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Abstract 
 
The aim of this contribution is to extend the techniques of composite materials 
design to non-linear material behaviour and apply it for design of new materials for 
passive vibration control. As a first step a computational tool allowing determination 
of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, 
Maxwell, standard and more complex material models can be implemented. 
Objective function considers minimization of the initial reaction and/or 
displacement peak as well as minimization of the steady-state amplitude of reaction 
and/or displacement. The complex stiffness approach is used to formulate the 
governing equations in an efficient way. Material stiffness parameters are assumed 
as non-linear functions of the displacement. The numerical solution is performed in 
the complex space. The steady-state solution in the complex space is obtained by an 
iterative process based on the shooting method which imposes the conditions of 
periodicity with respect to the known value of the period. Extension of the shooting 
method to the complex space is presented and verified. Non-linear behaviour of 
material parameters is then optimized by generic probabilistic meta-algorithm, 
simulated annealing. Dependence of the global optimum on several combinations of 
leading parameters of the simulated annealing procedure, like neighbourhood 
definition and annealing schedule, is also studied and analyzed. Procedure is 
programmed in MATLAB environment. 
 
Keywords: composite materials, passive vibration control, non-linear visco-elastic 
behaviour, optimization, shooting method, simulated annealing, cost functional. 
 
1  Introduction 
 
The latest developments in computational mechanics have lead to integrated 
methodologies that permit not only the structural design and shape optimization of 
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the mechanical component but also the tailoring of the material properties and 
consequently a design of new materials. This is particularly evident in the area of 
composite materials where the unit cell geometry (characterizing the composite 
material) is a key factor in its effective mechanical properties and thus can 
significantly improve the structural response of the mechanical component. 
 

The aim of this contribution is to extend the techniques of composite materials 
design to non-linear material behaviour and apply them for design of new materials 
for passive vibration control. Objectives of the passive vibration control typically 
cover attenuation of the steady-state regime of the structure dynamic response. Then, 
at relatively low excitation frequencies is it important to reduce the steady-state 
displacements amplitude, which is generally obtained by an isolator of a strong 
material that may exhibit a low damping. On the other hand, at high excitation 
frequencies, a good isolator performance means that when the transmissibility is 
low. Then the isolator must possess high damping properties, which usually implies 
a soft material. Materials exhibiting high stiffness as well as high damping are not 
common [1-2]. Efficient properties for passive vibration control can only be 
achieved in man-made composite materials. Two-phase composites composed of a 
stiff, low loss phase, and a compliant, high loss phase, can exhibit high stiffness 
combined with high loss, providing that the lower bounds (Reuss for Young’s 
modulus of effectively orthotropic or Hashin-Shtrikman for effectively isotropic 
composite material) are saturated. These bounds must be rewritten by dynamic 
correspondence principle of the theory of linear viscoelasticity [3]. Actually very 
low volume fraction of stiff component embedded in high damping matrix can 
significantly improve the properties, [2]. The figure in merit is δtan*E , where 

*E  is the “norm” of the complex modulus E*, and ( )
( )*ERe

*EImtan =δ , i.e. δ  

represents the delay phase angle in strain response with respect to the stress one, i.e. 
the efficiency of damping. Within the framework of linear viscoelasticity, δtan  is 
proportional to the energy loss per cycle. 

 
According to [1], extreme damping can be achieved when negative stiffness 

phase is implemented. Mechanical components exhibiting the negative stiffness are 
usually modelled by mechanism allowing for the snap-through. This can be achieved 
by two-spring mechanism [4]. An additional vertical spring is usually added in order 
to meet the required stiffness and/or for the optimization purposes [5]. Recently, a 
quasi-zero stiffness isolation, i.e. the isolation where in the global response there is a 
plateau at the equilibrium force, becomes popular [6].  

 
When the isolator is assumed to operate on large range of frequencies, it would 

be ideal to have a material that softens at high frequencies. Unfortunately, it can be 
proven that within one phase solid materials the tendency is completely opposite, in 
other words, the real materials strengthen at high frequencies [7]. Therefore it is 
necessary to design a new composite material with specific dynamic properties, 
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namely, a material that soften at high frequencies [8]. The model presented in [8] 
requires also some components exhibiting the negative stiffness. 

As a first step in achieving the objectives of this work a computational tool 
allowing determination of macroscopic optimized one-dimensional isolator 
behaviour was developed. Voigt, Maxwell, standard and more complex material 
models can be implemented [9]. Objective function considers minimization of the 
initial reaction and/or displacement peak as well as minimization of the steady-state 
amplitude of reaction and/or displacement. Complex stiffness approach is used to 
formulate the governing equations in an efficient way. Material stiffness parameters 
are assumed as non-linear functions of the displacement. Numerical solution is 
performed in the complex space. Special attention is paid to the initial conditions, 
because in the complex space the transient solution yields an unreal behaviour 
originated by the fact that excitation frequency is already a part of the complex 
modulus. Steady-state solution is obtained by an iterative process based on the 
shooting method and imposing the conditions of periodicity on known value of the 
period [4]. Extension of the shooting method to the complex space is presented and 
verified. Non-linear behaviour of material parameters is then optimized by generic 
probabilistic meta-algorithm, simulated annealing. Dependence of the global 
optimum on several combinations of leading parameters of the simulated annealing 
procedure, like neighbourhood definition and annealing schedule, is also studied and 
analyzed. Procedures are programmed in MATLAB environment [10]. 

 
Paper is organized as follows. In Section 2 problem statement is given. 

Simplifying assumptions are summarized and the cost functional is defined. Section 
3 describes the techniques used for numerical implementation, namely the shooting 
method and the simulated annealing. Section 4 presents some of the results obtained. 
Paper conclusions are summarized in Section 5. 
 

Results presented, although still related only to one-dimensional behaviour, 
facilitate the design of elastomeric cellular/composite materials with improved 
behaviour in terms of dynamic stiffness for passive vibration control. Future 
research will be directed to optimization of multidirectional properties, which will 
be used as target behaviour for design of cellular and/or composite viscoelastic 
materials. This application will have a direct and immediate impact on product 
design and development, especially in the design of new mechanical components 
such as engine mounts and /or new suspension systems. 

 
2  Problem statement 
 
2.1 Optimal one-dimensional behaviour 
 
It is assumed that a mass of a given value, m, is connected through an isolator, s(t), 
to a fixed support. The mass is exited by time dependent set of forces, P(t). The 
objective is to determine the isolator characteristics which will provide an optimal 
dynamic performanec of the system. The reaction exhibited by the support, R(t), and 
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the displacement exhibited by the mass, u(t) are selected as the crucial results for 
optimization according to practical applications. The model is schematically 
represented in Figure 1. 
 
 
 
 
 
 
 
 
 

Figure 1: Problem scheme. 
 

First of all it is necessary to state, what kind of excitation forces are included in 
the analysis. Load cases are chosen according to the realistic situations as: (i) step 
load, (ii) set of step loads, (iii) step load with harmonic component, (iv) set of step 
loads with harmonic components. Load cases (i) and (iii) are shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schematic representation of load cases (i) and (iii). 
 
 

Displacement u(t) as well as the time dependent reation R(t) have a transient and 
a steady-state part. The objective in the optimization problem is to minimize u(t) and 
R(t) amplitude in both regions. Thus the optimization problem for the load cases (i) 
and (iii), specified in Figure 2, can be stated as 
 

find ( )ts , such that 
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where s~  is the design space of the isolators behavious, trA  and stA  stand for the 
combination of maximum amplitudes of the displacement and of the support 
reaction in the transient and in the steady-state region, respectively. it , rt  and ft  
correspond to the initial time (from where the transient response gains importance 
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si tt > ), to the transition time (from where the steady-state response gains 
importance) and to the final time of the analysis, respectively. In more details: 
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where trα , stα  express the importance of the reaction versus displacement in each of 
the considered regions and R , u  are some convenient norms related to the 
particular problem. Further in Equation (1), trγ  and stγ  are appropriate weights, 
highlighting the relative importance of each regime and with the property 

1sttr =γ+γ . Subscript “1” in the objective function 1O  means that only one single 
load case, (i) or (iii), is assumed. For step load according to (i), 0st =γ  can be taken 
because there is no steady-state response; for step load with harmonic component 
(iii) both weights trγ  and stγ  can be non-zero. If only reaction contribution in 
steady-state regime is considered, i.e. 0tr =γ , 1st =α , then one can assume 

0F2R =  and thus ( ) ( ) TmintRmintRmaxmin
F2
1O

s~st;ttt;tts~s
0

1
frfr ∈∈∈∈

=⎟
⎠
⎞⎜

⎝
⎛ −= , where T is the 

transmissibility. 
 

Load cases (ii) and (iv) correspond to a set of discrete cases, where weights iλ  
must be attributed according to the importance or to the probability of occurrence, 

and 1
r

1i
i =λ∑

=

. Cost functional O is then defined as: 

 

 ∑
=

λ=
r

1i
iii

OminO , (3) 

 
where r is the number of single load cases. 
 
2.2 Simplifying assumptions and governing equations 
 
It is necessary to impose some simplifying assumptions on the isolator behaviour. 
As already mentioned in Introduction, it is assumed only one-dimensional 
behaviour. Particular material model can be the Voigt, Maxwell, standard or more 
complicated. In these cases the spring part is assumed non-linear elastic and the 
damped part linear is taken as viscous with a constant damping coefficient. Then the 
isolator can be schematically substituted as indicated in Figure 3, where ( )( )tuS  
stands for the elastic force of the non-linear spring, c is the damping constant of the 
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linear damper and “dot” represents the time derivative. We will name the non-linear 
relation of the elastic force S versus u is the “static curve”. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic representation of the isolator in form of Voigt, Maxwell and 
standard material model. 

 
Equation of motion of the system from Figure 3 when Voigt model is assumed 

reads as, [11]: 
 
 ( ) ( ) ( )( ) ( ) mgtPtuStuctum +=++ , (4) 
 
where g is the gravity acceleration. Zero position of displacement can be shifted to 
the static equilibrium position if only mass is acting. Then: 
 
 ( ) ( ) ( )( ) ( )tPtuStuctum =++ , (5) 
 
where for the sake of simplicity designation of the displacement is remained 
unchanged. Then the support reaction is given by: 
 
 ( ) ( ) ( )( )tuStuctR += . (6) 
 

For other material models a system of equations must be written, [11]. For 
harmonic loading, however, it is then more convenient to introduce the concept of 
the complex stiffness, [9]. Then Equation (4) can be written as: 
 
 ( ) ( ) ( )( ) tiPetuStuictum ω=+ω+ , (7) 
 
where i the complex unity 1i −= . In this representation ( )tsinitcosPPe ti ω+ω=ω . 
Regarding the steady-state final response, if originally the force applied was 

tsinP ω , then the imaginary part of the solution correspond to the final result, if 
tcosP ω  was assumed, then the real part of the solution must be taken and if a 

general harmonic force was used, then the response corresponds to a combination of 
both parts. Following [9] it is easy to write the complex stiffness of any possible 
one-dimensional material model. 
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In order to characterize the design domain s~ , it is necessary to describe the 
allowable non-linear behaviour of the spring parts of the material models, i.e. the 
domain of admissible static curves. Practical applications require that spring rigidity 
is not arbitrary and that fixed and variable parts of the static curve must be 
identified. There is usually a final linear stage characterized by a rigid component, 
representing the alternative supporting system, which starts to actuate when the 
maximum allowable displacement mau  of the flexible part is achieved. It is assumed, 
that the allowable displacement mau  cannot occur later than the elastic force reaches 
the value maF . Then in fact the final rigidity is not fixed but it is characterized by its 
minimum value fink . Two possible designs of the non-linear spring are shown in 
Figure 4, variable (dashed) part of the static curve is the subject of optimization. It 
must be estimated by a convenient curve satisfying certain requirements in the 
interval mau,0 , namely: 
a) Static curve must be continuous; 
b) Static curve must be increasing, i.e. stiffness must be non-negative at any 

displacement value, in order to avoid dynamic instability; 
c) Spring behaviour is perfectly hyperelastic, i.e. loading and un-loading paths 

matches exactly. 
 

 
 

Figure 4: Two possible designs of the non-linear spring: fixed (full) and variable 
(dashed) parts of the static curve. 

 
In order to determine the optimal static curve, an optimization procedure must be 

implemented. Generic probabilistic meta-algorithm, simulated annealing, was 
chosen for this purpose. The algorithm will be described in the next section. Besides 
the cost functional definition and simulated annealing general steps, several other 
procedures must be established, like the procedure for the variable part of the static 
curve definition. Then it is possible to solve the problem stated in Equation (5) 
numerically and evaluate the cost functional for such particular case. One of the 
possible approaches for the static curve definition is: 
a) Select a set of fixed points n,...,1i,ui =  from the given open interval ( )mau,0 , 

assign 0u0 =  and ma1n uu =+  (uniform distribution can be used i1i uuu −=Δ + ); 

fink
1

mau
u

maF

F

finkk >
1
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b) Randomly select force values 1n,...,1i,Fi +=  from the given interval ] ]maF,0 , 
order them in an increasing way and attribute them to the points iu  ( 0F0 = ); 

c) Define spline approximation within each interval n,...,0i,u,u 1ii =+ . 
 

As far as the spline approximation, linear and cubic Hermite approximations were 
tested for suitability. Linear spline approximation is easy to implement, it preserves 
continues and monotonic behaviour, however it does not preserve stiffness 
continuity in the separation points iu . Cubic Hermite approximation, on the other 
hand, establishes cubic polynomial approximation within each interval with 
continuity of the first derivative at iu . Derivatives id  at the separation points iu  can 
be given by finite differences, as forward, backward or centred approximation. Let 

1nfin dk += . Implementation of Hermite approximation is also straightforward, 
requirement a) is assured, however, requirement b), is not preserved.  
 

Monotonic behaviour is a crucial condition, therefore some adjustments must be 
implemented. Following [12], if the conditions for monotonicity are not met in a 
certain interval, derivatives at the end points of this interval, id  and 1id + , should be 
corrected to idτ  and 1id +τ , where 
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Figure 5: A possible choice of random forces. Red points identify the initial point of 

each interval where monotonicity conditions are not satisfied. 
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Figure 5 states one possible choice of random forces, which is already related to 
the case study described further in this paper. Random values are connected by 
linear spline, red points mark initial end-points intervals, where at least one of the 
monotonicity conditions is not satisfied. Figure 6 shows the Hermite approximation 
within the first of these intervals determined by the original procedure (blue) and 
after the derivatives alteration (red). 
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Figure 6: Efficiency of the monotonicity criteria: Hermite approximation before 
(blue) and after (red) the derivatives alteration. 

 
The two possible spline approximations described in this section were tested for 

accuracy and computational time. No significant differences were found in either of 
these criteria. Therefore the linear spline approximation is used in all examples 
presented in this paper because of its simplicity. 

 
3  Numerical implementation 
 
3.1 Shooting method 
 
In order to express the maximum amplitude in the steady state regime, the 
methodology of a “long simulation” can be implemented. This means that the total 
dynamic response must be recorded for a sufficiently long time, until it gets 
periodic. This is possible to do only in damped systems described by the equation in 
the real domain; it can be time consuming and it can accumulate numerical errors. 
When the complex stiffness is implemented, then the effect of the excitation 
frequency ω  on the left hand-side of Equation (7) causes that the “natural” vibration 
instead of being attenuated, tends to the infinity. In this case the long simulation 
method is not possible to use. Due to these reasons it would be useful to implement 
a procedure which could directly seek only for the periodic solution. Very efficient 
iteration procedure is based on the shooting method. This method is presented in [4], 
where it is implemented in the real case. It also performs well in dynamically 
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unstable systems, where several periodic solutions may exist. When the dynamic 
response is chaotic, the methodology diverges. In order to implement the shooting 
method, Equation (5) must be written as a system of equations. Let us assume for 
the sake of simplicity that only one sinusoidal load is applied. Then: 
 

 
( ) ( )
( ) ( )( ) ( )( ) ,m/tsinPtcxtxStx

txtx

212

21

ω+−−=
=

 (10) 

 
where ( ) ( )tutx1 =  and ( ) ( )tutx2 = . The shooting function h is defined as: 
 

 
( ) ( ),u,uu,uh
:h

TT00

22

=
ℜ→ℜ

 (11) 

 
where ωπ= /2T  is the known period. The objective is to find the initial conditions 
( )FF u,u  that ensure ( ) ( )FFFF u,uu,uh = , i.e. ( ) FFh xx = . If 0x  is an initial choice of 
initial conditions, then the solution Fx  can be found by an iterative procedure based 
on the Newton-Raphson method as: 
 

 ( ) ( )( )nn

1

nn1n hhI xxx
x

xx −⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+=
−

+ . (12) 

 
The crucial point in this process is to obtain the Jacobian matrix, i.e. the 

derivatives: 
 

 ( ) ( ) 2,1j,i
x
hh n

j

i
nij =

∂
∂

= xx . (13) 

 
Following [4] it is possible to prove, that these derivatives correspond to the solution 
of the linearized homogeneous system, expressed at the value of the solution of the 
previous step, when the base vectors are used for the initial conditions. 
 

The methodology can be extended to the complex domain, then instead of 2x2 
Jakobian matrix, 4x4 must be used. The advantage of the problem treated in this 
paper is that the original problem is already linearized. 
 
3.2 Optimization algorithm 
 
Generic probabilistic meta-algorithm, simulated annealing, was chosen as 
optimization tool to solve the problem specified in Equations (1-3). In order to 
describe the optimization procedure let us assume for the sake of simplicity, that 
Voigt model is implemented and that at iteration k one has the respective static 
curve ( )kS  and the objective function value ( )kO . Then for the next iteration (k+1) a 
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new static curve in the “neighbourhood” of the old one is created and the new 
objective function value ( )1kO +  is computed. If ( ) ( )k1k OO <+  then the new static curve 

( )1kS +  is unconditionally accepted. If ( ) ( )k1k OO ≥+  then it can be conditionally 
accepted, based on the probability randomly selected from the interval ( )1,0  and 
compared with the value calculated as ( ) ( )( )( )j1kk T/OOexp +− , where jT  is the 
current cooling temperature. This criterion prevents the algorithm to stick at a local 
minimum and gives the possibility to search through the entire design domain. As 
the cooling proceeds, cooling temperature is getting lower and consequently the 
probability of acceptance decreases.  
 

There are several crucial parameters in this algorithm which must be carefully 
chosen as they can distort the final result and/or make the calculation inefficient. 
They are: 
a) The initial temperature; 
b) The number of iterations within each temperature; 
c) The cooling schedule; 
d) The stopping criteria; 
e) The neighbourhood definition. 
 

The initial temperature is usually defined as a ratio of the initial value of the cost 
functional. It should be stated in the way that the acceptance probability in the initial 
temperature stage is around 50%. The number of iterations within each temperature 
must be high, around 500 or more and must be adapted to each particular load case. 
It does not make much sense to implement many temperature levels, since then the 
probabilities of acceptance in two consequent temperatures will be very similar. The 
algorithm can stop before completing the cooling schedule, whenever the number of 
consecutive failures reaches the user-input number. 
 

The neighbourhood definition is crucial in a simulated annealing algorithm. In 
our problem it is defined in percentage terms from the given static curve. In more 
details, user-input values are: 
a) nm ≤  as number of forces which are allowed to vary; 
b) p the percentage of variation related to the total allowable force value maF . 
After the new force values are obtained they must be ordered in an increasing way, 
in order to satisfy requirements specified in Section 2.2. 
 
The numerical model is developed using software Matlab and permits the analysis of 
all load cases defined in Section 2.1. In the problems presented in this paper the 
following strategy was adopted: (1) first design from S~  is randomly selected and 
then optimization continues with conditional acceptance implemented and with wide 
neighbourhood definition (namely n=30, m=10, p=0.2) in order to give the 
necessary freedom for searching through the full design domain; (2) refinement of 
the previously obtained design: in this case conditional acceptance is deactivated and 
searching continues with tight neighbourhood definition (namely n=30, m=1, 
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p=0.1). Nevertheless the global optimum is never guaranteed and usually several 
attempts must be performed in order to obtain reliable results. In addition, sensitivity 
analysis was performed in the following sense: perturbation of one design point 
from the final optimal design was allowed and histogram of the objective function 
values for 1000 such simulations was analysed. 
 
4  Obtained results 
 
In this paper; the engine mount suspension system is considered as a practical 
application. Then, according to real solicitations, 0F  has relatively high values, 
around 1000-2000N, and 1F  ranges about 1-2N with frequencies from 25Hz to 
250Hz. Load case (i) stands for the action exerted on the engine in a sudden 
acceleration or a car stop. The harmonic contribution from load case (iii) represents 
the solicitation acting whenever the engine runs. Therefore, harmonic forces are 
always superposed to the step load. This means that load cases (i-ii) cannot occur in 
real applications, nevertheless they are worthwhile to study in order to draw 
conclusions about their particular influence. Voigt model is assumed, 1sttr =α=α  
and 1R = . In this case the objective function has the unit of force. 
 

Now, limitations of the static curve according to Figure 4 can be established 
numerically. Final part of the curve is limited by the maximum admissible 
displacement of the flexible part of the support, approximated by mm10uma = . In a 
standard rubber material this value corresponds to the applied load of N1500Fma = . 
After that rigid components of the support start to actuate, thus the system obeys 
linear behaviour of rigidity around m/MN1kfin ≅ . 
 
4.1 Load case (i) 
 
First, let a linear undamped case is assumed. From analytical solution it is well-
known, that the maximum reaction achieves the value equal to the double of the 
applied force. This is simply justified by the energy comparison: 
 

 0max
0

maxmax0
2
max F2R,

k
F2uuFku

2
10 ==⇒−= , (14) 

 
where k, maxu  and maxR  stand for the spring rigidity, the maximum displacement 
and the maximum reaction. If the damper is included, then the peak in the reaction 
decreases with the increasing damping coefficient c, and it is reached sooner than 
the maximum displacement. This case has also analytical solution, presented for 
instance in [11]. The lowest reaction peak is attained in the supercritical damping 
case, when km2m2cc 0cr =ω=≥ . In our case, the viscous damping coefficient c 
is a fixed parameter, thus the rigidity must be decreased in order to obtain a 
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supercritical or a high damping case. Therefore, one may expect a plateau in the 
static curve at the value of the applied force, as a result of the optimization 
procedure. The most effective solution will have displacements which will cover the 
full plateau but will not fall beyond the interval ( )mau,0u∈ . The perfect plateau is 
thus not possible, because the static curve must have some rigidity to keep the 
displacement within the limits 0 and mau . Beyond the interval ( )mau,0u∈  the high 
rigidity causes high peaks in the reaction force. There are thus two contradictory 
conditions which must be combined together, the first one is forcing the rigidity to 
zero and the second one is forcing the rigidity to a non-zero value. Adapting 
Equation (14) for the non-linear damped case, the maximum displacement reads as: 
 

 ( )∫=
maxu

00
max duuR

F
1u . (15) 

 
The integral in Equation (15) corresponds to the integral of the static curve plus 

the energy loss caused by damping. It is impossible to evaluate it before the analysis, 
but it allows for estimates. The higher the damping coefficient, the higher the energy 
loss and thus the rigidity of the static curve does not have to be so high to keep the 
maximum displacement below mau . When the damping is low, localized high 
rigidity should be formed around the equilibrium position to add an energy loss in 
the region where the velocity is the highest. These predictions are confirmed by the 
optimization procedure. Two values of the step force were tested: N1000F0 =  and 

N1200F0 = . Damping coefficient is varied between, 400, 200 and 100 N.s/m. For 
the optimization simulation: n=30, in the first step m=10 and p=20% and in the 
second step m=1 and p=10%. In the first step the probability acceptance was 
allowed, while in the second not. Results are summarized in Tables 1 and 2.  
 
c (N.s/m) Oini (N) Ofin (N) kavr (N/m) umax 

(mm) 
umin 

(mm) 
ueq 

(mm) 
400 3142 18.45 (21.87) 2577 10.00 6.45 6.59 
200 3337 26.54 (77.89) 2435 10.00 0.59 3.76 
100 3210 232.1 (243.5) 63269 8.31 1.10 4.42 

 
Table 1: Summary of the optimization analysis: step force N1000F0 = . 

 
c (N.s/m) Oini (N) Ofin (N) kavr (N/m) umax 

(mm) 
umin 

(mm) 
ueq 

(mm) 
400 3622 22.44 (23.18) 2330 9.96 5.63 5.75 
200 3692 37.18 (37.53) 3373 9.99 0.32 3.77 
100 3393 187.0 (187.7) 31244 9.04 0.84 4.66 

 
Table 2: Summary of the optimization analysis: step force N1200F0 = . 

 



14 

In Tables 1 and 2, Oini and Ofin, stand for the initial and the final value of the 
objective function (in the brackets the final value was recalculated with very fine 
time steps); kavr and ueq represent the average plateau in the static curve and the final 
equilibrium displacement. umax and umin are the maximum and minimum achieved in 
displacements, minimum value in displacement is considered after the first 
maximum peak. 
 

 
 
Figure 7: Final design of the static curves (detail of the plateau) with the equilibrium 

displacement designated by the vertical line, step force N1200F0 = . 
 

Several analyses were performed with different initial static curves. All analyses 
approximately gave the same values. It can be concluded, that the minimum value of 
the objective function and the plateau slope, increase with decreasing damping.  
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Figure 8: Total reaction of the initial (dashed curve) and the optimized design (full 

curve) for c=400N.s/m. 
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It is seen that the optimization procedure is very efficient if high c-values are 
considered. For low damping coefficient it was impossible to obtain a result, which 
would utilize the full plateau. In Figure 7 final static curves and in Figures 8 
comparison of the total reaction of the initial and the optimized design is plotted for 

N1200F0 = . A sensitivity analysis of the obtained results was performed in the 
sense that objective function was calculated for 1000 design taken as the optimized 
static curve affected by one localized perturbation of one point within 1%. It is 
worthwhile to point out, that the ordering values procedure, rarely kept the perturbed 
value at the same place. As expected, the less optimized case (low c) showed the 
most stable values. In the following graphs of Figures 9-11, the histograms of the 
objective functions values are plotted, for the case of N1200F0 = . 
 

Histogram of the objective function values, c=400N.s/m
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Figure 9: Histogram of the objective function values, c=400N.s/m. 
 

Histogram of the objective function values, c=200N.s/m
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Figure 10: Histogram of the objective function values, c=200N.s/m. 
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Histogram of the objective function values, c=100N.s/m
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Figure 11: Histogram of the objective function values, c=100N.s/m. 
 

Next analysis confirms, that the perfect plateau is not an optimized design. Then 
internal bumps appear in the total reaction whenever the displacement value goes 
out from the allowable interval. It must be pointed out, that the first “design” point 
(0,0) is fixed and it corresponds to the static equilibrium position when no force is 
applied. This point is not included in the optimization procedure. Because 30 design 
values are used within 10mm interval, the first design point is located at 0.32mm. As 
a consequence, the allowable displacement interval is in fact only ( )mm10,mm32.0 . 
Results are summarized in Tables 3 and 4. 
 
c (N.s/m) O (N) umax (mm) umin (mm) ueq (mm) 

400 31.86 (31.90) 10.00 9.86 9.87 
200 306.95 (307.04) 10.27 (bump) 0.32 0.50 
100 938.59 (942.13) 10.40 (bump) 0.16 (bump) 0.51 

 
Table 3: Summary of the results of the load case (i), step force N1000F0 = , with the 

static curve considered as the perfect plateau. 
 
c (N.s/m) O (N) umax (mm) umin (mm) ueq (mm) 

400 61.78 (62.00) 10.06 (bump) 9.03 9.03 
200 458.77 (460.30) 10.33 (bump) 0.03 (bump) 2.28 
100 1136.80 (1137.8) 10.46 (bump) 0.01 (bump) 4.20 

 
Table 4: Summary of the results of the load case (i), step force N1200F0 = , with the 

static curve considered as the perfect plateau. 
 

4.2 Load case (ii) 
 

In order to perform some comparisons, two step forces with values as in previous 
section are assumed with the same probability of occurrence. Cost functional is 
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given by Equation (3). Results are summarized in Table 5. It is worthwhile to 
mention that now the optimization procedure can be run in two ways, cost functional 
can be assumed in its scalar value, or, optimization can require improvement in each 
Oi, i=1,2, to accept the corresponding design curve. This fact is designated in table 
as “scalar” and “vector” in the first row. No significant differences were found.  
 

c 
(N.s/m) Step Ofin (N) 

scalar 
Ofin (N) 
vector 

Weighted sum 
(N) 

Ofin (N) 
1000 

Ofin (N) 
1200 

400 
total 220 (223) 223 (228) 20.5 (22.6) 18.5 (21.9) 22.4 (23.2) 
1000 73 (74) 77 (79) --- 18.5 (21.9) --- 
1200 147 (149) 146 (149) --- --- 22.4 (23.2) 

200 
total 358 (462) 436 (439) 31.9 (57.7) 26.5 (77.9) 37.2 (37.5) 
1000 147 (251) 194 (196)  26.5 (77.9) --- 
1200 211 (212) 242 (243)  --- 37.2 (37.5) 

100 
total 580 (650) 547 (682) 210 (216) 232 (244) 187 (188) 
1000 393 (462) 209 (313)  232 (244) --- 
1200 188 (188) 338 (369)  --- 187 (188) 

 
Table 5: Summary of the optimization results of the load case (ii). 

 
Optimised static curves are shown in Figure 12 for the scalar approach. It can be 

concluded, that formations of the respective plateaus at forces levels is not assured. 
Moreover, the difference between the optimization results from previous section is 
very large. Solution, which would mark plateaus at each equilibrium force level and 
within the range of corresponding displacements is impossible. In this formation 
there would be insufficient strain energy accumulated in the spring in order to 
prevent the bump at the maximum displacement. Therefore, mainly the higher 
plateau is above the second applied step force N1200F 0,2 = .  
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Figure 12: Final design of the static curves. 
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4.3 Load case (iii) 
 
In this load case the objective function can take into account both regimes, the 
transient as well as the steady-state one. Nevertheless, and because the transient 
effect is only temporary, we started with weight parameters 0tr =γ  and 1st =γ . 
Then the optimization problem reduces to the minimization of transmissibility. In 
the linear case the transmissibility can be expressed as: 

 

 
( ) 2

2
222

0

2
2

4
0

m
c

m
c

T
ω⎟

⎠
⎞

⎜
⎝
⎛+ω−ω

ω⎟
⎠
⎞

⎜
⎝
⎛+ω

= , (16) 

 
where ω  stands for the frequency of the excitation force and 0ω  for the natural 
frequency of the system. Usually, transmissibility is plotted with respect to the 
excitation frequency. But in our case, ω  is fixed and spring rigidity (governing the 
natural frequency) is the design variable. Therefore the graph of transmissibility 
with respect to the natural frequency will indicate the expected optimization result. 
This graph is shown in Figure 13a) for Hz50f =  and Hz100f = .  
 

 
 
Figure 13: a) Transmissibility versus the natural frequency for excitation frequency 

Hz50f =  (full line) and Hz100f =  (dashed line); b) Transmissibility versus 
excitation frequency according to Equation (9) for different values of c=100N.s/m 

(full line), 200 N.s/m (dashed line) and 400 N.s/m (dotted line), respectively. 
 

It is seen that the transmissibility achieves the lowest value when the natural 
frequency tends to zero. Therefore the optimised static curve will tend to a curve 
with a plateau at the equilibrium force, like in load case (i). Now the plateau can be 

T

[ ]Hzf0

m/sN200c ⋅=

m/sN400c ⋅=

T

[ ]Hzf
m/sN100c ⋅=



19 

developed only within the steady-state displacement range. Simplifying Equation 
(16) for 00 ≅ω , one gets: 
 

 
( ) 22 Cm

CT
+ω

≅ , (17) 

 
Then the graph of the transmissibility versus the excitation frequency for the 
different c-values used in this paper is presented in Figure 12b). It is seen from 
Figure 12b) that the transmissibility values are very low and that they increase with 
increasing damping. Low values of transmissibility will imply very low range of 
steady-state displacements and therefore hardly noticeable plateau. For this reason 
amplitude of the harmonic contribution was assumed as 500N instead of 1-2N. The 
optimised results confirmed all predictions. In each case plateau was easily formed 
and the objective function achieved the analytically lowest possible value. Results 
for excitation frequency ω=300rad/s=47.7Hz, F0=1000N and F1=500N are 
summarized in Table 6. 
 
c (N.s/m) Oini (N) Ofin (N) Oanl (N) umax (mm) umin (mm) 

400 212.77 25.84 (26.72) 26.66 7.54 7.32 
200 100.57 13.01 (13.48) 13.33 7.08 6.85 
100 102.26 6.84 (6.86) 6.67 8.03 7.79 

 
Table 6: Summary of the optimization analysis for the load case (iii). 

 
In Table 6 except for the values defined before, Oanl stands for the analytical value 
and umax and umin now refer only to the steady-state regime.  
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Figure 14: Final design of the static curves (detail of the plateau) with the range of 
steady-state displacements designated by two vertical lines, step force F0=1000N 

and harmonic amplitude F1=500N ( 0tr =γ  and 1st =γ ). 



20 

Objective function is very stable in all these cases, because significant part of the 
static curve does not influence the total dynamic reaction in the steady-state regime. 
However, in all these cases there is a very high reaction peak in the transient part. 
Therefore, in the next analysis 5.0tr =γ  and 5.0st =γ  were assumed. As expected, 
optimized solution is now very similar to the one obtained in load case (i). Plateau is 
formed at the equilibrium force level, because this condition is required in both 
regimes. Part of the objective function corresponding to the steady-state regime 
again achieves the analytically lowest possible value. Results are summarized in 
Table 7, where also comparison with the previous results is given. Thus “Reg.” 
stands for the regime, which is separated into “total” (the total objective function) 
and the parts from the transition (“tr.”) and from the steady-state (“st.”) part. Third 
column summarizes the objective function values obtained in the current analysis. 
Fourth column shows the objective function value for load case (i) on optimized 
static curve from the current analysis; and the next column brings the current 
analysis objective function values on the optimized static curve from load case (i). 
Last two columns include, for the sake of comparison, final values from Tables 1 
and 6 and sixth column designated “Sum” shows the weighted sum value if the 
optimum would be obtained in both regimes. 
 

c 
(N.s/m) Reg. Ofin (N) 

comb. 
O (N) 
step 

O (N) 
comb. 

Sum 
(N) 

Ofin (N) 
step 

Ofin (N) 
harmon. 

400 
total 33.4 (33.7) 62.39 32.4 22.2 18.5 (21.9) 25.8 (26.7) 

tr 40.1 62.39 38.1  18.5 (21.9) --- 
st 26.6 --- 26.7  --- 25.8 (26.7) 

200 
total 21.1 (21.3) 394 23.4 19.8 26.5 (77.9) 13.0 (13.5) 

tr 28.9 394 33.5  26.5 (77.9) --- 
st 13.3 --- 13.4  --- 13.0 (13.5) 

100 
total 65.1 (65.2) 756 138 119.4 232 (244) 6.8 (6.9) 

tr 124 756 240  232 (244) --- 
st 6.7 --- 37  --- 6.8 (6.9) 

 
Table 7: Summary of the optimization analysis for the load case (iii). 

 
It is seen, that two different behaviours can be detected: (a) when c=400 or 

200N.s/m, then the optimized curve from the load case (i) forms an optimum for the 
current analysis as well; and the weighted sum of last two columns is very similar to 
the value obtained here; (b) weighted sum of last two columns is much higher then 
the value in second column, because harmonic contribution smoothes the first peak 
in the total reaction in the way that the transient regime contribution is much less 
than in the case when only step force is considered. Comparison of reaction 
according to columns 3, 4 and 5 from Table 6 is given in Figures 15 and 16. 
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Reaction comparison (c=400N.s/m)
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Figure 15: Reaction comparison related to Table 7, column 3 (full bold line), 
columns 4 (dotted line) and column 5 (full line), c=400N.s/m. 

 

Reaction comparison (c=100N.s/m)

400

600

800

1000

1200

0.2 0.4 0.6 0.8 1 1.2

Time [s]

R
ea

ct
io

n 
[N

]

 
 

Figure 16: Reaction comparison related to Table 7, column 3 (full bold line), 
columns 4 (dotted line) and column 5 (full line), c=100N.s/m. 

 
4  Conclusions 
 
The work described here is a first step to design materials for passive vibration 
control. From the results obtained it is apparent that optimal behaviour can be 
achieved, however it is also clear that a precise definition of existing forces and 
design constraints is crucial for its success in practical applications. Once the 
optimal static curve(s) is identified future research will be directed to the design of 
cellular and/or composite viscoelastic materials achieving this behaviour(s). This 
application will have a direct and immediate impact on product design and 
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development, especially in the design of new mechanical components such as engine 
mounts and /or suspension systems. 
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