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Abstract Structures subject to moving loads have several in rail, road and bridge
engineering. When the velocity of the moving system approaches the critical
velocity, then the induced vibrations are significantly augmented and safety and
stability of the structure as well as of the moving system are compromised. The
classical models predict the critical velocity much higher than the one observed in
reality, because the wave propagation is restricted to the beam structure. But if the
beam is supported by elastic continuum, then the waves can be dominant in the
foundation and the interaction with the beam cannot be overlooked. This contri-
bution analyses the critical velocity of an oscillator moving on a beam supported by
a foundation of finite depth by semi-analytical methods.

1 Introduction

The objective of this contribution is to fill the gap in semi-analytical solutions
related to wave propagation induced by moving loads. An analysis of the critical
velocity of an oscillator moving on a beam supported by a foundation of finite depth
is presented. Such analysis is important for transport engineering, as structures
subjected to moving loads have several applications in rail, road and bridge engi-
neering. The classical model where the beam structure is supported by massless
linear springs is still used by several companies, due to its simplicity. Nevertheless,
in this model the wave propagation is restricted to the beam structure and no
dynamic interaction with the foundation can be accessed. Models considering
beams placed on elastic continua of finite depth provide better access to the
interaction mechanism. Nevertheless, as the inertial effects are important in the
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supporting structure, they are also important is the moving system. This means that
the moving system should not be approximated by moving forces, as it is com-
monly done, but at least by a moving oscillator.

There are already several works dedicated to analytical and semi-analytical
solutions, mainly concerned with stability issues of the moving oscillator, [1, 2]. In
this paper different approach is presented directly linked to the issue of the critical
velocity. At first, the problem of a moving force travelling over a beam supported
by a finite depth elastic continuum in two-dimensions will be reviewed. Then, the
semi-analytical solution of the mass moving on a beam supported by elastic springs
will be extended to moving oscillator and validated by software LS-DYNA. Finally,
the foundation will be substituted by frequency dependent springs, which is an
acceptable approximation of the elastic finite depth continuum, and conclusions on
the critical velocity will be drawn.

2 Finite Depth Elastic Continuum

It is assumed that the load P is traversing an infinite beam supported by a foun-
dation of finite depth H, by a constant velocity v, as depicted on Fig. 1. It is further
assumed that: (i) the beam obeys linear elastic Euler–Bernoulli theory; (ii) the
foundation is represented by a linear elastic homogeneous continuum of finite width
b under plane strain condition; (iii) the beam may be subjected to a normal force
N acting on its axis (considered positive when inducing compression); (iv) gravi-
tational effects on the beam and on the foundation are neglected.

It was derived in [3] that if horizontal displacements are omitted, but shear
deformations are accounted for in the vertical dynamic equilibrium of the foun-
dation, then the critical velocity ratio acr defined as acr ¼ Vcr=vcr, where Vcr is the
new value of the critical velocity and vcr is the classical value of the critical velocity
of the load passing a beam on Winkler’s foundation, is governed by an approximate
formula

acr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gN

p
� #s
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Fig. 1 Infinite beam on an
elastic foundation of finite
depth subjected to a moving
load
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where, #s is the shear ratio defined as #s ¼ vs=vcr with vs being the shear-wave
velocity, and M is the mass ratio defined as the square root of the foundation mass
to the beam mass M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qbH=m
p

with q being the soil density and m the mass per
length of the beam. Thus, for a lower mass ratio, the critical velocity approaches the
classical value vcr;N with the effect of the normal force specified by the ratio gN ; and
for a higher mass ratio, it approaches the velocity of propagation of shear waves in
the foundation, which is the lowest wave-velocity of propagation related to the
model adopted, because the Rayleigh waves cannot be developed if horizontal
displacements are not properly introduced.

In the full two-dimensional model, both dynamic equilibrium equations are
considered and thus horizontal displacements are not omitted. The system of
governing equations read

lDuþ kþ lð Þr r � uð Þ ¼ qu;tt ð2Þ

EIw;xxxx þNw;xx þ cbw;t þmw;tt þ pf ¼ Pd x� vtð Þ ð3Þ

where u ¼ ux; uzð Þ is the vector of the displacement field in the foundation, k and l
are Lame’s constants of the elastic continuum, EI and cb stand for the bending
stiffness and the coefficient of viscous damping of the beam, pf is the foundation
pressure and t is the time. In this paper, derivatives will be designated by the
corresponding variable symbol in the subscript position, preceded by a comma.
Moreover, r is the gradient and D is the Laplace operators applied on spatial
variables x, z. The unknown beam deflection w x; tð Þ, displacement uz, spatial
coordinate z and force P are assumed positive when acting downward. Spatial
coordinate x is positive to the right, the load travels from the left to the right and
finally, d is the Dirac delta function.

The solution method exploits displacement potentials and moving coordinate.
Then, for the steady-state solution time dependent terms can be neglected and after
the Fourier transform, analytical solution can be obtained in the Fourier space. The
additional interface condition is ambiguous and can be written in form of zero
horizontal displacement (ZHD), zero shear stress (ZSS) or some combination of
these two in form of horizontal interface spring. The critical velocity can be
identified in a semi-analytical way by identification of double poles on the real axis
of the Fourier variable of the beam displacement image. Approximate formula for
the critical velocity ratio is given as a sum of two parts, one is an addition to the
previous Eq. 1 and the other one is an adaption Eq. 1

acr;add ¼ a1#j
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where aN ¼ 2agN #j � gN
� �2

with a ¼ 1 or 10 when #j \gN . In addition the
subscript j is related to the velocity of propagation of shear waves, thus j = s,
a1 ¼ 0:3, a2 ¼ 0:4, a3 ¼ 0:99 for ZHD; and for ZSS it is related to the velocity of
propagation of Rayleigh waves, thus j = R, a1 ¼ 0:5, a2 ¼ 0:4 and a3 ¼ 0:98, so
#R ¼ vR=vcr, where vR is the velocity of propagation of Rayleigh waves. Results of
the critical velocity are slightly affected by this additional interface condition, as can
be seen in Fig. 2.

In Fig. 3 the influence of the normal force is shown for gN ¼ 0:5, simplified
approach and ZSS condition are placed together in one graph for #s 2 0:5; 1:5h i.
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Fig. 2 Critical velocity ratio: simplified model (dotted), ZHD condition (dashed), ZSS condition
(full), #s ¼ 1:1
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Fig. 3 Critical velocity ratio: simplified model (dashed), ZSS condition (full grey), #s2 0:5; 1:5h i,
for each case the curves are starting from the bottom
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It is seen, that there are some differences between the results of the critical
velocity ratio related to ZHD and ZSS reflected especially in the asymptotic value
of the critical velocity, which is vs and vR for the two conditions, respectively. On
the other hand the asymptotic value of the simplified model and ZHD is approxi-
mately the same.

3 Massless Springs

In order to extend the previous analysis to the moving oscillator, finite beams on
elastic springs foundation will be considered first. The reason is that, as shown in
[4], the results on long finite beams provide very good approximation to the results
related to infinite ones, so long as the mass is added to the moving force. Then the
semi-analytical technique for solution of the moving mass problem by eigenvalues
expansion can be extended to the moving oscillator and finally to the frequency
dependent foundation. Last step would be to consider the complete
two-dimensional continuum.

Thus, let a uniform motion of a constant mass and a vertical force with harmonic
component along a horizontal infinite beam posted on a two-parameter visco-elastic
foundation be assumed. Besides the previous simplifying assumptions, it is
assumed that the mass is always in contact with the beam and its horizontal position
is determined by its velocity. The problem at hand is depicted in Fig. 4.

The equation of motion for the unknown vertical displacement reads

EIw;xxxx þ N � kp
� �

w;xx þmw;tt þ cbw;t þ kw ¼ p x; tð Þ ð6Þ

with the loading term being

p x; tð Þ ¼ PþP0 sin xf tþuf

� ��Mw0;tt tð Þ
� �

d x� vtð Þ ð7Þ

Because this analysis will be used only for representation of the infinite situation,
boundary conditions can be selected in the most convenient way. Assuming that

( )0 sin f fP P tω ϕ+ +

v

k

MN N

c

,EI m
pk

Fig. 4 Finite beam on a visco-elastic two-parameter foundation subjected to a moving load and a
normal force
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only n modes will be used, a compact matrix form for the generalized coordinate
calculation can be presented as

M tð Þ � q;tt tð ÞþC tð Þ � q;t tð ÞþK tð Þ � q tð Þ ¼ p tð Þ ð8Þ

where square n � n matrices M, C, K are not approximations resulting from some
discretization of the problem, but are defined by vibration modes in their exact
analytical form

Mjk ¼ djk þMwj vtð Þwk vtð Þ ð9Þ

Cjk ¼ djk
c
m

þ 2Mvwj vtð Þwk;x vtð Þ ð10Þ

Kjk ¼ djkx
2
j þMv2wj vtð Þwk;xx vtð Þ ð11Þ

pj ¼ PþP0 sin xf tþuf

� �� �
wj vtð Þ ð12Þ

These terms can be reordered, keeping the diagonal part of the matrices and
introducing an additional variable k that will join the necessary terms

~M tð Þ ¼ MD
jk �wj ttð Þ

Mwk ttð Þ 1

� �
; ~C tð Þ ¼ CD

jk 0
2Mmwk;x ttð Þ 0

� �
ð13Þ

~K tð Þ ¼ KD
jk 0

Mm2wk;xx ttð Þ 0

� �
ð14Þ

Thus there is only one coupled equation and the second time derivative of the
additional variable equals the contact force. If the oscillator is added, then the
loading term from Eq. 7 must be completed by

�kosw0 tð Þþ koswos tð Þð Þd x� vtð Þ ð15Þ

and additional equation read

Moswos;tt tð Þþ kosw0 tð Þ � koswos tð Þ ¼ Pos ð16Þ

where the subscript “os” designates the quantities related to the oscillator. For
typical values related to railways applications and very soft foundation, it is seen
that mass induced frequency is superposed with the oscillator frequency (Fig. 5).

Therefore, the method for the critical velocity determination follows the iden-
tification of the resonant case. The mass induced vibration can be determined by
semi-analytical methods presented in [4]. The typical graph of the real part of the
induced frequencies is shown in Fig. 6.

Then according to the natural frequency of the oscillator, the velocity of the
moving system is determined.
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4 Conclusions

In this paper, a technique for the semi-analytical determination of the critical
velocity of the moving oscillator is proposed. Based on the characteristics of the
oscillator, such a critical velocity can be lower that the critical velocity of the
moving force and also lower than the velocity inducing instability of the moving
mass.
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Fig. 5 Beam deflection under the load: moving oscillator (black) moving mass (grey)
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Fig. 6 Real part of the
dimensionless induced
frequencies: two-mass
oscillator (black and grey),
moving mass (dashed) and
cutting frequency (dotted)
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