heat transfer problem. Several numerical
results were presented and compared with the results

taken from literature and with the theoretical predic-
tions. The coincidence is very good in all the cases.
The approach to the progression of the resin

front and very good visualization of the results in
the macro-level analysis allowed better understanding
of some particular problems. This was especially uti-

lized in the study of multi-layer preforms. The
usage of the thickness-averaged permeability was
justi®ed and the calculation of parameters describing

the non-uniformity of the ¯ow front was demon-
strated.
Regarding possible accounting for more general

resin properties, the following can be stated. Introduc-

tion of the compressibility may not cause big pro-
blems. Accounting for lower viscosities would mainly
a�ect the micro-level problem, namely Navier±Stokes

¯ow would have to be solved on a basic cell. Then the
permeability tensor would depend non-linearly on the
applied macroload as well as on the viscosity. It is

questionable, if such more correct results would equili-
brate the disadvantages resulting form the non-linear-
ity of the permeability tensor. Other improvements

would account for higher Reynolds number ¯ows,
in¯uencing especially the macro-level problem, namely
Forchheimer's law would have to be introduced
instead of Darcy's law.
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