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Abstract. In this paper, an extended formula for the critical velocity of a uniformly moving 

load is derived. It is assumed that the load is traversing an infinite beam supported by finite 

depth foundation under plane strain condition. The critical velocity is extracted by parametric 

analysis applied on the analytical solution of the steady state deflection beam shape. Results 

obtained are compared with the previously published results of this author, where simplified 

assumptions were implemented on the shear contribution. It is confirmed that there is an in-

teraction between the beam and the foundation and thus the critical velocity is dependent on 

the mass ratio defined as the square root of the fraction of the foundation mass to the beam 

mass. Several options for damping are also analysed and results of displacement fields are 

compared with finite element simulations. In order to obtain steady-state form of the finite 

element results, the enhanced moving widow method is implemented in software ANSYS.  
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1 INTRODUCTION 

The response of rails to moving loads is important research topic of high-speed railway 

transportation. If simple geometries of the track and subsoil are considered, it can be assumed 

that the track structure acts as a continuously supported beam resting on a uniform layer of 

springs. Two distinct interpretations are used, either the beam is modelled by the rail and the 

layer of springs represents the underlying remainder of the track structure, or an equivalent 

beam encompassing the whole track is used and the spring layer stands for the subgrade or 

foundation. The stiffness of the spring layer along the length of the beam is named as the 

track modulus and defines Winkler’s model, which is often referred to as a “one-parameter 

model”. Such a simplified model was traditionally used to estimate the critical velocity of 

moving trains.  

The first solution of steady-state dynamic response of an infinite beam on elastic founda-

tion traversed by moving load was presented by Timoshenko [1]. In [2], the moving coordi-

nate system is introduced to convert the governing equation to ordinary differential equation 

that can be solved by the Fourier integral transform. In [3], the concept of the dynamic stiff-

ness matrix is implemented. Two semi-infinite beams are solved for and connected by conti-

nuity equations. Then the critical velocity can be determined as the velocity that ensures the 

nullity of the determinant of the dynamic stiffness matrix. This concept was extended to finite 

and infinite beams with sudden change in foundation stiffness [4]. 

If the beam is modelled as the rail, the classical formula, predicts very high critical velocity, 

giving impression that is unreachable by high-speed trains and consequently no attention was 

paid to this fact during expansions of high-speed railway network. Unfortunately, practical 

experience showed that the realistic critical velocity can be much lower [5] and should be re-

lated to the wave-velocity of propagation in the foundation. Therefore, in further investiga-

tions the spring layer was replaced by elastic half-space and the critical velocity was 

determined as the Rayleigh-wave velocity of propagation [6]. 

Nevertheless, it is important to release, that only finite active depth of the foundation soils 

should be included in the analysis. Under such assumption, it was shown in [7] that there is an 

interaction between the beam and the foundation. In [7] only simplified plane models of the 

foundation were used for analyses of finite and infinite beams, but it was confirmed that the 

critical velocity is not given either by the classical formula from [2] or by the lowest wave-

velocity of propagation in the foundation, but there is a smooth transition between these two 

extreme values governed by the mass ratio. For a low mass ratio, the critical velocity ap-

proaches the classical formula and for a higher mass ratio, it approaches the lowest wave-

velocity of propagation in the foundation. In this paper generalizations, in conformity with [8] 

are derived. It is proven that in such extension, the final results depend on the interface condi-

tion between the beam and the foundation.  

2 CRITICAL VELOCITY 

The critical velocity of the load traversing an infinite Euler-Bernoulli beam on an elastic 

foundation is given by the classical formula [2] 
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where m  and EI  stand for the mass per unit length and the bending stiffness of the beam, 

respectively, and k  for the Winkler constant of the foundation. If the beam is modelled by the 

rail, then Eq. (1) predicts a critical velocity that is generally much higher than the one ob-
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served in reality. The main reason is related to the fact that there is no mass in the foundation 

and thus no wave propagation is possible. Several works have been published on this subject 

replacing the spring layer by an elastic half-space and concluding that the critical velocity cor-

responds to the Rayleigh-wave velocity of propagation, which is the slowest wave-velocity 

[6]. 

Nevertheless, better estimation should account for the active finite depth of the foundation, 

which can either be the actual depth at which a stiff substratum is located or a depth after 

which no appreciable soil deformations occur. Under simplified assumptions on a plane mod-

el under plane strain conditions, it was derived in [7] that the critical velocity is governed by 

the mass ratio according to approximately 
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where 
crV  is the new value of the critical velocity, 

s  is the shear ratio defined as /s s crv v 

with 
sv  being the shear-wave velocity, and M is the mass ratio defined as the square root of 

the foundation mass to the beam mass. Thus, for a low mass ratio, the critical velocity ap-

proaches the classical value 
crv  and for a higher mass ratio, it approaches the velocity of 

propagation of shear waves in the foundation. In this simplified model horizontal displace-

ments were neglected and therefore the Rayleigh velocity could not be detected. Due to the 

proximity of these two velocities defined by the approximate formula  
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where   is the soil Poisson ratio and 
Rv  is the Rayleigh-wave velocity, this does not have to 

be considered a disadvantage.  

In this paper new results are derived in conformity with [8]. Deductions from [8] are sim-

plified by considering only a constant moving force, thus the analytical solution can be re-

stricted only to its steady-state part. Final results of the critical velocity, which can then be 

extracted by parametric analyses, are dependent on the interface condition between the beam 

and the foundation. However, there is only a small difference between the three possibilities: 

the previously published approximate formula (2) and results according to two options for the 

interface condition. Namely, results with the interface condition in form of zero horizontal 

displacement give values very similar to Eq. (2) and results obeying the zero shear stress con-

dition have the asymptotic tendency to slightly lower velocity, the velocity of propagation of 

Rayleigh waves. 

Deflection shapes and adequacy of the interface condition are analysed by finite element 

results. In order to obtain steady-state form of the finite element results, the enhanced moving 

widow method is implemented in software ANSYS as described in [9]. 

3 THE MODEL AND ITS SOLUTION  

It is assumed that the load is traversing an infinite beam supported by a foundation of finite 

depth H, as depicted on Figure 1. It is further assumed that: (i) the beam obeys linear elastic 

Euler-Bernoulli theory; (ii) the beam vertical displacement is measured from the equilibrium 

deflection caused by the beam weight; (iii) the foundation is represented by a finite strip of 

width b under plane strain condition; (iv) the foundation soil is linear elastic homogeneous 

material. 
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Figure 1: Infinite beam on an elastic foundation of finite depth subjected to a moving load. 

The governing equations for determination of the beam deflection shape and displacement 

fields in the foundation soil are given by 

     ,tt        u u u  (4) 

          , , ,, , , ,xxxx b t ttEIw x t c w x t mw x t p x t P x vt      (5) 

where  ,x zu uu  is the displacement field in the foundation,  ,   are Lame’s constants of 

the soil,   is the soil density and t is the time. Overall this paper, derivatives will be desig-

nated by the corresponding variable symbol in the subscript position, preceded by a comma. 

Moreover,   is the gradient and   is the Laplace operators applied on spatial variables x, z. 

Further, P is the moving load, v is its velocity, p is the foundation pressure and 
bc  is the vis-

cous damping coefficient of the beam. The unknown beam deflection  ,w x t , spatial coordi-

nate z and P are assumed positive when acting downward. Spatial coordinate x is positive to 

the right, the load travels from the left to the right and finally,   is the Dirac delta function. 

Damping in the soil can be assumed as hysteretic 

  0 1 i h    ,  0 1 i h     (6) 

or viscous 

  0 ,1 s tc    ,  0 ,1 s tc     (7) 

where 
h  is the loss factor of the soil and 

sc  is the coefficient of the viscous damping in the 

soil. 

The solution method follows these steps: firstly, the governing equations for the soil layer 

are expressed in terms of displacement potentials. Then all equations are simplified by intro-

duction of moving coordinates and leaving only the terms that contribute to the steady-state 

part of the solution. After that several dimensionless variables are introduced to facilitate the 

equations manipulation and posterior results analyses. The main solution method is the single 

Fourier transform, which allows analytical solution of all displacement and stress components 

in the frequency domain. The inverse transform is accomplished numerically. Dimensionless 

variables allow identifying results for all possible input data combinations. Except for the 

damping values, which define viscous damping in the beam, viscous and hysteretic damping 

in the foundation, results depend only on the mass ratio M, the velocity ratio / crv v  , the 

shear ratio 
s  and soil Poisson’s ratio  .  

P
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4 THE ENHANCED MOVING WINDOW METHOD 

Finite element confirmation of steady-state analytical predictions in infinite media is gen-

erally a complicated issue because it is difficult to choose the correct (i) size of the model, (ii) 

size of the finite elements; (iii) type of the boundary conditions and (iv) a method that would 

allow deflection fields stabilization. The model itself must be large enough in order to elimi-

nate satisfactorily transient effects due to a sudden placement of the load on the structure and, 

on the other hand, small enough to be computationally accessible. The edges of the finite ele-

ments must be sufficiently small in order to represent adequately propagating waves. The 

boundary conditions are even more delicate issue. The dynamic analysis of solids of infinite 

dimensions with discrete methods such as finite elements calls for the use of special boundary 

that are normally referred to as absorbing, non-reflecting or transmitting boundaries. The pur-

pose of these special boundaries is to prevent wave reflections at the edges of the mathemati-

cal models used, which, by necessity, must remain finite in size. A number of these 

boundaries have been proposed in the past with recourse to various mathematical or physical 

principles. Unfortunately, none of the transmitting boundaries can fully prevent all possible 

reflections under the full range of possible incident angles. 

Some of the difficulties named above could be overcome by implementation of the moving 

window method. In the moving window method the load is kept still, and the finite element 

model of the railway track moves in the direction opposing the originally assumed load 

movement. This can be achieved by several ways. Either the finite elements are altered in or-

der to implement the effect of the load velocity [10], or results are shifted against the load.  

A shift of results is impossible in commercial finite element software, because such an op-

eration is usually protected against inappropriate usage. Implementation of the enhanced mov-

ing window method in commercial finite element software ANSYS is described in [9]. The 

method is tested on one-, two- and three-dimensional models. It is shown that the steady-state 

response of an infinite structure can be obtained with sufficient accuracy, which significantly 

reduces the calculation time by reduction of both, the model size and the analysis time.  

When the model is large enough, periodic boundary conditions can be used on the front 

and rear faces of the model. Regarding the bottom face, other considerations must be taken. A 

reduction of the model depth by representative springs and viscous boundary is used here ac-

cording to [11]. These distributed elastic springs are defined as:  
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where 
nk  and 

tk  are spring stiffnesses in the normal and tangential directions, respectively 

and h is the depth that is modelled by finite elements. These elastic boundaries allows intro-

duction of absorbing boundaries, which help to stabilization of the results. 

5 NUMERICAL RESULTS  

Final results are shown in Figure 2 for shear ratio 0.5 and soil Poisson ratio 0.2. It is seen 

that results from [7] and new results with zero displacement interface condition are quite 

proximate, especially regarding the asymptotic value for higher mass ratio. When zero shear 

is admitted at the interface, than the asymptotic tendency directs to lower velocity. In such a 

case the ratio given by Eq. (2) indicates that this velocity is the Rayleigh-wave velocity of 

propagation. 

Deflection shapes were confirmed by the finite element results exploiting the enhanced 

moving window method. One case is shown in Figure 3. The case presented considers two 
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rails supported by soft foundation with input data summarized in Table 1. In the first part of 

Figure 3 finite element solution is compared to the analytical solution with zero horizontal 

displacement interface condition. It is seen that the coincidence is very good. The other part 

compares the analytical solutions for the two interface conditions. It can be observed that the 

zero shear condition allows for higher displacements. 

 

 

Figure 2: Critical velocity as a function of the mass ratio for shear ratio 0.5: previous estimate according to Eq. 

(2) (grey), solution with zero displacement interface condition (black dashed), solution with zero shear interface 

condition (black dotted). 

Property Value 

Beam bending stiffness EI  (MN·m
2
) 12.8 

Beam mass per unit length m  (kg·m
-1

) 120 

Soil Young’s modulus 
sE  (MN·m

-2
) 10 

Soil Poisson’s ratio   0.3 

Soil density   (kg·m
-3

) 1850 

Active depth H  (m) 12 

Moving force P  (kN) 200 

Velocity v  (m·s
-1

) 50 

Table 1: Numerical data used with a unit strip width of the soil. 
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b) 

Figure 3: Deflection shapes comparison: a) finite element solution (grey) and solution with zero displacement 

interface condition (black dotted); b) solution with zero shear interface condition (grey) and solution with zero 

displacement interface condition (black dotted). 

In addition, shear stress and horizontal displacement were extracted in the vertical cut be-

low the load from the finite element solution. It is seen that it is more adequate to assume zero 

horizontal displacement at the interface between the beam and the foundation. 

6 CONCLUSIONS  

In this contribution, the critical velocity of a uniformly moving load on a beam supported 

by a finite depth foundation was analysed. Generalizations of the method published in [7] 

were derived. The new approach follows developments in [8] but simplifies the analysis by 

admitting only a constant moving force. Analytical results for the deflection beam shape and 

displacement fields in the foundation are obtained by the Fourier transform. The inverse trans-

form is accomplished numerically. 

Final results of the critical velocity are then extracted by parametric analyses. It is con-

firmed that there is an interaction between the beam and the foundation, and thus there is a 

smooth transition between the classical value of the critical velocity and the lowest velocity of 

wave propagation in the foundation, depending on the assumptions adopted. However, the 

new results are dependent on the interface condition between the beam and the foundation. 

Only small differences occur between the three possibilities: the previously published results 

in [7] and results according to two options for the interface condition. Results with the inter-

face condition in form of zero horizontal displacement give values very similar to the ones 

published in [7] and results obeying the zero shear stress condition have the asymptotic ten-

dency to slightly lower velocity, the velocity of propagation of Rayleigh waves. 

Deflection shapes and adequacy of the interface condition were analysed by finite element 

results exploiting the enhanced moving widow method implemented in software ANSYS. It 

was confirmed that, if the model considers the beam axis coincident with the soil upper sur-

face, which is the common finite element approach, then it is more adequate to assume that 

the horizontal displacements are zero at the interface.  
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