Fernandes, Vítor H., and Tânia Paulista. "
On the monoid of partial isometries of a finite star graph."
Communications in Algebra (DOI 10.1080/00927872.2022.2121404; Online 14 Sep 2022). 51.3 (2023): 1028-1048.
AbstractIn this paper we consider the monoid DPSn of all partial isometries of a star graph Sn with n vertices. Our main objectives are to determine the rank and to exhibit a presentation of DPSn. We also describe Green’s relations of DPSn and calculate its cardinal.
Fernandes, Vítor H. "
On the cyclic inverse monoid on a finite set."
Asian-European Journal of Mathematics (DOI 10.1142/S1793557124500177; Online 6 Mar 2024). 17.2 (2024): 2450017 (16 pages).
AbstractIn this paper we study the cyclic inverse monoid CI_n on a set Ω_n with n elements, i.e. the inverse submonoid of the symmetric inverse monoid on Ω_n consisting of all restrictions of the elements of a cyclic subgroup of order n acting cyclically on Ω_n. We show that CI_n has rank 2 (for n⩾2) and n⋅2^n−n+1 elements. Moreover, we give presentations of CI_n on n+1 generators and (n^2+3n+4)/2 relations and on 2 generators and (n^2−n+6)/2 relations. We also consider the remarkable inverse submonoid OCI_n of CI_n constituted by all its order-preserving transformations. We show that OCI_n has rank n and 3⋅2^n−2n−1 elements. Furthermore, we exhibit presentations of OCI_n on n+2 generators and (n^2+3n+8)/2 relations and on n generators and (n^2+3n)/2 relations.
Fernandes, Vítor H., M. M. Jesus, and B. Singha. "
On orientation-preserving transformations of a chain."
Communications in Algebra (DOI 10.1080/00927872.2020.1870996). 49.6 (2021): 2300-2325.
AbstractIn this paper we introduce the notion of an orientation-preserving transformation on an arbitrary chain, as
a natural extension for infinite chains of the well known concept for finite chains introduced in 1998 by McAlister and, independently, in 1999 by Catarino and Higgins.
We consider the monoid POP(X) of all orientation-preserving partial transformations on a finite or infinite chain X and its submonoids OP(X) and POPI(X) of all orientation-preserving full transformations and of all orientation-preserving partial permutations on X, respectively.
The monoid PO(X) of all order-preserving partial transformations on X and its injective counterpart POI(X) are also considered.
We study the regularity and give descriptions of the Green's relations of the monoids POP(X), PO(X), OP(X), POPI(X) and POI(X).