Publications

Export 64 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zhao, Ping, and Vítor H. Fernandes. "The ranks of ideals in various transformation monoids." Communications in Algebra (DOI:10.1080/00927872.2013.847946) . 43.2 (2015): 674-692. Abstractauthorsfinalversion.pdfWebsite

In this paper we consider various classes of monoids of transformations of a finite chain,
including those of transformations that preserve or reverse either the order or the orientation.
In line with Howie and McFadden (1990),
we complete the study of the ranks (and of idempotent ranks, when applicable) of all their ideals.

L
Li, De Biao, and Vítor H. Fernandes. "Endomorphisms of semigroups of monotone transformations." Journal of Algebra and its Applications (DOI 10.1142/S0219498824502244; Online 5 July 2023). 23.13 (2024): 2450224 (17 pages). AbstractWebsite

In this paper, we characterize the monoid of endomorphisms of the semigroup of all monotone full transformations of a finite chain, as well as the monoids of endomorphisms of the semigroup of all monotone partial transformations and of the semigroup of all monotone partial permutations of a finite chain.

Li, De Biao, and Vítor H. Fernandes. "On semigroups of orientation-preserving partial permutations with restricted range." (Submitted). AbstractWebsite

Let $\Omega_n$ be a finite chain with $n$ elements $(n\in\mathbb{N})$, and let $\mathcal{POPI}_{n}$ be the semigroup of all injective orientation-preserving partial transformations of $\Omega_n$. In this paper, for any nonempty subset $Y$ of $\Omega_n$, we consider the subsemigroup $\mathcal{POPI}_{n}(Y)$ of $\mathcal{POPI}_{n}$ of all transformations with range contained in $Y$. We describe the Green's relations and study the regularity of $\mathcal{POPI}_{n}(Y)$. Moreover, we calculate the rank of $\mathcal{POPI}_{n}(Y)$ and determine when two semigroups of this type are isomorphic.

Li, De Biao, and Vítor H. Fernandes. "Endomorphisms of semigroups of oriented transformations." Semigroup Forum (DOI 10.1007/s00233-022-10325-y; Online 2 Dec 2022). 106 (2023): 184-210. AbstractWebsite

In this paper, we characterize the monoid of endomorphisms of the semigroup of all oriented full transformations of a finite chain, as well as the monoid of endomorphisms of the semigroup of all oriented partial transformations and the monoid of endomorphisms of the semigroup of all oriented partial permutations of a finite chain. Characterizations of the monoids of endomorphisms of the subsemigroups of all orientation-preserving transformations of the three semigroups aforementioned are also given. In addition, we compute the number of endomorphisms of each of these six semigroups.

F
Fernandesh, V. U. "A new class of divisors of semigroups of isotone mappings of finite chains." Izv. Vyssh. Uchebn. Zaved. Mat. (2002): 51-59.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of transformations preserving the orientation of a finite chain." J. Algebra. 321 (2009): 743-757.Website
Fernandes, Vítor H. "Oriented transformations on a finite chain: another description." Commun. Korean Math. Soc. (DOI 10.4134/CKMS.c220272; Online 12 July 2023). 38.3 (2023): 725-731. AbstractWebsite

Following the new description of an oriented full transformation on a finite chain given recently by Higgins and Vernitsk,
in this short note we present a refinement of this description which is extendable to partial transformations and to injective partial transformations.

Fernandes, Vítor H., and Tânia Paulista. "On the monoid of partial isometries of a finite star graph." Communications in Algebra (DOI 10.1080/00927872.2022.2121404; Online 14 Sep 2022). 51.3 (2023): 1028-1048. AbstractWebsite

In this paper we consider the monoid DPSn of all partial isometries of a star graph Sn with n vertices. Our main objectives are to determine the rank and to exhibit a presentation of DPSn. We also describe Green’s relations of DPSn and calculate its cardinal.

Fernandes, Vítor H., J. Koppitz, and T. Musunthia. "Presentations for monoids of endomorphisms of a star graph." (Submitted). AbstractWebsite

In this paper, we consider the monoids of all endomorphisms, of all weak endomorphisms, of all strong endomorphisms and of all strong weak endomorphisms of a star graph with a finite number of vertices. Our main objective is to exhibit a presentation for each of them.

Fernandes, Vítor H., and Jintana Sanwong. "On the rank of semigroups of transformations on a finite set with restricted range." Algebra Colloquium. 21.3 (2014): 497-510.authorsfinalversion.pdfWebsite
Fernandes, Vítor H. "Corrigendum on "Oriented transformations on a finite chain: another description" [Commun. Korean Math. Soc. 38 (2023), No. 3, pp. 725-731]." Commun. Korean Math. Soc. (DOI 10.4134/CKMS.c240008; Online 12 July 2024) . 39.3 (2024): 643-645. AbstractWebsite

In this note, we aim to correct some of the results presented in [1]. Namely, the statements of Proposition 2.1, Corollary 2.2, Corollary 2.3, Theorem 2.4 and Theorem 2.6, concerning only the monoids OP_n and POP_n, have to exclude transformations of rank two. All other results of [1], as well as those mentioned above but for the monoids OR_n and POR_n, do not require correction.

[1] V.H. Fernandes, Oriented transformations on a finite chain: another description, Commun. Korean Math. Soc. 38 (2023), 725-731.

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of partial transformations on a finite chain." Comm. Algebra. 33 (2005): 587-604.Website
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the monoids of transformations that preserve the order and a uniform partition." Communications in Algebra. 39.8 (2011): 2798-2815.
Fernandes, Vítor H., and Paulo G. Santos. "Endomorphisms of semigroups of order-preserving partial transformations." Semigroup Forum (10.1007/s00233-018-9948-z). 99 (2019): 333-344. AbstractWebsite

In this paper we characterize the monoids of endomorphisms of the semigroups PO_n and POI_n of all order-preserving partial transformations and of all order-preserving partial permutations, respectively, of a finite n-chain.

Fernandes, Vitor H. "Semigroups of order preserving mappings on a finite chain: a new class of divisors." Semigroup Forum. 54 (1997): 230-236.Website
Fernandes, Vítor H., and Teresa M. Quinteiro. "A note on bilateral semidirect product decompositions of some monoids of order-preserving partial permutations." Bull. Korean Math. Soc.. 53.2 (2016): 495-506. AbstractWebsite

In this note we consider the monoid $PODI_n$ of all monotone partial permutations on $\{1,\ldots,n\}$ and its submonoids $DP_n$, $POI_n$ and $ODP_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $POI_n$ and $ODP_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $PODI_n$ is a quotient of a semidirect product of $POI_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $DP_n$ is a quotient of a semidirect product of $ODP_n$ and $\mathcal{C}_2$.

Fernandes, Vítor H. "On divisors of pseudovarieties generated by some classes of full transformation semigroups." Algebra Colloq.. 15 (2008): 581-588.
Fernandes, Vítor H., and M. V. Volkov. "On divisors of semigroups of order-preserving mappings of a finite chain." Semigroup Forum. 81 (2010): 551-554.Website
Fernandes, Vítor H., and Tânia Paulista. "On the Rank of Monoids of Endomorphisms of a Finite Directed Path." Asian-European Journal of Mathematics (DOI 10.1142/S1793557123500699; Online 28 Oct 2022). 16.04 (2023): 2350069 (13 pages). AbstractWebsite

In this paper we consider endomorphisms of a finite directed path from monoid generators perspective. Our main aim is to determine the rank of the monoid wEndP_n of all weak endomorphisms of a directed path with n vertices, which is a submonoid of the widely studied monoid O_n of all order-preserving transformations of a n-chain. Also, we describe the regular elements of wEndP_n and calculate its size and number of idempotents.

Fernandes, Vítor H. "The Vagner-Preston representation of a block-group." Southeast Asian Bull. Math.. 45.6 (2021): 805-812. AbstractWebsite

In this short note we construct an extension of the Vagner-Preston representation for block-groups and show that its kernel is the largest congruence that separates regular elements.

Fernandes, Vítor H. "On the monoid of order-preserving transformations of a finite chain whose ranges are intervals." Semigroup Forum (DOI 10.1007/s00233-024-10466-2; Online 19 Aug 2024). 109.2 (2024): 336-346. AbstractWebsite

In this note we give a presentation for the monoid IO_n of all order-preserving transformations of a n-chain whose ranges are intervals. We also consider the submonoid IO_n^- of IO_n consisting of order-decreasing transformations, for which we determine the cardinality, the rank and a presentation.

Fernandes, Vítor H., and Teresa M. Quinteiro. "The cardinal of various monoids of transformations that preserve a uniform partition." Bulletin of the Malaysian Mathematical Sciences Society. 35.4 (2012): 885-896.
Fernandes, Vítor H., M. M. Jesus, and B. Singha. "On orientation-preserving transformations of a chain." Communications in Algebra (DOI 10.1080/00927872.2020.1870996). 49.6 (2021): 2300-2325. AbstractWebsite

In this paper we introduce the notion of an orientation-preserving transformation on an arbitrary chain, as
a natural extension for infinite chains of the well known concept for finite chains introduced in 1998 by McAlister and, independently, in 1999 by Catarino and Higgins.
We consider the monoid POP(X) of all orientation-preserving partial transformations on a finite or infinite chain X and its submonoids OP(X) and POPI(X) of all orientation-preserving full transformations and of all orientation-preserving partial permutations on X, respectively.
The monoid PO(X) of all order-preserving partial transformations on X and its injective counterpart POI(X) are also considered.
We study the regularity and give descriptions of the Green's relations of the monoids POP(X), PO(X), OP(X), POPI(X) and POI(X).

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "The cardinal and the idempotent number of various monoids of transformations on a finite chain." Bulletin of the Malaysian Mathematical Sciences Society. 34.2 (2011): 79-85. Abstract

Summary: We consider various classes of monoids of transformations on a finite chain, in particular of transformations that preserve or reverse either the order or the orientation. Being finite monoids we are naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas numbers play an essential role in the last computations.