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Abstract 
 
Transversal vibrations induced by a load moving uniformly along an infinite beam 
resting on a piece-wise homogeneous visco-elastic foundation are studied. Special 
attention is paid to the additional vibrations, conventionally referred to as transition 
radiations, which arise as the point load traverses the place of foundation 
discontinuity. The governing equations of the problem are solved by the normal-
mode analysis. The solution is expressed in a form of infinite sum of orthogonal 
natural modes multiplied by the generalized coordinate of displacement. The natural 
frequencies are obtained numerically exploiting the concept of the global dynamic 
stiffness matrix. This ensures that the frequencies obtained are exact. The 
methodology has restrictions neither on velocity nor on damping. The approach 
looks simple, though, the numerical expression of the results is not straightforward. 
A general procedure for numerical implementation is presented and verified. To 
illustrate the utility of the methodology parametric optimization is presented and 
influence of the load mass is studied. The results obtained have direct application in 
analysis of railway track vibrations induced by high-speed trains when passing 
regions with significantly different foundation stiffness. 
 
Keywords: moving load, moving mass, transversal vibration, transition radiation, 
normal-mode analysis, dynamic stiffness matrix, natural frequencies, orthonormal 
mode shapes. 
 
1  Introduction 
 
The rapid growth of high-speed railway network and the considerable evolution of 
train vehicles capable to operate at more than 500 km/h, gave raise to a number of 
related problems that have motivated a significant amount of scientific work. The 
amplification of train-induced vibrations, caused by inhomogeneities in the track 
foundation, certainly belongs to the issues still demanding further attention. 
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Theoretical basis of this occurrence lies in the fact, that when the load passes the 
place of discontinuity in the supporting structure, additional vibrations, 
conventionally referred to as transition radiations, are generated. Radiation waves 
travel backward and forward from the place of discontinuity and may significantly 
amplify the original waves. As a consequence, the track deterioration is aggravated 
and concerns related to the vehicle stability and passengers comfort must be taken 
into account. 
 

The inhomogeneities in the foundation stiffness have origin in geotechnical 
conditions, in the state of degradation of the track or in an alteration of the structural 
design. The representative values can differ by orders and their change can be quite 
sharp. The above mentioned cases refer for instance to situations, where the track 
settlement due to non-elastic deformations in the ballast and subground is so high, 
that the full contact between some sleepers and the ballast bed is lost. Then 
“hanging” sleepers appear and this induces an irregularity of the track stiffness. 
Other situations cover an embankment-to-bridge or tunnel transition; switch from 
ballasted to slab track, regions where the high-speed line crosses underground 
structures, and so on. 

 
An insight into a problem of induced vibrations can be acquired from simplified 

models, which have a closed form solution. Such approach has many advantages: (i) 
only main results are available, so they are simple to analyse; (ii) the results preserve 
parameters dependence allowing for direct sensitivity analysis; (iii) numerical 
evaluation can be carried out only in places of interest. Due to the simplifying 
assumptions, however, the results obtained correspond only to the estimate of the 
real structure response to a moving load. 
 

Simplified one- or two-dimensional models were investigated by other authors. 
The transition radiation in an infinite string resting on an inhomogeneous elastic 
foundation, represented by Winkler’s model, is studied in [1]. The paper aims to 
compare the radiation arising due to an abrupt and a smooth change of parameters of 
the elastic foundation, when a constant load moves uniformly along the string. 
Problem is solved in the frequency as well as in the time domain. The analysis is 
restricted to subcritical velocities. In [2], transition radiations in other elastic 
systems are analysed. The paper developed includes the time domain response of an 
infinite Euler-Bernoulli beam on an inhomogeneous Winkler foundation subjected 
to a uniformly moving load. Further development is presented in [3], where instead 
of the Winkler foundation elastic half-planes are implemented. The analytical 
solution presented in [2-3] has again limits on load travelling velocity, does not 
include the effect of damping, the results evaluation is numerically sensitive and, in 
fact, the methodology is suited for dealing with one discontinuity traversed by a 
constant force, only. Further analytical study [4] adds a moving mass to the model 
and assumes periodicity of the inhomogeneous characteristics of the foundation 
stiffness. The main purpose is to determine conditions under which the vibrations 
become unstable. 
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In this paper, the transient dynamic response of a one-dimensional piece-wise 
homogeneous structure subjected to uniformly moving time dependent transverse 
load is expressed in an analytical form exploiting the normal-mode analysis. The 
structure is assumed in the form of an infinite beam resting on a visco-elastic 
foundation. The methodology has restrictions neither on velocity magnitude nor on 
material or mass damping coefficients. Discontinuities in the foundation stiffness 
parameter, in the flexural rigidity of the beam, in the mass per unit length or in the 
damping coefficient can be implemented. It is assumed that there is only finite 
number of discontinuities. Special attention is paid to the transition radiation. The 
transient shapes of the beam are presented in order to visualize the radiation process. 

 
The concept of the global dynamic stiffness matrix [5] of the structure is used to 

determine natural frequencies and normal modes. This ensures that the natural 
frequencies are exact. With this purpose structural elements are defined as the 
longest possible parts of the structure, where all properties are homogeneous. This is 
probably the most accurate way to deal with the dynamic behaviour of a distributed-
parameter beam. Nevertheless, this methodology is not widely used. The reason is 
the numerical difficulty in evaluation of higher frequencies. Author’s previous work 
[6] focused on avoiding the natural frequencies evaluation and suggested different 
methodology. Transition radiation was calculated by linking together analytical 
solutions of each structural element by continuity conditions. In this paper a general 
procedure for numerical implementation according to the normal-mode analysis is 
presented and verified. Procedures are programmed in MAPLE [7] and MATLAB 
[8] environment. To illustrate the utility of the methodology parametric optimization 
is presented and the influence of the load mass is studied. 
 

The paper is organized in the following way. In Section 2 the motivation for the 
methodology adopted is given, governing equations are presented and simplifying 
assumptions are stated. For the sake of simplicity Euler-Bernoulli formulation is 
presented only. In Section 3 the closed form solution is given and the concept of the 
global dynamic stiffness matrix is explained. Also the rules for the numerical 
expression of the results are established and the methodology for extension to 
infinite beams is presented. Section 4 shows case studies and in Section 5 summary 
of the achievements and further challenges are stated. Results and conclusions have 
direct application on knowledge of ground vibrations induced by high-speed trains, 
especially when the train moves from a region to another one with significantly 
different foundation stiffness. 

 
2  Problem statement 
 
2.1 Motivation 
 
An insight into a problem of induced vibrations can be acquired from simplified 
models, which have a closed form solution. Such approach has many advantages: (i) 
only main results are available, so they are simple to analyse; (ii) results preserve 
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parameters dependence allowing for direct sensitivity analysis; (iii) numerical 
evaluation can be carried out only in places of interest. Due to the simplifying 
assumptions, however, the results obtained correspond only to the estimate of the 
real structure response to a moving load. Nevertheless, it is worthwhile to mention, 
that the detailed, especially finite element analysis of the track and subgrade 
structure provides a very large amount of results which are not easy to handle and 
analyse. Very refined meshes must be used in regions of stiffness discontinuities and 
the problem must be solved over the whole time domain, which is time consuming. 
Furthermore, in the standard finite element codes higher natural frequencies are not 
accurately evaluated, [9]. This error cannot be solved by refining the mesh, because 
it is inherent to the standard finite element formulation that makes use of cubic 
Hermite shape functions for the beam elements. The so-called “optical branches” of 
the discrete spectra diverge with polynomial degree, which shows that higher-order 
finite elements have no approximability for higher modes in vibration analysis. This 
shows the fragility of higher-order finite element methods in dynamic applications 
in which higher modes necessarily participate. Moreover, this error is usually 
aggravated by the numerical error of the eigenvalues extraction procedure itself.  
 

For this purpose, the commercial general purpose finite element software ANSYS 
[10] was tested. The error in frequencies of the flexural modes obtained in ANSYS 
exceeded significantly the error established analytically in [9], which obscured the 
separation of the so-called acoustic and optical branches in the graph of the error. 
This can be attributed to the numerical error of the eigenvalues extraction procedure 
itself. Firstly, simply supported beam of 100m length without elastic foundation was 
modelled. Two standard European rails UIC60 represented the beam. Flexural 
rigidity and mass per unit length are summarized in Table 3. Block Lanczos 
extraction method was used to extract first 500 natural frequencies. Results are 
summarized in Fig. 1. It is seen that the error can reach 29.0% in 500-th mode (or in 
the last mode when less elements are used). Next, 100m-length simply supported 
beam on elastic foundation was tested. It was found that the natural frequencies error 
is basically independent on the value of the foundation stiffness. Two different 
models, one of element BEAM54 of the ANSYS library with the capacity of 
introduction of elastic foundation and the other of BEAM3 with added discrete 
springs at each node, gave the same results. It was found that the error (for a given 
beam length) is higher for higher ratio of the flexural rigidity to the mass per unit 
length of the beam. When the beam was considered as the full track (representative 
values are around EI=66.7MNm2, m/kg7200=μ , which attributes high value to 

μ/EI ) the error in 500-th frequency reached already 78.5%. 
 

There is another aggravating factor. First natural frequencies are very similar for 
relatively strong foundation. This proximity can disorder their sequence. For 
instance, for foundation stiffness of 10 MN/m2, the first three modes are 
interchanged in the way that the expected first mode-shape appears in the third 
position. For foundation stiffness of 40 MN/m2 the first seven (see Fig. 2) and of 
100 MN/m2 the first eleven mode shapes are interchanged among themselves. For 
the previous case of 2UIC60 rails, when foundation stiffness of 100 MN/m2 is 
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implemented, then the first five mode shapes are interchanged. In these cases, the 
total length of L=100m was discretized into 5000 finite elements. 
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Figure 1: Error in natural frequencies of simply supported beam (250 elements – full 

line, 500 elements – dot-and-dash line, 1000 elements – dashed line and 5000 
elements – dotted line). 

 

 

 

 

 
 

Figure 2: Disorder in natural modes of simply supported beam on elastic foundation, 
results obtained in ANSYS. 

 
This error affects results obtained by transient analysis with mode superposition 

solution method implemented. For instance, Figure 3 shows the deflection field 
related to the force 200kN travelling by 50m/s on the beam representing the full 
track, characterized by the previously given values and foundation stiffness of 100 
MN/m2. Deflection field is shown for the force position at 20m from the left support 
and when only first 10 natural modes were used (Figure 3a)) and when 500 natural 
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modes were implemented (Figure 3a)). For high number of modes, the results 
coincide with the full integration method, thus there is no way how to remove in 
ANSYS the numerical error. 
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Figure 3: Error in transient solution with mode superposition solution method 
implemented, ANSYS (dotted curve) and MAPLE (full curve): a) 10 modes 

implemented, b) 500 modes implemented. 
 
It can therefore be concluded that the results here presented are obtained faster 

and in a more accurate way, than the ones obtained by standard finite element codes. 
 
2.2 Governing equations and simplifying assumptions 
 
Let a uniform motion of a time variable vertical force along a horizontal finite beam 
on a linear visco-elastic foundation be assumed (Fig. 4). The foundation is modelled 
as distributed spring-and-dashpot sets. Simplifications for the analysis of vertical 
vibrations are outlined as follows: 
(i) the beam obeys linear elastic Euler-Bernoulli theory; 
(ii) the beam damping is proportional to the velocity of vibration. 
 
 

a) 

b) 
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Figure 4: Structure under consideration. 

 
Taking into account the assumptions stated above, the equation of the forced 
vibration w(x,t) reads as [11]: 
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where EI represents the flexural rigidity, μ  the mass per unit length, c the damping 
coefficient and k Winkler constant. w stands for the transversal displacement, P for 
the travelling force and m for the mass of the load; w and P are considered positive 
when acting downwards. Further in Eq. (1): v is the constant velocity, x is the spatial 
coordinate, t is the time and δ  is Dirac function. x has its origin at the left extremity 
of the structure. Zero time corresponds to force position at x=0. Characteristics EI, 
μ , c and k can have piece-wise constant distribution along the structure. It is 
assumed that there is only finite number of such discontinuities. Initial and boundary 
conditions are defined in a standard way. Velocity is maintained constant and no 
restriction is imposed on its magnitude. 

 
3  Problem solution 

 
Eq. (1) can be solved by normal-mode analysis [5, 11]: 
 

 ( ) ( ) ( )xwtqt,xw j
1j

j∑
∞

=

= . (2) 

 
( )tq j  are the generalized coordinates of displacement and ( )xw j  are the orthogonal 

natural modes normalised by: 
 

 ( ) ( )dxxwxN 2
j

L

0
j ∫μ= , (3) 

( )tP
v

x

w

m
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where L it is the total length of the structure. 

 

In order to calculate the undamped natural frequencies and the corresponding 
normal modes, structure is separated into structural elements with homogeneous 
properties. Each discontinuity in parameters EI, μ , k or c marks the beginning of a 
new structural element. Discontinuity in the damping coefficient c is obviously 
immaterial for undamped frequencies, however, later on in Eqs. (9) and (11) it will 
be seen, that this discontinuity must also be considered. Moreover, when the mass of 
the load is included, another structural node must be added. This one is the most 
difficult to handle because it varies its position in time. Then the load mass is 
included in the place of discontinuity as an additional concentrated mass element. 
On the contrary to the finite elements, only as many as elements, as the number of 
discontinuities indicates are needed, because the normal modes can be determined 
exactly within each structural element. In Fig. 5 the degrees of freedom and the 
member-end generalized harmonic forces are shown. 

 
 
 
 
 
 

 
 
 
Figure 5: Degrees of freedom and member-end generalized harmonic forces of the s-

th structural element with nodes i and k. 
 
Let the full structure be separated into n structural elements. The local dynamic 

stiffness matrix of clamped-clamped s-th structural element is given in Table 1 
(compare with Fig. 2). It is composed by amplitudes of member-end generalized 
harmonic forces of the element under steady-state vibration exited by harmonic 
motion of element nodes with a given circular frequency ω . Terms in Table 1 
exploit Kolousek’s functions [8]: 
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Parameters sλ , of different elements are linked together with the excitation 
frequency as: 
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Table 1: Amplitudes of member-end generalized harmonic forces of the s-th 

structural element with nodes i and k. Subscript s applies to all parameters, but it is 
omitted for the sake of simplicity. 

 
The global dynamic stiffness matrix is assembled in a standard way by the direct 

stiffness method and its determinant is set to zero. Roots of this equation, jω , 
correspond to the natural frequencies. Substituting jω=ω  back into the global 
matrix, unknown displacements and rotations at structural nodes can be calculated. 
 

Normal modes are functions composed by well-defined parts within each 
structural element and linked together by the nodal displacements and rotations. The 
natural undamped j-th mode of vibration in the s-th structural element reads as: 
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where ∑
−

=

=
1s

1r
rs0 LL  and rL  is the length of the r-th structural element. Constants 

from Eq. (6) can be expressed as a function of the nodal displacements and rotations, 
their forms are given in Table 2. 
 

In order to determine the generalized coordinates of displacement, ( )tq j , the 
loading function must also be expanded in series: 
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Table 2: Constants of Eq. (6) for the s-th structural element with nodes i and k. 

Subscript s applies to all parameters. Within the context of normal modes, subscript 
j also applies to all parameters, except of L. Both subscripts are omitted for the sake 

of simplicity. 
 
Here 
 

 ( ) ( ) ( )∫=
L

0
jj dxxwt,xptQ . (8) 

 
For homogeneous initial conditions, it holds: 
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where 
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2
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which for concentrated force (point load) simplifies as: 
 

 ( ) ( ) ( ) ( )
( )
( )( )

( )( )( )∫ ττ−ττ=
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μ
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0
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t
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If the load mass is included, Eq. (11) cannot be used anymore, because the 

integration over w cannot be performed as its form varies in time. In this case one 
has to go back to Eq. (9). In fact it is possible to assume, that function Q varies 



11 

linearly over each time interval [ ]i1i t,t − , where 1ii ttt −−=Δ  can be assumed 
constant, but it must be sufficiently small. Then an intermediate value within such 
interval reads as: 
 

 ( ) ( ) ( ) ( )
τ
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− t

tQtQ
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1ijj , (12) 

 
where τ  is a local time starting at 1it − . After some manipulations (in the following 
relations x-dependence is omitted for the sake of simplicity, value corresponding to 
the actual time must be used): 
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where 
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Expressions presented in this section are rather simple; the difficulties arise in 
numerical expression of the results. Determination of natural frequencies is 
considered the most difficult part of the numerical assessment of the results 
expressed by Eq. (2). This difficulty is aggravated by the fact, that very high number 
of natural frequencies is required in problems with foundation discontinuity. After 
the global matrix has been assemblaged, Eq. (5) can be substituted, and the 
determinant can be expressed in terms of a single unknown, ω . Actually, it is more 
convenient to express the determinant in terms of 2ω  and search for 2ω  instead of 
ω . Only numerical methods, can be used for roots search. The determinant has 
many singularities coincident with all natural frequencies of each structural element 
considered separately. The denominator consists of product of expressions: ( )11H λ , 

1coscosh ss −λλ , s=2..n-1 and ( )nnH λ , which correspond to the left hand side of 
the characteristic equation of each member. The middle relations refer to the 
clamped-clamped beam. First and last expression can be different, depending on the 
actual boundary conditions at the extremities of the full structure. In order to avoid 
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special treatment around the singularities, it is possible to solve the roots only in the 
nominator. Then software which can handle very large numbers and introduce high-
digits precision must be used. Only in MAPLE (or similar symbolical calculation 
software) it is possible to: (a) increase digits precision without any link to the 
computed specified value; (b) deal with very high numbers. Therefore most of the 
procedures of numerical evaluation of the results were programmed in MAPLE 
environment, some of them could be placed also in MATLAB. 
 

The methodology for extension to infinite beams by mitigation the boundary 
conditions effect is defined in the following way. It is assumed that the force starts 
to actuate at a length Li from the left support and that it varies from zero to its final 
value over an intermediate region Lc. The time variation of the force is assumed in a 
sinusoidal shape in order to keep the time derivatives continues. In more details: 
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where P0 is the final value of the force applied. This methodology ensures that the 
maximum displacement smoothly increases till its final value, which corresponds to 
the analytical maximum of the quasi-stationary regime. It would be possible to 
assume only linear variation of the force applied. Nevertheless, it was verified that if 
the time derivatives of the variation function are continues, it is better prevented 
possible oscillation of the final value. The question is how long Li and especially Lc 
should be. It is suggested and verified that analogy with a representative spring can 
be used. For the sake of simplicity it is assumed that the force applied increases 
linearly. Thus, let a ramped force with the maximum value F be applied on a mass m 
supported by a spring of the rigidity K. Time variation of the mass displacement can 
be expressed analytically by: 
 

 ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= t

m
Ksintt

m
Ksin

Kt
mF

K
Ftu c3

c

, (16) 

 
where tc is the time over which the force increases linearly. The second term on the 
right hand side of Eq. (15) stands for the oscillating part of the solution. The 
amplitude of this oscillation is: 
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By implementation lower time tc, the amplitude gets generally higher, but there is an 
additional oscillation in the amplitude itself. For our purpose, it is enough to choose 
the time ct , in a way to force the amplitude to a “reasonable” part of F/K. This 
requirement, as expected, does not depend on the force applied, but it does depend 
on m and K. In accordance with the analogy, K will be replaced by k and m by μ . 

 
4  Case studies 
 
4.1 Parametric optimization 
 
In this case study two UIC60 rails are used to model the beam. The load applied is 
approximated by the total axle mass of 17000kg corresponding to a locomotive of 
the Thalys high-speed train. A good isolation device and ideal rail surface is 
assumed, so that the harmonic component can be neglected and the load can be 
modelled as a constant moving force. All numerical input data are summarized in 
Table 3. 

 

Property Beam 
(2 rails UIC60) 

Young’s modulus E (GPa) 210 
Moment of inertia I (m4) 6110·10-8 

Density per unit length μ (kg/m) 119.87 
Maximum force applied P0 (kN) 166.8 

 
Table 3: Numerical input data used in examples. 

The probability that an admissible upward displacement will be exceeded, when the 
load passes by a certain velocity obeying the normal distribution, is determined. For 
this optimization problem it is assumed that the given structure has an intermediate 
part of adaptable foundation stiffness. The length of this intermediate part is fixed, 
and its foundation stiffness is optimized. In the study shown below, Winkler 
constant in the soft region is implemented as 1000kN/m2, in the strong one is 10 
times higher, i.e. 10000kN/m2, and the intermediate region length is chosen as 6m, 
covering therefore 10 sleepers. Lengths of the soft and of the strong parts, their 
separation, number of implemented modes and other numerical data are the same as 
in the previous study. Reference velocity is chosen as 150m/s, obeying normal 
distribution with standard deviation of 3m/s. Passage of the load in both directions is 
investigated. 
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Analysis is performed in a parametric way with respect to the velocity and with 
respect to the intermediate foundation stiffness. During the analysis the velocity is 
varied by 10m/s from 140 to 160, to accommodate the chosen standard deviation. 
The maximum upward displacement was selected as the most harmful effect in this 
analysis. Evolution of this displacement with the load position is shown in Fig. 6 in 
the structure without an intermediate length. Regarding the passage forward, results 
of optimization show, that very small increase in foundation stiffness with respect to 
the soft value will attenuate the deflection wave propagation in the soft region and, 
at the same time, will ensure that the displacement shape is affected in the way that 
the next discontinuity in foundation stiffness does not cause the large peak in the 
response (Figs. 7 and 8). 
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Figure 6: Maximum upward displacement, passage forward by velocity v=150m/s, 

dashed lines are used for the quasi-stationary solutions. 
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Figure 7: Displacement from the optimized solution (full curve) compared with the 

solution without the intermediate region (dotted curve), load position where the 
maximum in the optimized solution is achieved (load position at 4 m). 
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Figure 8: Displacement from the optimized solution (full curve) compared with the 

solution without the intermediate region (dotted curve), load position where the 
maximum in the non-optimized solution is achieved (load position at 8 m). 
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Figure 9: Maximum upward displacement as a function of velocity, passage 

forward. Bold curve shows the optimum solution (1400kN/m2), the closest values 
are for 1500kN/m2 (dashed), 1600kN/m2 (dotted), 1200kN/m2 (dot-and-dash line), 

other four full curves refer to 2000kN/m2, 3000kN/m2, 4000kN/m2, 8000kN/m2 (the 
highest). 

 
Reduction by 50% was obtained by the optimization procedure. Similar features 

were verified for the opposite load movement (passage backward), however, now 
only the reduction by 28% was achieved. Figs. 9 and 10 show the maximum 
displacement as a function of the velocity for the forward and the backward passage. 
It is seen that the stiffness of 1400 kN/m2 is the optimum value for the passage 
forward and 1500 kN/m2 for the passage backward. Displacement values are 
compared in Table 4. In Figs. 11 and 12 the deflection curves reaching the 
maximum are recorded, which indicate the load position in such cases. Each curve 
corresponds to a different velocity. In passage forward the maximum is always 
achieved at the same load position. This is not verified for the passage backward. 
Results are affected by the step chosen for the numerical evaluation 1m.  
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Figure 10: Maximum upward displacement as a function of velocity, passage 

backward. Bold curve shows the optimum solution (1500 kN m-2), the closest values 
are for 1400 kN m-2 (dashed), 1600 kN m-2 (dotted), 1200 kN m-2 (dot-and-dash 

line), other four full curves refer to 2000 kN m-2, 3000 kN m-2, 4000 kN m-2, 8000 
kN m-2 (the highest). 
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Figure 11: Maximum upward displacement curves as a function of velocity, passage 

forward. Zero position is at the first discontinuity. 
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Figure 12: Maximum upward displacement curves as a function of velocity, passage 

backward. Zero position is at the second discontinuity. 
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The main advantage of this analysis is the fact, that the analytical solution is used, 
therefore in each studied case only a small region before and after the intermediate 
region can be analysed to find the maximum. 10m-length is enough for the passage 
forward, slightly more is necessary for the passage backward (20m-length was 
used). 

 
Maximum upward 
displacement [mm] 

Passage forward 
(150 m s-1) 

Passage backward 
(150 m s-1) 

No intermediate part 13.72 10.83 
Intermediate stiffness 

1400 kN m-2 6.92 8.13 

Intermediate stiffness 
1500 kN m-2 7.42 7.77 

 
Table 4: Maximum upward displacement for the passage by the reference velocity. 

 
As a positive conclusion of this analysis is the fact, that the optimum intermediate 

stiffness for the forward and the backward passage are very similar, which is an 
important conclusion for practical use. In order to complete the optimization 
analysis, admissible values of 7 and 8mm for the upward displacement were chosen. 
The probability of their exceeding is summarized in Table 5. It can thus be 
concluded that the optimum intermediate stiffness in this problem is 1400 kN/m2 
and the probability of exceeding the admissible displacements of 7 and 8mm is 
70.7% and 30.4%, respectively. 

 

Probability 
Admissible value 8mm Admissible value 7mm 

Passage 
forward 

Passage 
backward Total Passage 

forward 
Passage 

backward Total 

Intermediate 
stiffness 

1400 kN/m2 
1.0% 59.7% 30.4% 42.2% 99.3% 70.7% 

Intermediate 
stiffness 

1500 kN/m2 
14.0% 31.9% 23.0% 79.9% 95.7% 87.8% 

 
Table 5: Probabilities of exceeding the admissible values. 

 
4.2 Effect of the mass of the load 
 
In this case study first of all benchmark problem was solved by the methodology 
presented in Section 3. The beam was modelled as left cantilever of L=7.62m, 
EI=9.47MNm2, μ=46kg/m. The moving mass had m=2579kg with the corresponding 
weigth of 25.3kN. The velocity applied was 50.8m/s. In Fig. 13 the displacement at 
the free extremity of the beam and in Fig. 14 the deflection curve corresponding to 
an intermediate position of the mass at 3.8m are shown.  



18 

-60

-50

-40

-30

-20

-10

0

10

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Time [s]

D
is

pl
ac

em
en

t [
m

m
]

 
Figure 13: Displacement at the free extremity of the beam with respect to time. 
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Figure 14: Deflection curve for the mass position at 3.8m. 

 
Results presented exactly match the expected ones presented in [12]. 

 
5  Conclusions and further development 
 
The transversal vibrations induced by a load moving uniformly along an infinite 
beam resting on a piece-wise homogeneous visco-elastic foundation has been 
investigated. Special attention has been paid to the additional vibrations, 
conventionally referred to as transition radiations, which arise as the point load 
traverses the place of the foundation discontinuity. The governing equations of the 
problem have been solved by the normal-mode analysis. Procedures were 
programmed in MAPLE and MATLAB environment. Displacement field is 
presented in a closed form as an analytical result, therefore numerical evaluation can 
be carried out only in places of interest. Results presented show high level of 
accuracy, because they do not contain the error of the standard finite element 
method and the calculated natural frequencies and shapes are exact. 
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The methodology presented has restrictions neither on velocity magnitude nor on 
damping. Load can be represented by a set of moving forces which magnitudes can 
be time dependent. Effect of the mass of the load can be included. Then normal 
modes must be evaluated at each time step and some of the previously mentioned 
advantages are lost.  
 

Although focusing only on one-dimensional systems under physical and 
geometrical linearity this study provides an important insight into the problem of 
excessive ground vibrations induced by high-speed trains passing in sections where 
an abrupt change in vertical stiffness occurs. The methodology has some additional 
potentialities that will be explored in the future work. Among them it might be 
mentioned implementation of more complicated structural elements like an elevated 
railway, which can be modelled as a layered-beam system that is composed of two 
parallel beams with visco-elastic layer in between. 
 

The results obtained have direct application in the analysis of railway track 
vibrations induced by high-speed trains when passing regions with significantly 
different foundation stiffness. The conclusions of this paper might be served as a 
design basis for the treatment of solution for such regions. 
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