
1 INTRODUCTION 

Structures subjected to moving loads have several 
applications in rail, road and bridge engineering. 
When the load moves over a structure at a critical 
velocity, induced vibrations rapidly increase and 
safety and stability of the structure is compromised. 
The critical velocity depends on many factors and 
several theoretical models have been developed over 
the years for its determination. Naturally, as there are 
differences between the models, there are differences 
between the conclusions taken. The classical model 
for railway applications, an infinite beam on the 
Winkler foundation (Frýba, 1999), predicts the criti-
cal velocity that is usually higher than the ones ob-
served in reality, because in this model there is no 
mass attributed to the foundation and thus no wave 
propagation in the foundation is possible. If a beam 
on an elastic half-space is considered, then the criti-
cal velocity is derived as the Rayleigh-wave velocity 
of propagation (Krylov et al. 2000). 

More realistic models should be based on a finite-
depth foundation. The plane model from (Jaiswal & 
Iyengar 1993) considers the dynamic equilibrium on-
ly in the vertical direction, and thus the critical ve-
locity tends rapidly to zero with increasing mass ra-
tio defined as the square root of the fraction of the 
foundation mass to the beam mass. Improvement of 
this model by shear contribution in (Dimitrovová 
2015, Dimitrovová 2016) predicts a smooth transi-
tion between the classical critical velocity from 

(Frýba, 1999) and the velocity of propagation of 
shear waves in the foundation, and thus concludes 
that the critical velocity results from the beam-
foundation dynamic interaction. Also the 3D model 
from (Dieterman & Metrikine 1997) proves that 
there is another critical velocity that is not coincident 
with the Rayleigh-wave propagation and therefore 
resulting from beam-foundation interaction.  

In this contribution, models from (Dimitrovová 
2015, Dimitrovová 2016) and (Náprstek & Fischer 
2010) are compared. Derivations from (Náprstek & 
Fischer 2010) are simplified by considering only a 
constant moving force. Then the steady state part of 
the solution can be considered. Analytical solution 
of the steady state displacement shape is derived and 
the critical velocity is then extracted by parametric 
analysis. Results obtained are compared with the 
previously published results in (Dimitrovová 2015, 
Dimitrovová 2016), where simplified plane models 
of the foundation were used for the analysis of finite 
and infinite beams. It is confirmed that there is an in-
teraction between the beam and the foundation and 
thus the critical velocity is not given either by the 
classical formula from (Frýba, 1999) or by the low-
est wave-velocity of propagation in the foundation, 
but there is a smooth transition between these two 
extreme values governed by the mass ratio. For a 
low mass ratio, the critical velocity approaches the 
classical formula and for a higher mass ratio, it ap-
proaches the lowest wave-velocity of propagation in 
the foundation. The new results derived in this paper 

Critical velocity of a load moving on a beam supported by a foundation 
of finite depth 

Z. Dimitrovová 
Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and 

IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal 

 

 

 

 
 

 

 

 
 

ABSTRACT: In this paper, the critical velocity of a uniformly moving load is analysed. It is assumed that the 
load is traversing an infinite beam supported by a finite depth foundation under plane strain condition. Analyt-
ical solution of the steady state deflection shape is derived. The critical velocity is then extracted by paramet-
ric analysis. Results obtained are compared with the previously published results of this author, where simpli-
fied plane models of the foundation were used. It is confirmed that there is an interaction between the beam 
and the foundation and thus the critical velocity is dependent on the mass ratio defined as the square root of 
the fraction of the foundation mass to the beam mass. For a low mass ratio, the critical velocity approaches the 
classical formula and for a higher mass ratio, it approaches the lowest wave-velocity of propagation in the 
foundation. There is only a small difference with respect to the previously published approximate formula for 
the critical velocity. 



are dependent on the interface condition between the 
beam and the foundation. There is only a slight dif-
ference between the three possibilities: two options 
for the interface condition and the previously pub-
lished approximate formula for the critical velocity 
in (Dimitrovová 2016). Namely, the interface condi-
tion in form of zero horizontal displacement gives 
results very similar to (Dimitrovová 2016) and zero 
shear stress condition results have the asymptotic 
tendency to slightly lower velocity, the velocity of 
propagation of Rayleigh waves. 

2 THE MODEL AND ITS SOLUTION 

It is assumed that the load is traversing an infinite 
beam supported by a foundation of finite depth H 
under plane strain condition, as depicted on Figure 1.  
 

 
 

Figure 1: Infinite beam on an elastic foundation of finite depth 
subjected to a moving load. 
 
It is further assumed that: (i) the beam obeys linear 
elastic Euler-Bernoulli theory; (ii) the beam vertical 
displacement is measured from the equilibrium de-
flection caused by the beam weight; (iii) the founda-
tion is represented by a finite strip of width b under 
plane strain condition; (iv) the soil is modelled by 
linear elastic homogeneous material. The governing 
equations are given by  
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where  ,x zu uu  is the displacement field in the 
foundation,  ,   are Lame’s constants of the soil, 
  is the soil density and t is the time. Overall this 
paper, derivatives will be designated by the corre-
sponding variable symbol in the subscript position, 
preceded by a comma. Moreover,   is the gradient 
and   is the Laplace operators applied on spatial 
variables. Further, P is the moving load, v is its ve-
locity and p is the foundation pressure. EI , m  and 

bc  are bending stiffness, mass per unit length and 
viscous damping coefficient of the beam. The un-
known beam deflection  ,w x t , spatial coordinate z 
and P are assumed positive when acting downward. 

Spatial coordinate x is positive to the right, the load 
travels from the left to the right and finally,   is the 
Dirac delta function.  

Damping in the soil can be assumed as hysteretic 

 0 1 i h    ,  0 1 i h     (3) 

or viscous 
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where 
h  is the loss factor of the soil and 

sc  is the 
coefficient of the viscous damping in the soil.  

It is more convenient to transform Equation (1) to 
a form exploiting the displacement potentials   and 
  linked to the displacement components by 

, ,x x zu   , 
, ,z z xu    (5) 

Then Equation (1) can be transformed to two inde-
pendent equations, which e.g. for the case with vis-
cous damping in the soil are written as 
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where 
pv  and 

sv  are velocities of propagation of the 
pressure and shear waves in the soil, respectively, 
given by the well-known relations 
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Firstly, the moving coordinate is introduced  

r x vt  , z z , t t  (9) 

and only the steady state part of the solution is left. 
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Further, it is convenient to introduce several di-
mensionless parameters. These parameters facilitate 
the resolution and analysis of the results obtained. 
They are 
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as representation of the Winkler constant k that al-
lows to express the static deflection 

stw  of the beam 
under the constant force P. Then, 
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stand for the classical value of the critical velocity 
from (Frýba, 1999), and velocity and mass ratios. It 
is also convenient to introduce dimensionless dis-
placements 
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and spatial coordinates 

z

H
  , r   (17) 

Finally, damping effects are expressed by 
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With these designations, Equations (10-12) are 
firstly simplified to 
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and after single Fourier transform of the form 
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to even more compact from 
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Equations (23-24) expressed in the frequency 
domain can be readily solved. Having this solution, 

displacement field in the soil can be written exploit-
ing Equations (5), also transformed to the frequency 
domain. Basically, the Fourier images of the dis-
placement potentials are 

   ˆ ˆcosh sinhp pA B     (26) 
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Thus there are four integration constants to be de-
termined from the boundary and interface condi-
tions. After substitution into Equation (5) in the fre-
quency domain, one obtains 
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and the boundary conditions at the rigid base are 

 1 0xu    ,  1 0zu     (32) 

Then, stress tensor components can be derived in the 
frequency domain and the soil pressure acting on the 
beam can be expressed as 

 0zp b   (33) 

Moreover, the beam deflection is 

 0zw u  (34) 

Equations (33-34) will introduce the solution ob-
tained for the soil displacements into the beam equa-
tion (25). This is actually the third equation for the 
determination of the integration constants.  

Only one more equation can be prescribed, but it 
is not clear whether it is more appropriate to require 
zero horizontal displacement at the interface, which 
would be in conformity with the zero displacement 
on the beam axis, or zero shear stress representing a 
smooth contact. In conclusion, the number of inte-
gration constants to be solved from the boundary 
conditions is not sufficient and it is necessary to de-
cide what interface condition is more appropriate. 
This can be done according to the finite element so-
lution. Using the method described in (Dimitrovová 
& Rodrigues 2011), steady state solution of the de-



flection shape can be obtained in few steps of the 
enhanced moving window algorithm. 

For the sake of completeness, both possibilities of 
interface conditions were analysed analytically. Hav-
ing the integration constants, the Fourier image of 
the deflection shape of the beam and of the dis-
placement field in the foundation can be expressed 
analytically.  

The inverse transform was accomplished numeri-
cally and after that the critical velocity was extracted 
by a parametric analysis. Results obtained are com-
pared with the previously published results in Figure 
2. The simplified formula from (Dimitrovová, 2016) 
reads as 
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where the shear ratio is /s s crv v  . The new value 
of the critical velocity is distinguished from the clas-
sical one by the capital letter 

crV . Thus the velocity 
ratio in Figure 2 is in fact /cr crV v . Only one particu-
lar case of 0.5s   is plotted, but other cases have 
similar tendencies. Except for the damping coeffi-
cients, there are no more dependent variables in the 
dimensionless solution, only the soil Poisson ratio, 
which connects the wave-velocities of propagation 

sv  and 
pv , therefore the conclusions presented are 

valid for all possible cases. Asymptotic tendency is 
shown in Figure 2 for higher mass ratio, therefore 
there is no need to examine its further values. 

 

 
 
Figure 2. Critical velocity as a function of the mass ratio for 
shear ratio 0.5: previous estimate (grey), solution with zero dis-
placement interface condition (black dashed), solution with ze-
ro shear interface condition (black dotted). 

3 CONCLUSIONS 

In this paper, the analytical solution of the deflection 
shape of an infinite beam subjected to a moving con-
stant force supported by finite depth foundation un-
der plane strain condition was derived. Two forms of 
such results correspond to two extreme interface 
conditions between the beam and the foundation. 
The critical velocity of the load was extracted by a 
parametric analysis. Conclusions previously taken in 
(Dimitrovová 2016) were confirmed. Thus, there is 

an interaction between the beam and the foundation 
and so the critical velocity is not given either by the 
classical formula from (Frýba, 1999) or by the low-
est wave-velocity of propagation in the foundation, 
but there is a smooth transition between these two 
extreme values governed by the mass ratio defined 
as the square root of the fraction of the foundation 
mass to the beam mass. For a low mass ratio, the 
critical velocity approaches the classical formula and 
for a higher mass ratio, it approaches the lowest ve-
locity of propagation of waves that are allowed by 
the particular model of the foundation. 
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