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Abstract 
 
In this paper a new analytical solution for a moving mass problem is given. The new 
analytical formula is presented for the deflection shape of an infinite beam that is 
traversed by a moving mass and supported by a visco-elastic foundation. In such a 
case the deflection shape resembles the one associated with the moving force with 
an additional oscillation around it. The frequency of this mass induced oscillation 
depends on the foundation characteristics and the amplitude can be derived 
analytically. It is also shown that if the force associated with the mass has a 
harmonic component, then its frequency is superposed to the one induced by the 
foundation. The new formula presented accounts also for the effect of the normal 
force and Pasternak modulus. 
 
Keywords: transverse vibration, moving mass, eigenvalue expansion, Fourier 
transform, Laplace transform, semi-analytical solution. 
 

1  Introduction 
 
The investigations on moving load problems were initiated with first railway line 
construction. Since then, numerous studies have been published on this subjected. 
Among them several are based on analytical or semi-analytical approaches. 
Regardless the excessive number of published works, there are still some unsolved 
issues, and, unfortunately, some of the solutions that can be found in the literature 
are not correct. In this contribution several approaches are reviewed, missing 
solutions are presented and the errors are pointed out. 

Regarding the finite beam, the solution of the problem of the moving mass can be 
expressed by the eigenvalue expansion method. The first solution of this kind was 
presented in [1]. This solution suffers from the lack of terms related to the effect of 
the Coriolis and centrifugal forces. This was pointed out by several other authors [2-
3], nevertheless, solutions repeating the same error are still emerging. It is necessary 
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to realize that sometimes these terms are negligible, but often, their omission can 
completely distort the solution. This is especially true for beams on elastic 
foundation, as will be shown in this paper. Solution presented in [3] is extended here 
to account for the effect of the normal force, Pasternak modulus and oscillating force 
accompanying the constant mass. The disadvantage of the solution method is that 
the equations in the modal space are coupled, thus even if no discretization is 
involved and mode shapes are introduced in their analytical form, the generalized 
coordinate must be solved numerically. 

To solve vibrations of infinite homogeneous beams, usually integral transforms 
are used. Unfortunately, also here, some of the solutions that can be found in the 
literature, are not correct. Double Fourier transform disregard the foundation 
induced oscillation and therefore the solution presented e.g. in [4] is not correct. The 
correct approach should be based on an additional calculation that determines this 
frequency, [5]. Then the problem can be solved by Laplace and Fourier transforms, 
where the final evaluation can be analytical, based on the residual theorem. In a truly 
steady state solution the effect of mass is not seen and the deflection shape 
corresponds to the one induced by the moving force. In other cases the mass 
oscillates around this position with the frequency induced by the foundation. If the 
mass is accompanied by a harmonic force, than these two oscillations are 
superposed. 

The new semi-analytical solution presented here was verified by commercial LS-
DYNA software. In summary, the new contributions of this paper are the following: 
(i) confirmation from analysis of finite beams that the effect of Coriolis and 

centrifugal forces cannot be omitted in cases with elastic foundation; 
(ii) confirmation from analysis of finite beams that additional oscillation is induced 

by the moving mass; 
(iii) confirmation from analysis of finite beams that such an additional oscillation is 

superposed to the forced oscillation of the harmonic force; 
(iv) definition of an iterative procedure for determination of the frequency of the 

mass induced oscillation; 
(ii) new analytical formulas for amplitudes of this oscillation; 
(ii) definition of a procedure that defines full deflection shapes from analysis of 

semi-infinite beams. 
The paper is organized in two main sections, one is dedicated to finite beams and 

the other one to infinite ones. Then the paper is concluded in Section 4. 
 

2  Mass moving on a finite beam 
 
Let a uniform motion of a constant mass and a vertical force with a harmonic 
component along a horizontal simply supported beam posted on a two-parameter 
visco-elastic foundation be assumed. The beam material is homogeneous and 
isotropic, the beam cross-section is uniform and the beam obeys linear elastic Euler-
Bernoulli theory. It is assumed that the mass is always in contact with the beam and 
its horizontal position is determined by the velocity; also, the load proceeds from left 
to right. The problem at hand is depicted in Figure 1. 
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Figure 1: Simply supported beam on a two-parameter visco-elastic foundation 
subjected to a moving load and a normal force. 

 
The equation of motion for the unknown vertical deflection field w(x,t) can be 

written as: 
 

    , , , , ,xxxx p xx tt tEIw N k w mw cw kw p x t       (1) 

 
where EI, m and N stand for the bending stiffness and mass per unit length of the 
beam and a normal force acting on the beam (positive when inducing compression). 
k, kp and c are Winkler’s and Pasternak’s moduli of the foundation and the 
coefficient of viscous damping of the foundation. x designates the spatial coordinate 
and t is the time. Derivatives are designated by the respective variable in the 
subscript position, preceded by a comma. For a constant mass M and an associated 
constant force P with a harmonic component P0, the loading term p(x,t) can be 
written as: 
 

         0 0,, sin f f ttp x t P P t Mw t x vt        (2) 

 
Function sine is used to define the oscillation with forced frequency ωf and phase φf 
to keep this term in the real domain, because then, the whole solution can be solved 
in the real domain. The mass displacement w0(t)=w(vt,t), i.e. the mass is always in 
contact with the beam, as already stated. Initial conditions are considered as 
homogeneous. x has its origin at the left extremity of the beam and zero time 
corresponds to the load position at x=0. For the solution it is necessary to remove the 
additional unknown w0(t) and express it in terms of the unknown field w(x,t) as: 
 

            2
0 , , ,sin , 2 , ,f f tt xt xxP P t M w x t vw x t v w x t x vt         (3) 

 
Thus 
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v
x

w k
pk

M
N N

c



4 

 

 
        

    

, , , ,

2
, , ,

0

, 2 , ,

sin

xxxx p xx tt t

tt xt xx

f f

EIw N k w mw cw kw

M x vt w x t vw x t v w x t

P P t x vt



  

    

   

   

 (4) 

 
Boundary conditions for simply supported beam are written below, but other 
conditions could be equally considered, for instance, in Eq. (6) boundary conditions 
for left cantilever are stated.  

 
  0, 0w t  ,  , 0

, 0xx x
w x t


 ,  , 0w L t  ,  , , 0xx x L

w x t

  (5) 

  0, 0w t  ,  , 0
, 0x x

w x t

 ,  , , 0xx x L

w x t

 ,  , , 0xxx x L

w x t

  (6) 

 
In Eqs. (5-6) the beam length is designated as L. Solution of the problem can be 
obtained by eigenvalue expansion: 
 

      
1

, j j
j

w x t q t w x




  (7) 

 
where qj stand for modal coordinates and wj for vibration modes. The same 
designation “w” can be used for the deflection field as well as for the vibration 
modes, because the vibration modes are distinguished by the corresponding 
subscript. As usual, the modes are normalized by mass, therefore: 
 

    
0

L

jk j kmw x w x dx    (8) 

 
where δjk is the Kronecker delta. Modal expansion is commonly governed by 
undamped vibration modes, because this allows their determination within the real 
domain and completeness of the eigenspace is guaranteed. Unfortunately, equations 
in modal space are coupled. Assuming only n vibration modes, then the modal 
equations can be written as: 
 
              t t t t t t t     M q C q K q p   (9) 

 
In the equation above square nxn matrices M, C, K are defined by introduction of 
vibration modes in their exact analytical form, i.e. without any discretization. The 
system (9) cannot be solved analytically, but numerically. For a numerical solution 
in Matlab code, the system should be written in the state space form as: 
 

 
         

                   

I 0 q 0 I q 0

0 M q K C q q


  

 (10) 
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q 0 I q 0

q M K M C q M q


  

 (11) 

 
Computational time increases exponentially with the number of modes involved. 

Precision of a solution obtained for a certain number of modes cannot be simply 
increased by including additional modes, but the whole system must be recalculated 
in its entirety again. If there is no elastic foundation, usually low number of modes is 
sufficient (around 5-10). With the foundation included, the number of modes must 
be much higher, depending on several factors and it ranges around 100-200, or 
more. As an example, the solution of the moving mass and its corresponding weight 
on a left cantilever is shown in Figure 2. This is one of the examples that are 
presented in [3]. Numerical data from [3] are slightly adapted to: L=7.62m, 
P=25.79kN, M=2629kg, EI=9480.6kNm2, m=46kg/m, v=50.8m/s. It is seen that in 
this case the effect of the Coriolis and centrifugal forces is significant. This is, 
however, not a very good example, since the deflection is quite large and the validity 
of the Euler-Bernoulli beam theory is compromised. 

 

Figure 2: Deflection of the cantilever free end, “partial” means that some terms were 
omitted as in [3], “full” means that all terms are included.  

 
Another application is a simply supported beam on an elastic foundation. The 

input data are: L=100m, P=100kN, M=10ton, EI=6.4MNm2, m=60kg/m, 
k=4MN/m2, v=100m/s. The beam and foundation data are related to railway 
applications, where the beam stands for one single rail. Deflection shapes are shown 
in Figure 3. In this case 150 modes were necessary for a good accuracy of the 
solution. Convergence study is shown on the same case, but with stiffer foundation 
of k=30MN/m2 . In Figure 4 deflection under the load is plotted along the beam 
length for 50 and 100 modes. It can thus be concluded that the convergence is slow, 
because the difference between 50 and 100 modes is still quite large, in terms of the 
maximum displacement as well as the frequency of the additional oscillations. It is 
also seen that these oscillations are nicely formed and such a result can be used for 
verification of the frequency determined for infinite beams. 
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Figure 3: Deflection of the simply supported beam on an elastic foundation, initial 
40m of the full length, deflections related to mass position at each 2m. 

 

      

Figure 4: Convergence analysis: deflection under the load along the beam length: 50 
modes (blue), 100 modes (red). 

 
Another study intends to confirm the importance of Coriolis and centrifugal 

forces. Using the same foundation as before, the solution without these terms is 
unstable. The softest foundation where it is possible to get some results is 
k=2kN/m2. The deflection under the load is plotted in Figure 5. Due to the very soft 
foundation, the displacement values are very high, but nevertheless, completely 
different from the solution with all terms included. 

Next Figure 6 shows the same case, but full deflection shapes are shown for load 
position at 60, 70, 80 and 90m. It can thus be concluded that the inclusion of 
Coriolis and centrifugal forces is essential for the beams on elastic foundation, due 
to the relatively high curvature in the place of the load application. Deflection in 
Figures 5 and 6 is unphysical, but this example highlights how low the foundation 
stiffness has to be to avoid instability of the partial solution. 
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Figure 5: The importance of the effect of Coriolis and centrifugal forces: deflection 
under the load along the beam length: full solution (red), partial solution (blue). 

 

Figure 6: The importance of the effect of Coriolis and centrifugal forces: deflection 
shapes at load position at 60 (orange), 70 (blue), 80 (red) and 90m (green): full 

solution (solid), partial solution (dashed). 

 

3  Mass moving on an infinite beam 
 
The governing equation of the vibrations of an infinite beam can be written in a 
similar way as before: 
 

       , , , , 0 0,
fi t

xxxx p xx tt t ttEIw N k w mw cw kw P P e Mw t x vt          (12) 

 
In this formulation there is no problem to express the harmonic component of the 
force with complex numbers. Similarly as before the additional unknown w0(t) must 
be expressed in terms of the unknown field w(x,t) and moreover, it is convenient to 
introduce the moving coordinate s=x-vt. Nevertheless, because some oscillations 
will be detected in the quasi-steady state solution, the time dependent terms cannot 
be removed. Then several dimensionless parameters can be introduced in order to 
facilitate the resolution and analysis of the results. It reads: 
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There parameters were used together with dimensionless coordinates s   and 

crv t  . 

It can be shown that by application of the double Fourier transform on the 
governing equation (13) in the form of: 

 

      , , i p qF p q f e d d    
 

 

 

    (16) 

 
gives solution, where the vibration induced by the foundation is suppressed, which is 
not correct. In such a case the mass only affects the amplitude of the forced 
harmonic component. This means that, if there is only a constant force, mass 
produces no effect on the solution. Such a solution is presented in [4]. On the other 
hand, solution from [5] indicates that mass induces additional oscillations, which 
frequency corresponds to the one visualized in figures on finite beams. In order to 
present such a solution, Laplace and Fourier transforms must be used. Solution in 
[5] does not develop the amplitudes of the final solution. One of the new 
contributions of this paper is derivation of an analytical formula for them.  

In summary, the solution in [4] can be adapted for the time dependent 
displacement under the mass as:  
 

      
 0 2

44 0

2
fP f i

M f f

KK
w e

K

  


    
 







   (17) 

 
which shows that for 0f 

 there is no harmonic movement. The new formula 

identifies all harmonics, in the way as: 
 

      
     1 2

1 20 2

44 0

2
M MfP f iq iqi

M M

M f f

KK
w e A q e A q e

K

   


    
   







   (18) 
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where 
 

      
 

8
M M Mj j j

j

M j
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q q K q
A q

C q
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     



  (20) 

    ,

dp
K q

D p q





   (21) 

    4 2 2 2, 4 4 8 8 8 4N S c cD p q p p q pq iq ip               (22) 

 
 K q  and  ,qK q  can be determined from the residual theorem. 

In addition, it is necessary to solve numerically for the frequency that is induced 
by the foundation. This can be done by simple iterative algorithm, which 
convergence is secured.  

The procedure described above defines the deflection under the load in an 
analytical form. Full deflection shapes can be derived by joining two semi-infinite 
beams. If the applied force is constant, then the mass oscillates around the stationary 
position, as demonstrated in Figures 3 and 4. If the force has a harmonic component, 
than both harmonic movements are superposed around the stationary position. 
 

4  Conclusions 
 
In this paper, firstly, the semi-analytical solution of the moving mass problem on a 
finite beam was presented. The importance of the Coriolis and centrifugal forces was 
highlighted. The solution with elastic foundation indicated the form of the deflection 
shape on infinite beams. Secondly, a new analytical solution was presented for the 
deflection shape of an infinite beam that is traversed by a moving mass, that is 
accompanied by a force with a harmonic component and supported by a visco-
elastic foundation. In such a case the deflection shape resembles the one associated 
with the moving force with an additional oscillation around it. The frequency of this 
oscillation can be determined by simple iterative method and the amplitude can by 
given analytically.  
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