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With Randomly Oriented Cells

A new methodology to derive the linear effective constitutive law for a group of compos-
ites with random microstructure of a special kind is described as an extension of the
methodology proposed in Warren and Kraynik (1988) and of the methodology used in
polycrystal theory. The results are expressed in the form of specific bounds on effective

elastic constants. Practical importance is in the specific bounds when the methodology is
applied to cellular solids. Several examples are shown and compared with other published
results. The new contribution of this paper lies in the presentation of the methodology, -
derivation of new specific bounds in two dimensions, and comments related to already
published works on cellular solids.

1 Imtroduction

Proper description of the macroscopic behavior of composites
has been the subject of considerable research for many years; thus
several methodologies and techniques have been developed in this
area. This paper starts with a short outline of homogenization
techniques for composite materials and some remarks related to
cellular solids.

In many types of statistically homogeneous composites the ratio
of the characteristic size of heterogeneities to the size of the full
medium, 6, is very small, making numerical solutions that account
completely for these heterogeneities (for instance, by finite ele-
ments) almost impossible. Thus homogenization techniques are
often used. When solving mechanical problems, one replaces the
original problem by a problem defined on a fictitious homogeneous
medium with certain effective properties. These properties depend
on the mechanical properties of the phases, their volume fractions,
and the particular microstructure. The fictitious homogeneous me-
diom is the limit (as & tends to zero) of a sequence of heteroge-
neous media. Actual composites correspond to very small but
nonzero 8, and thus the effective properties must be understood in
an approximate sense.

There are two limit cases of actual composites that require
different modeling in order to determine the effective properties:
composites with a random microstructure (random composites)
and composites with a periodic microstructure (periodic compos-
ites). In deterministic theories, the first type allows the introduction
of a representative volume élement (RVE), which is, roughly
speaking, the smallest possible region of the composite with the
same effective properties as the original one (Hashin, 1970; 1983;
Nemat-Nasser and Hori, 1993; Ostoja-Starzewski, 1998). In the
case of a periodic microstructure, a basic cell, defined as the
(smallest possible) region which can construct the -full medium by
periodic repetition, can be introduced (Duvaut, 1976; Bensoussan,
Lions, and Papanicolau, 1978; Suquet, 1985a, b; Bakhvalov and
Panasenko, 1989; Guedes, 1990; Nemat-Nasser and Hori, 1993).
In both cases two levels are involved: the macrolevel, which is the
level of the fictitious medium, and the microlevel, i.e., the level of
the (rescaled) RVE or basic cell. If the microscale is defined such
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that the basic cell has a unit volume, the term unit cell is often used
instead.

For periodic composites, effective properties related to some
particular microstructure are obtainable in an exact form, at least
numerically. However, due to the complexity of the random mi-
crostructure, effective properties of random composites can only
be expressed either in the form of representative functions (usually
semiempirical) or in the form of bounds. For effectively isotropic
two-phase composites (with perfectly bonded phases) the well-
known Voigt and Reuss bounds were improved using the Hashin-
Shtrikman variational principle (Hashin and Shtrikman, 1962a,
1963) in Hashin and Shtrikman (1963), giving the Hashin-
Shtrikman bounds. They are optimal if, besides the phase proper-
ties, only the information about the phase volume fractions is
available. . '

In stochastic theories, additional quantitative characterization of
the microstructure can be expressed by n-point correlation func-
tions (Torquato and Stell, 1982) permitting the determination of
improved bounds for specific models of microstructures: spherical
inclusion models (Torquato, 1991, 1994, 1998), cell models (Lu
and Torquato, 1990), etc. In addition, a local effective property
may be defined for a mesoscale window (statistical volume ele-
ment corresponding to a lower scale than a RVE). This approach
forms the base of stochastic finite elements (Ostoja-Starzewski,
1993, 1994, 1998), permitting a numerical calculation of effective
properties again in the form of bounds.

Along this line, the polycrystal theory was developed. The first
Voigt and Reuss bounds on their effective constitutive properties
were improved using the already mentioned Hashin-Shtrikman
variational principle for polycrystals with various types of single-
crystal symmetry in Hashin and Shtrikman (1962b), Peselnick and
Meister (1965), Meister and Peselnick (1966), Watt (1979, 1980),
and Watt and Peselnick (1980). More recent work on polycrystals
has been devoted to the optimality of the Voigt and Reuss bounds

- (Avellaneda and Milton, 1989).

Cellular solids can be either found in the nature (cork, coral,
stalk and leaves of plants, some biomaterials, etc.) or manufactured
by foaming of polymers, metals, and ceramics or by other tech-
nologies. They can be used for absorption of the kinetic energy, for
thermal insulation, etc. The importance of cellular materials as
well as the necessity of suitable methodologies allowing a detailed
description of their properties increases.

A cellular solid (foam) is composed of an interconnected net-
woik of solid struts and shell parts, which can be assigned to cells
that are (usually with some modifications) repeated in the medium,
not necessarily in a periodic manner. Cellular solids can be clas-
sified as open-cell foams, consisting only of solid struts, and
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Fig. 1 Medium consisting of randomly oriented cells

‘closed-cell foams, containing mainly shell parts; see the main
‘monograph on cellular solids by Gibson and Ashby (1988). Actual
ams can be partly open and partly closed. Cellular solids can be
vViewed as composites with void and solid (generally nonhomoge-
neous) phases.

One of the main parameters that characterize a particular foam
is the relative density, s (the ratio of the foam density to the solid
phase density), which is low, usually limited by s = 0.3 (Gibson
and Ashby, 1988). Due to this fact at least one dimension of the
solid phase (thickness) at the cell level is small compared to the
characteristic cell size. This condition provides motivation for the
application of structural theories in homogenization calculations,
as shown in Dimitrovova (1997) for periodic foams and in Dim-
itrovovd (1997) and Dimitrovovd and Faria (1999), where bounds
on the effective properties of open-cell foams were derived. Since
they are strictly lower than the bounds for foams (including closed-
cell ones), they cannot be obtained by adapting, e.g., the two-phase
‘composite Hashin-Shtrikman bounds. Characterization of random
foams by representative functions, fitting some experimental data,
can be found in Gibson and Ashby (1988) or Christensen (1994).
Effective property calculation for some open-cell foams is pre-
sented in Warren and Kraynik (1988).

" “This paper provides a generalization of Warren and Kraynik’s

~ methodology, which is also an extension of the polycrystal meth-
~:.odology, allowing a determination of the effective constitutive
: properties of some random composites by terms closely related to
-~ their particular microstructure.

"2 Composites With Randomly Oriented Cells

. Two-phase composites with linear homogeneous isotropic

phases (and the related foams) are only considered in this paper.
The proposed methodology relates to composites with random
microstructure of a special kind, named media consisting of ran-
domly oriented cells (MRO). Before their definition, some auxil-
iary terms are introduced. Let a periodic composite and its possible
" basic cell be given and defined as the original periodic medium
- (OPM) and the original cell, respectively. Let us fix the local
coordinate system in the basic cell and call it the cell coordinate
system Then MRO (Fig. 1) are defined as random media satisfy-
1ng the following requirements: (i) particular original cells appear
in‘'a RVE with all possible rotations of the cell coordinate system,

f'i RVE with the same probability. Consequently, the effective
- 1sotropy of MRO is ensured.
" In order to calculate MRO (effective) properties, in addition to

necessary to introduce the mesolevel (Fig. 1). Thus, the original
- cells correspond to meso-points forming the RVE. Each meso-
point is characterized by the same OPM (effective) properties and
the nonhomogeneity in MRO is caused by the different rotations of
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(i) all rotational angles of the cell coordinate system are present in

the micro and macrolevel used in homogenization techniques, it is

<

Fig. 2 A basic cell of the regular cubic lattice

the meso-points. This description is similar to the polycrystal
model (Hashin and Shtrikman, 1962b), if single crystals are con-
sidered as the original cells. However, as in (Warren and Kraynik,
1988), we assume that the original cell size does not vary, other-
wise relative volumes of equally oriented original cells would have
to be considered (Hashin and Shtrikman, 1962b), (Ferrari and
Johnson, 1988).

The partition of the RVE into original cells requires an approx-
imation, but the error (smaller for foams due to the large volume
fraction of the void phase) introduced in this way is not important
due to the different scales. The reasons why OPM was introduced
are: (a) MRO phase volume fractions can be easily kept and (b)
OPM permits a unique characterization of the meso-point effective
properties (meso-properties). MRO model was already used in
Warren and Kraynik (1988) with OPM as the cubic lattice (Fig. 2).

In the polycrystal theory, the boundary of the single crystals
need not be considered, thus no assumption about the single-
crystal shapes is required. However, for specific purposes, the
polycrystal microstructure may be idealized, e.g., by Voronoi cells
(Werner, Siegmund, Weinhandl, and Fischer, 1994; Ostoja-
Starzewski, 1993, 1994) or by spheres or layered models (Schul-
gasser, 1983; Avellaneda and Milton, 1989).

In some cases, it may be preferable to define MRO by repeated
elements fulfilling the requirements (i) and (ii) in a RVE, but to
which no OPM can be related as, e.g., in the example of the
tetrahedral lattice (Fig. 3) in (Warren and Kraynik, 1988). In order
to calculate effective properties of a repeated element or, in other
words, to characterize the meso-properties, boundary conditions
like uniform strain, uniform stress or others can be imposed on the
boundary. Meso-properties are not uniquely stated, but usually it is
possible to determine whether the calculated properties correspond
to an upper or a lower estimate of the actual properties.

The following condition holds for the tensor of MRO elastic
stiffnesses in matrix representation, C**°, which is to be deter-
mined:

EMRO —_ CMRO . EMRO’ . (1)

where - stands for the matrix multiplication and %*° and E™*° for
the macro-stress and macro-strain tensor in vector representation,
respectively. The macro-stress (macro-strain) is defined as the
volume average of the micro-stress (micro-strain) over a RVE. In
MRO model averaging can be divided into two steps. In the first
step the microlevel fields are averaged with respect to the cell
coordinate system in each original cell separately, giving OPM
stress £°™ and strain E°™. In the second step X°™ and E°™ are
rotated in each original cell (meso-point) to the RVE coordinate

Fig. 3 A repeated element.in the tetrahedral lattice
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system and then the averaging operator is applied. The second step
is equivalently given by the orientational average of OPM values,
which is expressed by the invariant integral (Lagzdins, Tamuzs,
Teters and Kregers, 1992). We use the notation %"*° = [%°] and
E"° = [E°™] in this case. v '

Due to the complexity of the MRO microstructure it is
obvious that CM®° cannot be generally available in an exact
form, but only in the form of specific MRO bounds. We state
them in Section 3 under the assumption of uniform meso-strain
or meso-stress, justifying the usage of the names specific MRO
Voigt and Reuss bounds. They are expressed in terms of OPM
properties and thus are closely related to the particular micro-
structure. The distance between them depends on the level of
the OPM anisotropy. Specific MRO Voigt (Reuss) bound must
not-be confused with the two-phase composite Voigt (Reuss)
bound resulting from the assumption of uniform micro-strain
(micro-stress). )

The above bounds can be improved using the Hashin-
Shtrikman variational principle (Hashin and Shtrikman, 1962a,
1963) in cases, where the related OPM has some kind of
effective symmetry, yielding the specific MRO Hashin-
Shtrikman bounds. In Section 4 the case when the related OPM
possesses a cubic (square in two dimensions) symmetry is
treated. Let k& and K be bulk moduli in two and three dimen-
sions, respectively, 'G and *G be two shear moduli (the isot-
ropy condition is 'G = G = G), then in two dimensions under

plane stress (superscript o) “€°™ reads as
dkOPM + a,lGOPM trkOPM - U.IGOPM 0
::rk OPM __ o‘,lG‘OPM ok OPM + o',lG OFPM 0 . (2)
0 0 0,2 G OPM

If the generalized plane-strain assumption is adopted, (2) is ex-
tended in a usual way, the “in-plane” part is formally the same, but
the moduli correspond to the plane-strain assumption (superscript
€). C°™ in three dimensions is given by

KOPM + 41GOPM/3 KOPM _ 21GOPM/3 KOPM - élGOPM/3

KOPM . 21GOPM/3 KOPM + 41GOPM/3 KOPM _ 21GOPM/3

KOPM — 21GOPM/3 KOPM — 21GOI’M/3 KOPM + 41GOPM/3 .
0 0 0
0 0 0
0 0 0

In Section 5 the four specific bounds are applied to cellular solids,
explicit analytical results are presented, compared with results pub-
lished in Warren and Kraynik (1988), Gibson and ‘Ashby (1988), and
Christensen (1994), and some conclusions are stated.

The first contribution of this paper is inthe extension of the
polycrystal methodology to MRO and the key issue in the
proposed methodology is the proper characterization of the
meso-properties. Furthermore, the ‘specific MRO Hashin-
Shtrikman bounds derived in Section 4 for two-dimensional
media have not been previously published (analogous bounds
for three-dimensional media can be adapted from polycrystal
bounds by replacing the single-crystal properties by the OPM
properties).

The second contribution of this paper is in the generalization
of the methodology proposed in Warren and Kraynik (1988).
The calculation of effective properties is shown there only for
foams consisting of straight equilateral struts and it is not
presented in a general way. The final result corresponds to the
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specific MRO Voigt bound, thus here a correct interpretation of -
this result is provided, along with the establishment of a link
between the methodology in Warren and Kraynik (1988) and
the meéthodology for polycrystals.

3 Specific MRO Voigt and Reuss Bounds

It holds (based on the polycrystal theory) that the specific MRO
Voigt (Reuss) bound on C**° can be obtained by orientational
average (orientational average and inverse) of the OPM elastic
stiffnesses C*™ (compliances D°™). The statement can be justi-
fied as follows: let a MRO and its RVE be taken. Let us assume
that (in the vector representation) (E™*°), = E}F*° = a = [E°™],,
while the other components are zero. Then

EMRO — [EOPM] — [COPM, EOPM] — a[cOPM]“ (4)

where [C™], denotes the first column of [C%™]. Consequently,
taking into account the assumption about uniform meso-strain,
[CO™] = CM* and [C°™] is the specific MRO Voigt (upper)
bound on C¥®°. Inequalities between matrices are taken in the
sense that the corresponding difference is positive (negative) semi-
definite.

Analogously, when the only nonzero component is S =g=
[3°™],, one gets

EMRO = [EOPM] = [DOPM. 3, 0M] = g[D oMY 3)

where [D°™], denotes the first column of [D°™], consequently
[DM1~! = CMR.and [D°™] ! is the specific MRO Reuss (lower)
bound on CM©. ’

Summing up,

[DOPM] -1 < CMRO < [COPM]. (6)

(3)

SO OO

ZG OPM

[C™] and [D°™] are not mutually inverse and equalities in (6) are
saturated only for CO™ = [C°™] (equivalently D°™ = [D°™])
holding, e.g., for au effectively isotropic OPM.

Let us determine [C°™] and [D°™]. An arbitrary rotation of the
cell coordinates in three dimensions is described by three indepen-
dent parameters. Direction cosines are not convenient (they give
nine parameters with six additional constraints of orthonormality),
thus it is usual to use Bulerian angles. The choice is not unique; we
adopt the one from (Warren and Kraynik, 1988), zxz with the link
to @, 0, . The invariant integral for a fourth-order tensor R is
defined as

1 2 ar 27 : )
Rl = = f J J RipgTinTjnTip Ty sin Odod 0dyp.
" 0 0 0

Q)

In (7), the summation convention was adopted, all subscripts take
values 1, 2, 3, and the transformation matrix T is
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When expressing [C°™] and [D°™] we used an adjustment of (7) to
e matrix representation of fourth-order constitutive tensors accord-
g to (Lekhmitskii, 1981). {C°™] or [D°™] can be given in the form
f single contributions of C°™ or D™ components, which is sam-
harized in Table 1. Only components §j with 4, j = 1, 2, 3 and
omponents 44; 55, and 66 of C™™ or D°™ contribute to [C*™"] and
D°™]. One can conclude from Table 1 that [C°™] and [D™] are

" sin ¢ cos s + cos ¢ cos 6 sin

cos ¢ cos ¢ — sin ¢ cos 6 sin _ sin 6 sin ¢
T = | —(cos ¢ sin § + sin ¢ cos 6 cos ) —(sin ¢ sin § — cos ¢ cos 6§ cos ) sin 8 cos ¥ |, ®)
sin ¢ sin 6 . —cos ¢ sin 8 cos 6

contributions to [C®™] and [D°™] cancel. One can conclude from
Table 2 that MRO are transversely isotropic and that the specific
bounds on in-plane constants' can be written ‘as (for the sake of
simplicity superscripts € or o in C°™ and D®™ components are
omitted):

cg + o+ 205

&7, MRO
sotropic and that the specific bounds on K™ and G*™° are (sub- kv 4 L
¢ripts V and R stand for Voigt and Reuss bounds, respectively)
o GO+ CEY 4 CEP 20+ C8P +
14 9 4
MRO — 1
DY+ DPM+ DFY + 2(DFY + DM + DY)’
o O G4 O (CM 4 OO+ OO + 3(CEP + O+
. v 15 ’
. 15
G0 = OPM OPM OPM OFM OFM OFM OPM OPM onir - (9)
4(D11 + D3 + Dy ) —4(Dy -+ D3+ Dy ) + 3(D44 + D55 + Des )
Let the generalized plane-strain assumption Be adopted and the o kv
independence of the MRO microstructure on coordinate 1 be fHRO =

assumed in the two-dimensional case. The invariant integral is

l 2
[R]ijkr = _2; J Rmnquim Tjn Tkp Trqd()o’ (10)
0
where
1 0 0 ,
T=|0 cose sinof, 1D

0 -—sing cos ¢

Table 2 summarizes the results in the same way as Table 1; if
contributions of D™ are different from those of C°™, they are
written in brackets. Components 24, 34, 56 and 42, 43, 65 should be
included in Table 2, but due to the symmetry of C°™ and D°™, their

" DI DFF DI 2DE - (D DE

O+ O — 20N + 4CH
8 ?

EGI‘>/1R0 —

2
‘G0 = : (12
© T DI DI - 2DE" + DY )

In the case of plane stress the only formal difference is in k" :

%k RMRO — 1

= DI T DI+ 2D (13)

Table 2 Contributions of C°™ and D°™ components to [C°"™] and
[D°P¥], respectively, in the two-dimensional case

Taggﬁ 1 Contributions of C°™ and D" components to [C°™] and Contibutions 1o Components from C™ (D)
[D°"™, respectively, in the three-dimensional case .
[C'YI'.\I] ([D(,)IM])
A c o p— c " ! 11| 12,13 | 21,31 | 55,66 | 22,33 2332 44
Contributions to Components from C omponents from D | . ¢omponents
o : i 0 0 0 0
(") or (D¥™] | .. o] . PN i 1 1 0 0
fi for i#j, fe for for iz, fi i
ii for | ij for iz}, | ii for 3 it ij for i=j, | i1 for 7| ENE 5 7 o 0 5 5 5
components | i=123 | ij=123 | =456 | = |i=12,3 | ij=123 |i=456 | = §
: 21.31 0 0 12 0 0 0 0
i for i=1.2.3 1/5 1/15 4/15 0 /5 /15 1/15 0} 55,66 0 0 0 1/2 0 0 0
ij for i, i.j=1,2.3 | /15 2115 | -2/15 [ 0 { V15 215 | <1730 | © 2233 0 0 0 0 3/8 1/8 172 (1/8)
ii for i=4,5.6 1/15 -1/30 1/5 7|.0 | 4/15 -2/15 1/5 0 23,32 0 0 0 0 1/8 3/8 -l/_2 (-1/8)
rest 0 0 0 0 0 0 0 o | 44 0 0 0 0 118 (1/2) | -1/8(-172) 12
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Fig. 4 Comparison of the proposed curve ®*G* with the upper bound
(linearized form, G%; with nonlinear effect included, ®*"G%) and with the
specific MRO bounds if OPM is the nonaligned lattice (G}°", GEY, GIiSY
and GIiSY)

but, in fact, all bounds differ since the C°™ and D°™ components
must be also taken in accordance with the assumption of plane
stress. ‘

If only some estimate of meso-properties is available (either it is
difficult to express OPM properties using the periodicity boundary
conditions or only repeated elements are introduced in MRO
characterization) it can be easily verified that introducing C2™ and
(Co™ ™" with CS™ = C°™, specific upper and lower bounds from
(9) and (12)~(13) are still upper and lower bounds. This does not
hold for CZM < o™,

If the related OPM possesses effective cubic or square symme-
try, its bulk modulus is invariant under rotation, so K°™ = Ko™
—_ K}?PM — KMRO or kOPM — k(‘BPM — kgPM — kMRO (ln two
dimensions this holds for plane stress as well as generalized plane
strain). Then in three dimensions,

21GOPM + 32G0PM

MRO _
GR had

2 3 (14

T oM + Tz G oM
and in two dimensions (with the corresponding superscript),

lGOPM + ZGOPM
2 ?

MRO __ MRO _
Gy = GYRO =

1 (15)

IGOPM + ZGOPM

We stated in Section 2 that the distance between the specific
bounds depends on the level of OPM anisotropy, which is now
expressible as the ratio between 'G®™ and *G°™,

4 Specific MRO Hashin-Shtrikman Bounds

In this section the specific MRO Hashin-Shtrikman bounds, as
improvements of (15), are derived for two-dimensional media, if
the related OPM 1is effectively square symmetric. Three-
dimensional analogs of these bounds, i.e., improvements of (14),
can be taken from Hashin and Shtrikman (1962b), provided that
single-crystal properties are replaced by OPM properties.

The improvement of (15), based on the Hashin-Shtrikman vari-
ational principle, follows the basic steps from Hashin and Shtrik-
man (1962b). Let us adopt the generalized plane-strain assumption
and let U™*° stand for the strain energy density in the given MRO.
It is proved in Hashin and Shtrikman (1962a) that U™ is the
stationary value of some functional U”. In addition to terms related
to the MRO, the functional U” contains characteristics of a refer-
ence medium, which is geometrically identical to the MRO. The
reference medium is assumed to be homogeneous, transversely
isotropic (at the mesolevel in our case). Its properties are unknown
and chosen in a way to optimize the bounds, derived later on. The
most important term in U” is the stress polarization tensor P given
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by P = 3™ — C°. E™C where C° are effective eldstic stiff-
nesses of the reference medium.

If CY®° — C° is positive (negative) definite, UM is the absolute
maximum (minimum) of U”. In the derivation of the bounds a
special kind of the stress polarization field P is chosen, and then,
P can be taken as the only variable in U”. Consequently, the
extreme condition is obtained by taking the variation of U” with
respect to P. Let us denote the polarization field that satisfies this
extreme condition by P°. The stationary value U is

S = U°+4[P%]-E°, (16)

where E° is the macro-strain in the reference medium. Since the
orientational average [P*] has to be introduced into (16), not P* but
[P*] can be solved from the extreme condition. Using the same -
notation B, and B as in (Hashin and Shtrikman, 1962b), one
obtains

2B
2 __go 17

P = 1525, 2"

The constant 8 is determined in (Hashin, 1965) in terms of the (not
yet specified) moduli &’ and “G*, but obviously “k° = %°™. Thus
k OPM + 2 G 0
45G0( ekOPM 4 EGO) .

B(ekOPM, eGO) — (18)

B, is a component with subscript 44 of the orientational average of
matrix representation of a tensor ((C°™ — C%™! — BI)™!, where
I is the identity tensor. It is given by

1

Bz =
e,lGOPM G0 4B(k°™, <G

1
+ . (19

2
~agom o ~ 4B, <G°)

The specific bounds on ‘G can then be expressed from the
following expression:

B,
1+ 2B,B(%%™, “G%)

If C°™ — C° is positive definite (*'G°™ > ‘G° and “*’Go™ > -
‘G, (20) yields the lower bound; the upper bound is obtained
when Co™ — C° is negative definite (*'G°™ < *G° and “*G°™
< “G"). Since (20) is a monotonically increasing function of ‘G°,
the best lower (upper) bound is obtained for the highest (lowest)
possible ‘G° ensuring that Co™ — C° is still positive definite
(negative definite). Let, e.g., “*G°™ > “*G°™. Consequently (+
and — stand for the upper and the lower bounds, respectively, HS
refers to Hashin-Shtrikman bounds):

EGO +

(20)

Fig. 5 A basic cell of the nonaligned lattice
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1%. 6 Comparison of the specific MRO bounds of the tetrahedral lattice
(GF" and GIF") and the specific MRO bounds if OPM is the regular cubic
attice (GS*®, GSU%, GEYE, and GFY®) with the proposed curve °G* (full line)

HS+
1
* 1 ‘ and
2<T,2—G—MT-1G—OPM —_ B(ekOPM’ E,IGOPM)>
{\_lfléig = &2(;OPM
1
* @1)

1
2<W = BEE™, "ZGO"M))

.The case when €1GOM < €2GOM cap be treated similarly, yielding
thie same results, only + and — have to be exchanged. The bounds

under the plane-stress assumption are formally equal, only the
plane-strain shear and bulk moduli are replaced by the plane-siress

ones.

In the three-dimensional case when, e.g., 'G®™ > *G°™, it

O = GO > and

—gomr —Tgomi — 4B, 'GO™)

" ‘ MRO _ 2,~OPM 2

Y = GO + ———— . )

gomr —zgomi — 6B(K, "GO™)

where B(K°™, G°) is given by
3(KO™ +2G°

B(KO™, G%) = ( ) (23)

T 5GBKM +4GY)

5 Examples and Comparisons

Let us apply the above theory to foams. We restrict ourselves to
open-cell foams, since then explicit analytical results of OPM
properties can be simply obtained, see (Dimitrovovd, 1997).

Fig. 7 The regular square, the square with two obliques, and the dia-
mond lattices )
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Fig. 8 Comparison of the specific MRO bounds related to the regular

square lattice (G§%, G%, G3&Y, and Gi§Y), the square lattice with two
obliques (GSE%) and the diamond lattice (GR¥,) with the linearized

upper bound G} (full line)

Mainly OPM with cubic (square in two dimensions) effective
symmetry are assumed and the struts composing the foams are
taken with constant square  cross-sectional areas. In two-
dimensional cases the plane stress assumption is adopted. All
curves in the graphs are plotted as functions of the relative density
s and in a dimensionless form (divided by the Young’s modulus of
the solid phase), however, for the sake of simplicity the notation
from the previous sections is not altered.

The first comments are related to the proposed function for
dimensionless effective shear modulus G* of isotropic open-cell
foams from (Gibson and Ashby, 1988), GAG* = 35%/8. This
function is compared in Fig. 4 with the linearized upper bound G*%
= §/15 of open-cell foams derived in (Dimitrovové, 1997) and
with four specific bounds (superscript NON) related to MRO with
OPM as the nonaligned lattice (Fig. 5). The choice of the basic cell
was inspired by Gibson and Ashby (1988), who did not use itasa
periodic cell but rather as a conceptual cell expressing the bending
response of open-cell foams. The specific bounds G and Giey
are quite close, allowing a good estimate of an actual MRO
response. The response is soft and so this particular MRO could be
used as a model for very soft open-cell foams. It is seen that,
although “*G* is fitted to the experimental data, it is above G for
higher s (69 percent for s = 0.3). To explain this fact: first, it
should be pointed out that G* does not include the bending
contribution (it was shown in (Dimitrovovd, 1997) that it is small
and it is not well defined since it varies for different optimal
media) and that 5 in G% is expressed from a simplified relation.
For the optimal medium derived in (Dimitrovové, 1997) and for
s = 0.3 the increase in G* due to the bending contribution is five
percent (it is little different for another cross-sectional shape) and
the increase due to the higher-order terms in s is 22 percent; the
curve with both nonlinear effects, ®'G?, is also included in Fig.
4. Second, recent experimental data for G* in (Gibson and Ashby,
1988) are available only for s € [0.01, 0.03]. The extension of
SAG# from low values of s (where it reflects only the bending
response) to high values of s neglects the axial contribution, which
now becomes more important. It would make the curve represent-
ing G* more straight and lower, see (Dimitrovovd, 1997). More-
over, for high values of s, *G* coincides with the data for
closed-cell foams, which are generally stiffer. As regards the other
data presented in (Gibson and Ashby, 1988) as data of open-cell

_ foams, G* could be calculated from the data of Young’s modulus

and Poisson’s ratio obtained by Gent and Thomas (1959). Such
values follow the curve °*G*. Gent and Thomas’ data are for s €
[0.1, 1]. Close to s = 1, when the specimens are not any more
cellular, the significance of the data is questionable in our context.
Also, no photographs are shown in Gent and Thomas (1959), the
specimens for s close to 0.3 may be partly closed-cell foams, since
the data basically coincide with other data of closed-cell foams.
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Other comments are related to the paper by Warren and Kraynik
(1988). The first example there, the tetrahedral lattice (superscript
TET), is MRO composed of repeated elements (Fig. 3). Meso-
properties are calculated (for an arbitrarily rotated element) under
uniform boundary strain applied at the center of the strut cross
sections and under no restriction on cross-sectional rotations. Re-
peated elements are self-equilibrated, but it is difficult to justify the
equilibrium between neighboring ones. Meso-properties thus cor-
respond to some upper estimate. The final result in (Warren and
Kraynik, 1988) is in fact G*', which should not be presented as
the actual response. Also the calculation could be reduced by
calculating the meso-properties with respect to some fixed coor-
dinates and then introducing them into (9). C™" does not possess
cubic symmetry, thus specific bounds from (22) are not apphcable
but K3 = KF'. Two specific bounds G2 and GIF* are com-
pared in Fig. 6 Wlth a function for open-cell foams with mainly
bending response proposed in (Christensen, 1994), ‘G* = 95%/40,
and with four specific bounds (superscript CUB) related to the
second example in (Warren and Kraynik, 1988), where OPM is the
regular cubic lattice (Fig. 2). Boundary conditions of the kind
described above incidentally coincide with the periodicity bound-
ary conditions, however, again only G{® (its linearization coin-
cides with G%) is presented in (Warren and Kraynik, 1988). It is
seen from Fig. 6 that G} and G7= are quite close and that °G*
(which was also fitted to experimental data) shows an excellent
agreement with them. It can be thus concluded that the tetrahedral
lattice is a very good mode] for an open-cell foam representation
The distance between the other four specific bounds is very large
(Gf,gf and Gfs® provide a significant improvement of G5 and

Gi™), since 'G™ expresses only axial response, while 2G°™
expresses only bending response. In the specific bounds the axial
response becomes the essential one, since the curves are almost
straight. It is seen that in this case the estimate of the actual
response by Gy could Tead to a significant discrepancy. Thus a
proper understanding of the results is very important.

To conclude the comparative remarks, we also show some
two-dimensional examples in order to justify the specific bounds
(21) proved in Section 4. Related OPM are the following: the
regular square, the square with two obliques and the diamond
lattices (Fig. 7; basic cells are marked by bold lines). In Fig. 8 the
specific bounds (superscripts SQU, OBL, and DIA) are compared
with the linearized upper bound G*% = s/8 (Dimitrovovd and
Faria, 1999). Since the square with two obliques (strong medium)
and the diamond lattice (soft medium) are “almost” effectively
isotropic, the specific bounds practically coincide and in Fig. 8
only Gy and Grg: are plotted. The regular square lattice pos-
sesses a high level of anisotropy, which justifies the distances
between the four specific bounds (Fig. 8). As was found for the
three-dimensional analog of this medium, G3° in its linearized
form coincides with G*.

6 Conclusions

In this paper a simple and practical way of expressing effective
elastic constants of MRO in the form of specific bounds is pro-
posed. The distances between the specific bounds depend on the
level of the OPM anisotropy. Several examples of open-cell foams

where the specific bounds can be expressed in an explicit analyt-

ical form were shown. From the three-dimensional examples we
conclude that: (i) the proposed function in Gibson and Ashby
(1988) should reflect the axial response of open-cell foams for
higher relative densities and should be slightly lower there; (ii) the
basic cell of the nonaligned lattice taken as an original cell forms
a very soft MRO medium, which is not convenient to use as a
general characterization; (iii) the tetrahedral lattice, with very close
specific bounds (permitting a good estimate of the actual response)
provides a very good model for open-cell foam characterization;
(iv) MRO with OPM with a high level of anisotropy cannot be
characterized by the specific Voigt bound.. This is also the reason
why we provided improvements of specific Voigt and Reuss
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bounds in two-dimensional case, for MRO with effectivély square
symmetric OPM, which is a common property of many two-
dimensional media. As an additional result, related to Dimitrovovg
(1997) and Dimitrovova and Faria (1999), we found two more
G*-optimal media, namely, MRO with OPM as the regular cubic
or square lattice.

The simplifying assumptions stated in the beginning of Section
2 are not inevitable for the proposed methodology; thus an exten-
sion of the methodology to more general composites can be
developed.
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