Publications

Export 54 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "The cardinal and the idempotent number of various monoids of transformations on a finite chain." Bulletin of the Malaysian Mathematical Sciences Society. 34.2 (2011): 79-85. Abstract

Summary: We consider various classes of monoids of transformations on a finite chain, in particular of transformations that preserve or reverse either the order or the orientation. Being finite monoids we are naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas numbers play an essential role in the last computations.

Fernandes, Vítor H., and Teresa M. Quinteiro. "On the monoids of transformations that preserve the order and a uniform partition." Communications in Algebra. 39.8 (2011): 2798-2815.
Fernandes, Vítor H., and Teresa M. Quinteiro. "Bilateral semidirect product decompositions of transformation monoids." Semigroup Forum. 82 (2011): 271-287. Abstract
Summary: In this paper we consider the monoid $\mathcal {OR}_{n}$ of all full transformations on a chain with $n$ elements that preserve or reverse the orientation, as well as its submonoids $\mathcal {OD}_{n}$ of all order-preserving or order-reversing elements, $\mathcal {OP}_{n}$ of all orientation-preserving elements and $\mathcal {O}_{n}$ of all order-preserving elements. By making use of some well known presentations, we show that each of these four monoids is a quotient of a bilateral semidirect product of two of its remarkable submonoids.
2010
Fernandes, Vítor H., M. M. Jesus, V. Maltcev, and J. D. Mitchell. "Endomorphisms of the semigroup of order-preserving mappings." Semigroup Forum. 81 (2010): 277-285.Website
Fernandes, Vítor H., and M. V. Volkov. "On divisors of semigroups of order-preserving mappings of a finite chain." Semigroup Forum. 81 (2010): 551-554.Website
2009
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of transformations preserving the orientation of a finite chain." J. Algebra. 321 (2009): 743-757.Website
2008
Fernandes, Vítor H. "The idempotent-separating degree of a block-group." Semigroup Forum. 76 (2008): 579-583.Website
Fernandes, Vítor H. "Normally ordered semigroups." Glasg. Math. J.. 50 (2008): 325-333.Website
Fernandes, Vítor H. "On divisors of pseudovarieties generated by some classes of full transformation semigroups." Algebra Colloq.. 15 (2008): 581-588.
2007
Semigroups and formal languages. Eds. Jorge M. André, V{\'ı}tor H. Fernandes, Mário J. J. Branco, Gracinda M. S. Gomes, John Fountain, and John C. Meakin. Proceedings of the International Conference held at the Universidade de Lisboa, Lisboa, July 12–15, 2005. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
André, J. M., V. H. Fernandes, and J. D. Mitchell. "Largest 2-generated subsemigroups of the symmetric inverse semigroup." Proc. Edinb. Math. Soc. (2). 50 (2007): 551-561.Website
2006
Cordeiro, E., M. Delgado, and V. H. Fernandes. "Relative abelian kernels of some classes of transformation monoids." Bull. Austral. Math. Soc.. 73 (2006): 375-404.Website
2005
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of order-preserving or order-reversing transformations on a finite chain." Glasg. Math. J.. 47 (2005): 413-424.Website
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of partial transformations on a finite chain." Comm. Algebra. 33 (2005): 587-604.Website
Delgado, Manuel, and Vítor H. Fernandes. "Solvable monoids with commuting idempotents." Int. J. Algebra Comput.. 15 (2005): 547-570. Abstract

The notion of the Abelian kernel of a finite monoid is a generalization of that of the derived subgroup of a finite group. A monoid $M$ is then called solvable if its chain of Abelian kernels terminates with the submonoid of $M$ generated by its idempotents. The main result of this paper is that the finite idempotent commuting monoids bearing this property are precisely those whose subgroups are solvable. In particular any finite aperiodic monoid is Abelian-solvable in this sense. A generalization of the main result of this paper has been published [in Int. J. Algebra Comput. 14, No. 5-6, 655-665 (2004; Zbl 1081.20067)] by the authors and ıt S. Margolis and ıt B. Steinberg.

2004
Delgado, Manuel, and Vítor H. Fernandes. "Abelian kernels of monoids of order-preserving maps and of some of its extensions." Semigroup Forum. 68 (2004): 335-356.Website
Delgado, Manuel, and Vítor H. Fernandes. "Abelian kernels, solvable monoids and the abelian kernel length of a finite monoid." Semigroups and languages. World Sci. Publ., River Edge, NJ, 2004. 68-85.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of injective partial transformations on a finite chain." Southeast Asian Bull. Math.. 28 (2004): 903-918.
Semigroups and languages. Eds. Isabel M. Araújo, Mário J. J. Branco, V{\'ı}tor H. Fernandes, and Gracinda M. S. Gomes. Proceedings of the workshop held at the University of Lisbon, Lisboa, November 27–29, 2002. River Edge, NJ: World Scientific Publishing Co. Inc., 2004.
Delgado, Manuel, V{\'ı}tor H. Fernandes, Stuart Margolis, and Benjamin Steinberg. "On semigroups whose idempotent-generated subsemigroup is aperiodic." Internat. J. Algebra Comput.. 14 (2004): 655-665.Website
2002
Fernandes, Vítor H. "Presentations for some monoids of partial transformations on a finite chain: a survey." Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ, 2002. 363-378.
Fernandesh, V. U. "A new class of divisors of semigroups of isotone mappings of finite chains." Izv. Vyssh. Uchebn. Zaved. Mat. (2002): 51-59.
2001
Fernandes, V. H. "The monoid of all injective order preserving partial transformations on a finite chain." Semigroup Forum. 62 (2001): 178-204.
Araújo, Isabel M., Mário J. J. Branco, Vitor H. Fernandes, Gracinda M. S. Gomes, and N. Ruškuc. "On generators and relations for unions of semigroups." Semigroup Forum. 63 (2001): 49-62.