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Abstract

Let k be a positive integer and G be a k-connected graph. In 2009, Chartrand,
Johns, McKeon, and Zhang introduced the rainbow k-connection number rc,(G) of G.
An edge-coloured path is rainbow if its edges have distinct colours. Then, rci(G) is
the minimum number of colours required to colour the edges of G so that any two ver-
tices of G are connected by k internally vertex-disjoint rainbow paths. The function
rek(G) has since been studied by numerous researchers. An analogue of the function
rek(G) involving vertex colourings, the rainbow vertex k-connection number rvcy(G),
was subsequently introduced. In this paper, we introduce a version which involves total
colourings. A total-coloured path is total-rainbow if its edges and internal vertices have
distinct colours. The total rainbow k-connection number of G, denoted by treg(G), is
the minimum number of colours required to colour the edges and vertices of G, so that
any two vertices of G are connected by k internally vertex-disjoint total-rainbow paths.
We study the function trex(G) when G is a cycle, a wheel, and a complete multipartite
graph. We also compare the functions rc (G), rveg (G), and treg(G), by considering how
close and how far apart trcg(G) can be from reg(G) and rvcg(G).
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1 Introduction

In this paper, all graphs are finite, simple, and undirected. For undefined terms in graph
theory, we refer the reader to the book by Bollobas [1]. A set of internally vertex-disjoint
paths will be called disjoint. An edge-coloured path is rainbow if its edges have distinct
colours. For a positive integer k, an edge-colouring of a k-connected graph G, not necessarily
proper, is rainbow k-connected if any two vertices of G are connected by k disjoint rainbow
paths. The rainbow k-connection number of G, denoted by rci(G), is the minimum integer
t such that there exists a rainbow k-connected colouring of G using ¢ colours. By Menger’s
theorem [13], a graph is k-connected if and only if any two vertices are connected by k
disjoint paths. Hence, rci(G) is well-defined if and only if G is k-connected. The function
rcg(G) was first introduced by Chartrand et al. ([2] for £ = 1 in 2008, and [3] for general k
in 2009) and has since been very well-studied. For an overview of the rainbow connection
subject, we refer the reader to the survey by Li et al. [8], and the book by Li and Sun [11].

A vertex-coloured path is wvertex-rainbow if its internal vertices have distinct colours.
A vertex-colouring of a k-connected graph G, not necessarily proper, is rainbow vertex k-
connected if any two vertices of G are connected by k disjoint vertex-rainbow paths. The
rainbow vertex k-connection number of G, denoted by rvck(G), is the minimum integer ¢
such that there exists a rainbow vertex k-connected colouring of G using ¢ colours. Again,
rvck(Q) is well-defined if and only if G is k-connected. The function rvc,(G) was introduced
by Krivelevich and Yuster [7] (for £ = 1 in 2010), and by the authors [12] (for general k in
2012).

Here, we consider an analogous function using total colourings. A total-coloured path is
total-rainbow if its edges and internal vertices have distinct colours. A total colouring of a
k-connected graph G, not necessarily proper, is total-rainbow k-connected if any two vertices
of G are connected by k disjoint total-rainbow paths. The total rainbow k-connection number
of G, denoted by trcg(G), is the minimum integer ¢ such that, there exists a total-rainbow
k-connected colouring of G using t colours. We have treg(G) is well-defined if and only if G
is k-connected. We write tre(G) for trei(G), and similarly for r¢(G) and rve(G).

For a non-trivial connected graph G, many observations about the function trcg(G) can
be made. We have tr¢(G) = 1 if and only if G is a complete graph, and tre(G) > 3 if
G is not complete. A simple upper bound is tre(G) < n — 1 + ¢, where |V(G)| = n and
q is the number of vertices of G with degree at least 2, and equality holds if and only
if G is a tree (see Proposition 1). If G is k-connected, then trcg(G) > 3 if k > 2, and
treg(G) > 2diam(G) — 1 for £ > 1, where diam(G) denotes the diameter of G. In relation
to rex(G) and rveg(G), we have treg(G) > max(reg(G), rveg(G)). Also, if rep(G) = 2, then
treg(G) = 3. If roeg(G) > 2, then treg(G) > 5.

In the rest of this paper, we will study the function trcg(G) when G is a cycle, a wheel,
a complete bipartite graph, and a complete multipartite graph. We will also compare the
functions treg(G), reg(G), and rvcg(G), by considering how close and how far apart trcg(G)
can be from each of rcg(G), rvcg(G), and max(reg(G), rvek(Q)).

2 Total Rainbow k-connection Numbers of some Graphs

In this section, we first derive the upper bound on tre(G) as mentioned in Introduction.
Then, we study the function treg(G) for some specific graphs G.



Proposition 1. Let G be a connected graph on n vertices, with q vertices having degree at
least 2. Then, tre(G) < n — 1+ q, with equality if and only if G is a tree.

Proof. The proposition is trivial for n = 1,2. Now, let n > 3.

First, we show that trc¢(G) < n—1+¢. Take a spanning tree T’ of G, and note that T has
at most ¢ non-leaves. Then, take a total colouring of G with at most n — 1 4 ¢ colours such
that the edges and non-leaves of T have distinct colours. We have a total-rainbow connected
colouring for G.

Now, let G be a tree. Suppose that we have a total colouring for G with fewer than
n — 1 4+ g colours. Then, either there are two edges, or two non-leaves, or an edge and a
non-leaf, with the same colour. In each case, we can find two vertices u,v € V(G) such that
the unique u — v path in G is not total-rainbow. Hence, tre(G) >n —1+q.

Conversely, if G is not a tree, then G contains a spanning unicyclic subgraph G’. Let
C be the unique cycle of G'. We recall from Chartrand et al. [2, Proposition 2.1] that
rc(C3) = 1 and r¢(Cp) = [§] for p > 4, where C, is the cycle of order p. Now, consider
a total colouring of G’ where C' is given a rainbow connected colouring with r¢(C) colours,
and the vertices of degree at least 2 in G’ and the edges of E(G’) \ E(C) are given distinct
colours. Then, we have a total-rainbow connected colouring for G’, and hence for G, with
at most e(G') — e(C) + re(C) + g < n — 2+ g colours. Therefore, tre(G) <n—1+¢q. O

Now, we study the function treg(G) for some specific graphs G. Let x(G) = max{k : G
is k-connected} denote the vertex connectivity of G. Note that trc,(G) is well-defined if and
only if 1 < k < k(G). We first consider the case when G is a cycle. Let C,, denote the cycle
of order n, and note that x(C)) = 2.

Theorem 2.

(a) For 3 <n <12, the values of trc(Cy,) are given in the following table.

n 3[4][5]6[7[8]9]10[11]12
tre(C) (1131356789 [11]11

Forn > 13, we have tre(Cp) = n.
(b) trea(Cs) =3, tree(Cy) = 6, and trea(Cr) = 2n forn > 5.

Proof. Throughout, let the vertices of C,, be vg,...,v,—1, with the indices taken cyclically
modulo n.

(a) One can easily verify that ¢trc(C3) = 1 and tre(Cs) = tre(Cs) = 3. Now, let n > 6.
We first prove the upper bounds. Define a total colouring ¢,, of C),, using colours 0,1,2,...,
as follows. For 6 < n < 10 or n = 12, let c,(vo) = cn(v|n/3)) = cn(v|2n/3)) = 0, and

cn(v1) = Cn(ULn/3J+1) = Cn(ULQn/3J+1) = 1. Then, colour vyvy, v1v2, V2, VoU3, V3, ..., Up_1,
vp—1v9 with the colours 2,3,...,n—2,2,3,...,n — 2, omitting vo, v1, V|n/3], V|n/3]+15 V|2n/3]
and v|9,,/3)41. Note that each of the colours 2,3,...,n — 2 appear exactly twice. See Figure

1. Then, every path of length at most [5] —1 is total-rainbow, and when n is even, any two
opposite vertices v;, vy o (0 < i < n—1) are connected by a total-rainbow path. Hence, ¢,
is total-rainbow connected, and tre(Cp) < n — 1.
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Figure 1. Total-rainbow connected colourings of C,, for 6 <n <10 and n = 12.

Forn =1lorn > 13, and 0 < i < n — 1, let c,(viviy1) = 4, and c,(v;) = @ + [ 5]
(mod n). Then, for 0 < i < n — 1, consider the path Q; = v;vit1---Viy[,/21. The edges
of @Q; have colours i,i 4+ 1,...,i+ [§] — 1 (mod n), and the internal vertices have colours
i+|5]+1,...,i+n—1 (mod n). Hence, Q; is a total-rainbow path. Since any two vertices
v; and vy are contained in some @Q);, there exists a total-rainbow v; — v, path. Hence, ¢, is
total-rainbow connected, and tre(Cy) < n.

Now we prove the lower bounds. We have trc(Cy,) > 2diam(Cy,) — 1 = 2[ 5] — 1, and this
gives the matching lower bound for n = 6,8, 10, 12. To see that trc(C7) > 6 (resp. tre(Co) >
8), one can check that in any total colouring of C7 (resp. Cg) with at most five (resp. seven)
colours, there exists a path of length 3 (resp. 4) which is not total-rainbow, so that the
end-vertices of such a path are not connected by a total-rainbow path. Finally, for n = 11 or
n > 13, take a total colouring of C), with fewer than n colours. Then for some m € {0,1, 2, 3},
we have m edges and 3 — m vertices with the same colour. Without loss of generality, for
some 1 < i <[5 ] +1, either v1 and v;, or v1 and v;vi41, or vov1 and v;v; 41, have the same
colour. Then, the path vgvy - --v;41 is not total-rainbow, and the path v;41vi49- - vh—1v0
has at least 2n — 2["5™] —5 > n — 1 edges and internal vertices, and hence is also not
total-rainbow. Therefore, tre(Cy) > n.

(b) One can easily verify that trce(Cs) = 3 and trea(Cy) = 6. For n > 5, we clearly have
trea(Cr) < 2n. If we have a total colouring of C), with fewer than 2n colours, then some
a,b € E(Cy) UV(Cy) have the same colour. There exist vertices v; and v; such that one
of the two v; — v; paths, say P, satisfies a,b € E(P) U V(P — {v;,v;}), so that P is not
total-rainbow. Hence, tre(Cy,) > 2n. O

A graph closely related to the cycle C,, is the wheel W,,. This is the graph obtained from
C,, by joining a new vertex v to every vertex of C,. The vertex v is the centre of W,,. We
now determine trcg(Wy,). Observe that «(W,,) = 3.



Theorem 3.

(a) tre(W3) =1, tre(Wy,) =3 for4 <n <6, tre(W,)) =4 for 7<n <9, and trc(W,) =5
forn > 10.

(b) trea(Ws) =3, trea(Wy) = 3, trea(Ws) = 5, and treg(Wy,) = tre(Ch) for n > 6 (hence,
trea(W,,) is determined and given by Theorem 2(a) for n > 6).

(c) tres(Ws) =4, tres(Wy) = 6, and tres(Wy,) = 2n for n > 5.

Proof. Let v be the centre of W,,, and the vertices of the cycle C), be vy, ...,v,—_1. Through-
out this proof, indices of the vertices are taken cyclically modulo n.

(a) Clearly, we have trc(W3) = 1. Now, let n > 4. We first prove the upper bounds.
Define a total colouring f,, of W,,, using colours 0,1,2,..., as follows. For 4 < n < 9 and
0<i<n-—1,let fn(UUi) = L%Ja fn(vivi-i-l) =1 (mOd 3); and fn(v) = fn(vz) =2if4 <n < 6;
and fp(v) = fr(v;) =3if7<n<9. Forn>10and 0 <i<n-—1,let f,(vv;) =i (mod 2),
fn(viviz1) = 2, fn(v;) = 3, and f,(v) = 4. See Figure 2 for the cases n = 5,7,10. Then, f,
is total-rainbow connected. Hence, tre(W,,) < 3 for 4 <n <6, tre(W,,) <4 for 7<n <9,
and trc(W,) <5 for n > 10.

Figure 2. Total-rainbow connected colourings of W5, W7 and Wig.

Now, we prove the lower bounds. Clearly, we have tre(W,,) > 3 for n > 4. Suppose that
we have a total-rainbow connected colouring f;, of W, with colours 0,1,...,b — 1, where
b=3for 7<mn <9 and b € {3,4} for n > 10. Assume that f/(v) = 0. If f/ (vv;) =0
for some 0 < ¢ < n — 1, then there is no total-rainbow v; — v;43 path. Hence, some four
of the edges vvy,...,vv,—1 have the same colour. Assume that for some 3 < i < n — 3,
we have f] (vvg) = f)(vv;) = 1. But then, we do not have a total-rainbow vy — v; path, a
contradiction. Hence, tre(W,,) >4 for 7 <n <9, and trc(W,) > 5 for n > 10.

(b) We first prove the upper bounds. For n > 3, we define a total colouring g,, of W,

using colours 0,1, 2, ..., as follows. For g3, g4 and g5, we take the total-rainbow 2-connected
colourings as shown in Figure 3. Hence, treg(Ws) < 3, trea(Wy) < 3 and treg(Ws) < 5.

0 0 1 0
2 1
2 1 9 )
1,70\
0
0 1 0 0 1 0

Figure 3. Total-rainbow 2-connected colourings of W3, Wy and Ws.
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For 6 <n <10 and n = 12, let g,, = ¢,, when we restrict g,, to the cycle C},, where ¢, is
the total colouring on C,, as defined in Theorem 2(a). Let g,(v) = 0, and colour the edges
v, for 0 < i < n —1, as in Figure 4. Note that g, uses trc(Cy,) = n — 1 colours. In each
case, g, is total-rainbow 2-connected. Indeed, for v and a vertex v;, we have vv; and vv;_1v;
are total-rainbow. For two vertices v; and vj, assume that v;v;41 - - v; is total-rainbow (by
the choice of g,, = ¢, on Cy,). If v;vv; is total-rainbow, then this is the second suitable v; —v;
path. Otherwise, we can take the second path to be vjvjy1---v; if n = 4,6,8, or v;v;_1vv;
if n =17,9,10,12. Hence, we have trca(W,,) < tre(Cp) =n — 1.

Figure 4. Total-rainbow 2-connected colourings of W,,, for 6 <n < 10 and n = 12.

For n = 11 or n > 13, let g, = ¢, on the cycle C, as before. Let g,(vv;) = i for
0<i<n—2 gy(vve—1) = [5] —1 and g,(v) = n — 1. Note that g, uses trc(C,) = n
colours. We claim that g, is total-rainbow 2-connected. For two vertices v; and vj, two of
ViVig1 - V4, VU141 - - v; and v;ov; are total-rainbow. For v and a vertex v;, we have vv; and
vV;4-1v; are total-rainbow, except for ¢ = n — 2 and n even, in which case we take vv,_s and
VUYUp—1Vn—2. Hence, we have trea(W,,) < tre(Cyp) = n.

Now, we prove the lower bounds. Clearly, we have trca(Ws) > 3 and trea(Wy) > 3. If we
have a total colouring of W5 with fewer than five colours, then without loss of generality, vvg
and vv; have the same colour for ¢ = 1 or ¢ = 2, and we do not have two disjoint total-rainbow
vg — v; paths. Hence, trca(Ws) > 5. Now let n > 6. If we have a total colouring of W, with
fewer than tre(C,,) colours, then there exist v; and v; where both of the v; — v; paths in the
Chp, say P and P’, are not total-rainbow. Since any two disjoint v; — v; paths in W,, must
include at least one of P and P’, we cannot have two disjoint total-rainbow v; — v; paths in
W,,. Hence, trea(Wy,) > tre(Ch).

(c) We first prove the upper bounds. For n > 3, we define a total colouring h,, of W,
using colours 0,1,2,..., as follows. For hs and h4, we take the total-rainbow 3-connected
colourings as shown in Figure 5. Hence, tres(Ws) < 4 and tres(Wy) < 6.



0 2 0 1 4 0

Figure 5. Total-rainbow 3-connected colourings of W5 and Wjy.

For n > 5, let hy,(v;) =i, hy(vivit1) =i+ n and hy(vv;) =i+ 1 for every 0 <i <mn —1,
and hy(v) = 0. Then h, is total-rainbow 3-connected, and trez(W,,) < 2n.

Now, we prove the lower bounds. Clearly, for a total-rainbow 3-connected colouring of
W3, we need vgvvy, vivvy and vevvg to be total-rainbow. This implies that tres(Ws) > 4.
For n > 4, suppose that we have a total colouring of W,,, using fewer than trcy(C),) colours.
Then, there exist v; and v; such that one of the v; — v; paths along the C,, is not total-
rainbow. Hence, we cannot have three disjoint total-rainbow v; — v; paths in W,,, and by
Theorem 2(b), tres(Wa) > 6 and treg(Wy,) > 2n for n > 5. O

Next, we consider the function trci(G) when G is a complete bipartite graph Ky, ,,
where 1 < m < n. Note that x(K,, ) = m. We first determine trc(K,, ) exactly. Clearly,
tre(Ky,1) =1 and tre(Ky,) =n+1if n > 2. For m > 2, we have the following result.

Theorem 4. For 2 < m < n, we have tre(Ky, ,) = min([{/n] +1,7).

Proof. Let the classes of Ky, be U and V, where U = {uy,...,uy} and |V| = n. Let
b= [%/n] > 2, and note that m <mn < 6™ if and only if 3 < b+ 1 < 7. Hence, we need to
prove that tre(Kp,) =b+1if m <n < 6™, and tre(Ky, ) =7 if n > 6™.

We first prove the upper bound. Note that whenever we have constructed a total colouring
of K, and want to show that it is total-rainbow connected, it suffices to verify that any
two vertices in the same class of K, , are connected by a total-rainbow path, since any two
vertices in different classes are adjacent.

For m < n < 6™, we define a total colouring f of K,,, with b+ 1 colours as follows.
Assign to the vertices of V' distinct vectors of length m, with entries from {1,...,b}, such
that the vectors (2,1,...,1),(1,2,1,...,1),...,(1,...,1,2) are all present. For v € V, let v/
denote the vector assigned to v. For u; € U and v € V, let f(u;v) = v (where v denotes
the ith coordinate of v’). Let f(w) = b+ 1 for all w € V(K ). Now for u;,u; € U, the
path u;zu; is total-rainbow, where z € V is assigned the vector 2’ = (1,...,1,2,1,...,1),
with the 2 in the ith position. For z,y € V, there exists 1 <1 < m such that 2} # y., and
the path zu;y is total-rainbow. Hence, f is total-rainbow connected, and trc(Ky, ) < b+ 1.

For n > 6™, we define a total colouring f’ of K, , with seven colours as follows. Let
V =V'UV” where |V'| = 3™. Assign the 3™ distinct vectors of length m with entries from
{1,2,3} to the vertices of V', and the vector (4,3,...,3) (with length m) to every vertex
of V", Again for v € V, let v/ be the vector assigned to v. For u; € U and v € V, let
[ (ujv) = vl. Let f'(u1) =5, f'(u;) =6 for 2 <i <m, and f'(w) =7 for all w € V. Then as
before, any two vertices u;, u; € U, and any two vertices =,y € V', are connected by a total-
rainbow path. Now, for z € V’ and y € V", the path zuyy is total-rainbow. For x,y € V",
the path xujzugy is total-rainbow, where z € V is assigned the vector 2/ = (2,1,...,1).
Hence, f’ is total-rainbow connected, and tre(Ky, ) < 7.



Now, we prove the lower bound. If m < n < 2™, then tre(Kpy,,) > 3 = b+ 1. Next, let
2" < n < 6™ Then (b—1)" < n < b™, with b € {3,4,5,6}. Let g be a total colouring
of Ky n, using colours from {1,...,b}. For v € V, assign v with the vector v" of length m,
where v} = g(u;v) for 1 < i < m. For two partitions P and P’ of V, we say that P refines
P, written as P’ < P, if for all A € P, we have A C B for some B € P’. In other words,
P can be obtained from P’ by partitioning some of the sets of P’. We define a sequence
of refining partitions Py < P; < --- < Py, of V, with [P;| < (b— 1) for 0 < i < m, as
follows. Initially, set Py = {V'}. Now, for 1 < i < m, suppose that we have defined P;_;
with |P;_1| < (b—1)""1. Let Py = {A1,..., As}, where £ < (b—1)""L. Define P; as follows.
For 1 <g</{and A; € Pi_1, let

Bl = {ve A, : v =g(w) or g(u;) + 1 (mod b)},
B! = {ve A, : v =g(u;) +7 (mod b)}, for 2<r <b—1.

Let P, = {Bf:1<q</{1<r<b-1and B! # 0}, so that P; is a partition of
V with [P;] < (b—1)" and P;_; < P;. Proceeding inductively, we obtain the partitions
Py < P1 < -+ < Py of V, with [P;] < (b—1)" for 0 < i < m. Now, observe that for
every 1 < i < m, and any two vertices y and z in the same set in P;, the path yu;z is not
total-rainbow, since g(yu;) = v, and g(zu;) = 2} are either in {g(u;),g(u;) + 1} (mod b),
or they are both g(u;) + 7 (mod b) for some 2 < r < b —1. Since n > (b —1)™ > |Pp],
there exists a set in P, with at least two vertices w and z, and since P; < --- < Py, this
means that w and x are in the same set in P; for every 1 < i < m. Therefore, wu;x is not
a total-rainbow path for every 1 <+ < m. Since any other w — x path has length at least 4,
and ¢ uses only at most b < 6 colours, we cannot have a total-rainbow w — x path. Hence,
g is not total-rainbow connected, and trc(Ky, ) > b+ 1.

Finally, let n > 6™. Let ¢’ be a total colouring of K,,,, using colours from {1,...,6}.
For v € V, assign to v the vector v’ of length m, where v, = ¢'(u;v) for 1 < i < m. Then,
there exist x,y € V with 2/ = 3/, and hence the path zu;y is not total-rainbow for any
1 < i < m. Since any other x — y path has length at least 4, and ¢’ uses only at most six
colours, we cannot have a total-rainbow x —y path. Hence, ¢’ is not total-rainbow connected,
and tre(Kpn) > 7. O

Now, we consider treg(Kp, ) for 2 <k < m < n. We may consider the related problems
of finding reg, (Ko ) and rvcg (K, n) for 1 <k <m < n. It is easy to see that rvc(K; ;) =0,
rve(Kp ) = 1if n > 2, and rveg(Kp, ) = 2 for kK > 2. Also, we have r¢(K;,,) = n, and
Chartrand et al. [2] proved that re(Kp,,) = min([{/n],4) if 2 < m < n. For k > 2, the
determination of reg (K, ) has been well-studied and remains an open problem. Partial
solutions for the balanced case rci (K, ) have been obtained by Chartrand et al. [3], Li and
Sun [10], and Fujita et al. [5]. The result of Fujita et al. [5, Theorem 1.6] says that if 0 < ¢ < %
and k > (0 —1)(1 —2¢) + 2, where 6 = 0(¢) is the largest solution of 222" (*=2) = 1, then
2k—
1-2

we have rcg(Kp,) = 3 for n > $75° + 1. From this result, we have the following corollary.

Corollary 5. Let 0 < ¢ < § and k > 3(0 — 1)(1 — 2¢) + 2, where § = 6(¢) is the largest
solution of 222~ (*=2) = 1. Ifn > % + 1, then treg(Kyn) = 5.

Proof. By the result of Fujita et al., we have rcg(K,,) = 3. We can take a rainbow k-
connected colouring of K, , with three colours, and colour the vertices with two further
colours, with the vertices within each class having the same colour. This gives treg(Ky n) <



5. Also, we have trcg(Ky,,) > 5, since to have at least two disjoint total-rainbow paths
connecting two vertices in different classes, at least one path must have length at least 3. [

For example, if we set ¢ = % in Corollary 5, then for £ > 159 and n > 3k — 5, we have
treg(Knpn) = 5.

Fujita et al. [5, Problem 5.3] also asked the following question: “For 2 < k <m < mn, is it
true that rcg (K, ) € {3,4} for sufficiently large m?” Here, we may ask a similar question.

Problem 6. For 2 < k <m < n, is it true that trcg(Ky, ) € {5,6,7} for sufficiently large
m? Also, for which values of m and n does treg (Ko, ) take a particular value in {5,6,7}7

Next, we consider the more general problem of finding treci(G) when G is a complete
multipartite graph. For ¢t > 3, let K,,, . ., be the complete multipartite graph with class-
sizes 1 <n; <--- <ny. Let m = 22;1 n; and n = ng. Observe that k(Ky, . n,) =m. We
first determine tre(Ky, . n,)-

Theorem 7. Lett>3,1<n; <---<ngy, m= Zf;% n; and n = ng. Then,

1 ifn=1,
tTC(Km,...,nt) = 3 if n>2 and m > n,
min([/n ]+ 1,5) if m<n.

Proof. Write G for Ky, . n,, and let V; be the ith class (with n; vertices) for 1 < i <¢. If
n = 1, then G = K; and tre(G) = 1. For the case n > 2 and m > n, Chartrand et al. [2,
Theorem 2.7] proved that rc¢(G) = 2. This implies that tre(G) = 3.

Now, let m < n. Let b = [{/n| > 2, and note that m < n < 4™ ifand only if 3 < b+1 < 5.
Hence, we need to prove that tre(G) =b+1if m <n < 4™, and tre(G) =5if n > 4™.

We first prove the upper bound. For the case m < n < 4™, observe that K,,, is a
spanning subgraph of G with classes V3 U---UV;_1 and V;. Hence, by Theorem 4 we have
tre(G) < tre(Kpman) =b+ 1.

For the case n > 4™, we define a total colouring f of G with five colours as follows.
Let V; = VUV’ where |V| = 3™ — 1. Assign the 3™ — 1 distinct vectors of length m
with entries from {1, 2,3}, except for (1,2,...,2), to the vertices of V. Assign the vector
(1,2,...,2) to all vertices of V'. For v € V4, let v/ denote the vector assigned to v. Let
Viu---UViey ={u1,...,un}, where uy € V4 and ug € Vo. For 1 < i < m and v € V4, let
f(uv) = o). Let f(e) = 3 for every edge e inside Vj U--- U V;_; (note that such edges exist,
since t > 3), f(u1) =4, and f(w) =5 for all w € V(G) \ {u1}. As in the proof of Theorem 4,
we only need to verify that any two vertices in the same class of G are connected by a total-
rainbow path. Any two vertices in V(G) \ V', and one vertex in each of V(G) \ V' and V’,
are connected by a total-rainbow path. If 2,y € V', then the path xujusy is total-rainbow.
Therefore, f is total-rainbow connected, and tre(G) < 5.

Now, we prove the lower bound. If m < n < 2™, then trc¢(G) > 3 = b+ 1. Next, let
2m < n < 4™, Then (b—1)" < n < b, with b € {3,4}. Suppose that we have a total
colouring of G, using at most b colours. Again, K,,, is a spanning subgraph of G with
classes V43 U---UV;_1 and V4. Apply the same argument involving the refining partitions as
in Theorem 4. We have vertices u,v € V; which are not connected by a total-rainbow path
of length 2. Since we have used at most b < 4 colours, we do not have a total-rainbow u — v
path of length at least 3 in G. Therefore, tre(G) > b+ 1. Finally for n > 4™, consider a total



colouring of G with at most four colours. We obtain K, , as before and apply the same
argument as in the end of Theorem 4. Then there are u,v € V; which are not connected by
a total-rainbow path of length 2. Since we have used only at most four colours, again we
cannot have a total-rainbow u — v path in G. Hence, trc¢(G) > 5. t

Now, we consider trcg(Ky, .. n,) for 2 < k < m. Again, we have the related problems of
finding reg(Kp, . pn,) and rvcg(Ky, . n,) for 1 < k < m, and these have been well-studied.
The function rveg(Ky, . n,) has been completely determined by Liu et al. [12]. Roughly
speaking, for 1 < s < t,ifn; = 1fori < t—sand n; = 2 for ¢ > t — s, then we have
rvcg(Kn,, . .n,) = s. Otherwise, we have rvcg(Ky,, . .n,) € {1,2,3,4}. Also, Chartrand et
al. [2] proved that

1 if n=1,
Tc(Knl,...,nt) = 2 Zf n 2 2 and m > n,

min([y/n],3) if m<n.

The problem of determining rcg(Ky, .. n,) remains open for k > 2. For the balanced case,
let Ky, denote the graph K, _, with ¢ classes. Fujita et al. [5, Theorem 1.8] proved that
if 0 <e< §andk > 30(t —2)(1 — 2) + 1, where § = 6(e,t) is the largest solution of
%tsze_(t—z)EQx = 1, then we have rcg(Kixp) = 2 for n > 0 2k—2

T=2)(1=2z)+ From this, we instantly
have the following corollary.

Corollary 8. Lett >3, 0<e < %, and k > 10(t — 2)(1 — 2¢) + 1, where § = 0(e,t) is the

largest solution of %t2x26_(t_2)52$ =1. Ifn> %, then treg(Kisn) = 3. O

For example, if we set t = 3 and ¢ = % in Corollary 8, then for £ > 169 and n > 3k — 3,
we have treg(Ksx,) = 3.

For general complete multipartite graphs, Fujita et al. [5, Problem 5.3] asked the following
question for rcg(Ky, . n,): “For t > 3, k > 2 and sufficiently large ni, is it true that
7k (Kn,y,...n:) € {2,3}7” Here, we ask a similar question for treg (K, .. n,)-

Problem 9. Fort > 3,1 <n; <:---<ng and 2 < k <m, where m = Zf;i n, s it true
that treg(Kp, .n,) € {3,4,5} for sufficiently large ny ? Also, for which values of ny,...,ng
does treg(Kny, ..n,) take a particular value in {3,4,5} ¢

To end this section, we mention the analogous situation for complete graphs. Obviously,
we have rc¢(K,) = 1, rve(K,) = 0, and rvcg(K,) = 1 if k¥ > 2. The problem of determining
reg(Ky,) for k> 2 has also been well-studied. Chartrand et al. [3] proved that if k¥ > 2 and
n > (k+1)2, then we have rc(K,,) = 2. The bound n > (k+1)2 was subsequently improved
ton > ck%?+o(k%?) (for some constant ¢) by Li and Sun [9], and then to n > (24o0(1))k by
Dellamonica et al. [4, Theorem 2]. This latter bound for n is asymptotically best possible,
and we have the following corollary.

Corollary 10. For k > 2, we have trcg(K,) =3 forn > (24 o(1))k. O

3 Comparing rci(G), rveg(G), and treg(G)

In [7], Krivelevich and Yuster observed that we cannot upper-bound one of the functions
re(G) and rvc(G) in terms of the other, by providing examples of graphs G where r¢(G) is
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much larger than rvc(G), and vice versa. By taking G to be the star K, we have rc(G) = s
and rvc(G) = 1. On the other hand, let G be constructed as follows. Take s vertex-disjoint
triangles and, by designating a vertex from each triangle, add a complete graph on the
designated vertices. Then r¢(G) < 4 and rve(G) = s. Subsequently, Liu et al. [12] compared
the functions rcg(G) and rvcg(G) by extending these examples of Krivelevich and Yuster,
and they obtained similar results.

Here, we similarly compare trcg(G) with rep(G) and rveg(G). Recall that for any k-
connected graph G, we have

treg(G) > max(reg(G), rvek(Q)). (1)

The first question we may ask is, how tight are the inequalities treg(G) > regp(G) and
treg(G) > rveg(G)? Theorem 11 below shows that the second inequality is the best possible
in the sense that, for every sufficiently large s, there exists an example of a graph G where
trep(G) = rveg(G) = s. This is somewhat surprising since in total colourings, we colour
edges and vertices of graphs, as opposed to only vertices for vertex-colourings, so we could
possibly expect that treg(G) > rveg(G) if rveg(G) is sufficiently large.

Theorem 11. For every s > 11k+1470, there exists a graph G with treg(G) = rveg(G) = s.

To prove Theorem 11, we need the result of Chartrand et al. [3] which was mentioned at
the end of Section 2, as well as an auxiliary lemma.

Theorem 12 (Chartrand et al. [3, Theorem 2.4]). For k > 2 and n > (k + 1)?, we have
reg(Kp) = 2.

Lemma 13. Let k > 2, s > 11k + 1470, and w1, ..., us be the vertices of the complete graph
K. For1<1i<s,let L(u;) C {1,...,s}, where L(u;) = {i,i+1,...,1+ k + 4} modulo s.
Then, there ezists an edge-colouring of K, using at most 11k 4 1470 colours from {1,..., s}
such that, for every y,z € V(Kj), the following property holds.

(P) There exist 3k + 10 disjoint rainbow y — z paths of length 2, say yviz,...,yvspr102 for
some vi, ..., vsky10 € V(Ks), such that for every 1 < j < 3k + 10, the path yv;z does
not use the colours from L(y) U L(z) U L(v;).

Proof. We take a random edge-colouring of K with 11k+ 1470 colours. For y, z € V(Kj), let
E, . be the event that the property (P) does not hold. For fixed y and z, we can choose a set
L c{1,...,s}suchthat L(y)UL(z) C L and |L| = 2k+10, and then aset S C V(K;)\{y, z}
such that |S| = s—4k— 18, and L(v)NL = for all v € S. For v € S, we say that the path

yvz is good if it is rainbow, and does not use the colours of L(v) U L. The probability that
2

the path yvz is good is p = (8k+1(ﬁz)+z4($§;1455), and for different v in S, these probabilities

are independent. Let X be the number of good y — z paths. Then, X ~ Bi(s — 4k — 18, p).

By the Chernoff bound (see for example, [6, Theorem 2.1]), we have

P(By:) < P(X <3k+9) <P(X < (1—¢)(s — 4k — 18)p)
< exp (— %52(5 — 4k — 18)p),

where ¢ is a constant such that 0 <e <1 — %. Note that we have p > % so that

3k +9 3 121 85

- — T8 o2 o
(s —4k — 18)p 7 64 44%°

(2)
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and we may take ¢ = %. Applying the union bound, we have

IP’( g E> < <;>exp(—;52(s—4k—l8)p)

yuZEV(Ks)

< (;) exp(—0.0095(s — 4k — 18)) < 1,

if s > 11k 4+ 1470 and k£ > 2. Hence, there exists an edge-colouring of K, using at most
11k 4 1470 colours, such that the property (P) holds for all y, z € V(Kj). O

We remark that in Lemma 13, the constant 11 can be replaced by any constant greater
than 6, where § ~ 10.08 is the largest solution of the cubic equation (z —3)?(x —4) — 322 = 0.
Using any such constant in place of 11 will ensure that the term corresponding to € can be
found, as in the calculation in (2). The constant 1470 will then have to be replaced by
another constant.

Proof of Theorem 11. We shall focus mainly on the case when & > 2, and then briefly
consider the case k =1 at the end.

We generalise the construction of Krivelevich and Yuster with the disjoint triangles at-
tached to a clique, as described earlier. Take s disjoint k-sets of vertices Vi,...,Vs. Let
V; = {vl,... vl } for every 1 <i < s. For every 1 < p < k, we add a clique on {v;, ey Up ke
This gives k disjoint copies of K. Let G), be the copy of K on {v},, vt (LS p < k).
Take further disjoint sets X1,..., X, and Y,...,Ys, each with (k + 1)? vertices. For each
1 <1 < s, add a clique with vertex set X; UY;, and a complete bipartite graph with classes
X;UY; and V;. Let G be the resulting graph. We claim that rveg(G) > s, and treg(G) < s.

First, suppose that we have a vertex-colouring of GG, using fewer than s colours. We may
assume that v%, v% € V(G1) have the same colour. Let u € X; and v € X5. Then, in any set
of k disjoint u — v paths in G, one path must use both v{ and v%; note that the edges and
vertices between v} and v} in such a path are in G;. Hence, rvcg(G) > s.

Now, we construct a total colouring ¢ of G, using the colours 1,..., s, as follows. Let ¢’ be
an edge-colouring on K as given by Lemma 13, where the vertices of the K are wq, ..., us
and the sets L(u;) C {1,...,s} are as defined. For w € V; and w’' € V}, for some i # j, if
ww' € B(G), we let c(ww') = ¢ (uzu;). For 1 <i<sand1<p<k, let c(v) =i+p—1,
cle)=i+kforee E(V;, X;), c(x)=i+k+1forx € X;, cle)) =i+ k+2fore € E(X;,Y;),
cly) =i+k+3fory eV, and c(e”) =i+ k+4 for " € E(Y;,V;), all modulo s. Here,
E(A, B) denotes the set of edges in G with one end-vertex in A and the other in B, for
disjoint sets of vertices A, B C V(G). Note that for 1 <i < s, the set of colours used within
ViUX;UY;is L(u;) ={i,i+1,...,i+k+4} (mod s). By Theorem 12, we can give rainbow
k-connected edge-colourings to the copies of K ;)2 induced by X; and Y; with two colours
not in L(u;), for 1 <i <s.

We claim that c is total-rainbow k-connected for G. Let u,v € V(G). We show that
there exist k disjoint total-rainbow u — v paths. It is easy to see that such paths exist if
u,v € V; U X; UY] for some i. Note that we apply Theorem 12 if u,v € X; or u,v € Y;.

Let u € V; and v € V; for some i # j, withu:v; and v = vj for some p and ¢q. If p = ¢,
then u,v € V(Gp). Applying Lemma 13 on Gy, we can find k suitable u — v paths of length
2, all within G,. If p # ¢, then applying Lemma 13 on G}, and G4, we can find the k suitable
u — v paths, where each path has the form uvéxyvgv for some ¢ & {i,j}, z € Xy and y € Yy,
with distinct paths having distinct values of £.

12



Let u € X; UY; and v € V; for some ¢ # j, with v = vg for some ¢q. By Lemma 13, in the
edge-colouring ¢’ on Kj, there are 3k 4 10 disjoint rainbow u; — u; paths of length 2, where
each such path u;wu; does not use the colours of L(u;) U L(uj) U L(w). We may choose k
of these paths, say w;us, uj, . .., ujug,uj, such that L(ug, ) N L(u;) = 0 for 1 <r < k. Then,
we have the k sultable u -0 paths where one path is uvf]vslv and the other k£ — 1 paths
have the form uwj, xyv , for some ¢ € {la,... 0}, p# q, x € Xy and y € Yy, with distinct
paths having dlstlnct Values of p and /.

Let u € X; and v € X for some ¢ # j. For 1 < p <k, one of the following holds.

o cluvh) =i+k, c(vy) =i+p—1, c(ov])) = j+k and ¢(v})) = j+p—1 (mod s) are
pairwise distinct.

o cluy) =i+k+2 cly)=i+k+3, clyv)) =i+k+4, () =i+p— ce(vid) =j+k
and c(v)) = j +p—1 (mod s) are pairwise distinct, where y € V;.

o cluvp) =itk c(vy) =itp—1clvy) =j+k+2 cy) =j+k+3, c(yvp) = j+k+4
and ¢(v])) = j 4+ p— 1 (mod s) are pairwise distinct, where 3/ € Y;.

Hence, there is a u — U path Ql and a v — vp path Qp such that, the colours of the
elements of V(Q}, — u) U E(Ql) U V(QJ —v)U E(Qp) are distinct. We may take the paths
QZ and Qp, for 1 < p < k, such that the only common vertex of the paths Ql is u, and the

only common vertex of the paths Qf, is v. Now, by Lemma 13, in the edge-colouring ¢’ on
K, there are 3k + 10 disjoint rainbow u; —u; paths of length 2, where each such path w;wu;
does not use the colours of L(u;) U L(u]) U L(w). Hence, we may choose k of these paths,
say Uilg, Uj, - . ., Uity Uj, such that c(vp ) & L(u;) U L(uj) for 1 < p < k. Therefore, we have
the k suitable u — v paths uQ U;; vapU for 1 < p < k. The cases when u € Y; and v € Y},
and when v € X; and v € Y] for some i # j, can be considered similarly.

Therefore, c is total-rainbow k-connected, and trcg(G) < s.

Finally, for the case k = 1, we may simply use the construction of Krivelevich and Yuster.
Let G’ be the graph in their construction, where the clique K has s > 13. Let vq,...,vs
be the vertices of the K;. We have already seen that rve(G’) = s. Now, consider a total
colouring ¢ on G’ with s colours as follows. For the vertices and edges other than the edges
of the K, we colour these as in the total colouring ¢ on G. For i # j, let ¢’(v;v5) be a
colour not present in the triangles at v; and v;. This can be done since s > 13. Then, ¢” is
total-rainbow connected for G’, and tre(G’) < s. O

Next, we consider the tightness of the inequality trcg(G) > reg(G). For s > k+ 1, let
G be the complete bipartite graph Kj, ;. Then, we have rc,(G) = s and treg(G) = s + 1.
Indeed, the lower bounds rck(G) > s and treg(G) > s + 1 are fairly trivial. To see that
rek(G) < s, we take an edge-colouring of G with colours 1,..., s as follows. Let the classes
of G be {x1,..., 25} and {y1,...,ys}, and colour z;y; with colour i 4+ j — 1 (mod s). Then,
this is a rainbow k-connected colouring for G. To see that trci(G) < s+ 1, we take a total
colouring of G with colours 1,...,s+ 1 by taking the above edge-colouring and in addition,
colour every z; with colour s + 1, and y; with colour j + k& (mod s). This is a total-rainbow
k-connected colouring for G.

Hence, we see that rci(G) and treg(G) can differ by 1, and attaining all sufficiently large
values. However, we have not been able to improve this to obtain an analogue of Theorem
11, and we pose the following problem.
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Problem 14. Let k > 1. Does there ezist an integer N = N (k) such that for all s > N,
there exists a graph G with treg(G) = reg(G) = s?

There exist some graphs G such that treg(G) = reg(G). Let x'(H) denote the chromatic
indez of the graph H. Chartrand et al. [3, Proposition 2.1] proved that

k+1 if £ is even,

ren(Kie) = X' (K1) = { k if k is odd

Hence, if k is even, we have a total-rainbow k-connected colouring for Kj,1 with k + 1
colours as follows. Take a proper edge-colouring of Ky, with k + 1 colours, and then for
every vertex v € V(Kj41), colour v with the colour not used by the edges at v. It follows
that treg(Kgs1) = reg(Kge1) = k+ 1. Note that this argument does not hold if & is odd.

Also, we have tre(Cs) = re(Cs) = 3. Moreover, there are infinitely many graphs G
such that tre(G) = re(G) = 3. We may take G to be any graph formed by taking C5, then
replacing a vertex v by a clique and joining all edges from the clique to the two neighbours of
vin Cs. For k > 3 odd, we have not been able to find a graph G such that trcg(G) = reg(G).

Now, the second question we can ask is, how far from equality can the inequality (1)
be? As we have mentioned at the beginning of this section, Liu et al. [12] showed that the
functions rvcg(G) and rcg(G) can be arbitrarily far apart. They proved that, for 1 <t < s,
there exists a graph G such that rcgx(G) > s and rveg(G) = t [12, Theorem 7]. They also
proved that for s > (k + 1)?, there exists a graph G such that rvcg(G) = s and rei(G) < 9
[12, Theorem 9]. Hence, we instantly have the following corollaries.

Corollary 15. Given 1 <t < s, there exists a graph G such that treg(G) > s and rveg(G) =
t. O

Corollary 16. Let s > (k + 1)2. Then, there exists a graph G such that trc,(G) > s and
rep(G) < 9. O

The constructions given by Liu et al. were as follows. For Corollary 15, we take the star
K s and identify the centre with one end-vertex of the path of length ¢. This graph is a
broom. We take a blow-up of this broom by replacing each non-leaf vertex with a clique Ky,
and joining an edge between two vertices if the corresponding two vertices in the broom are
neighbours. For Corollary 16, we take the same construction as that of Theorem 11, but
with the condition s > (k + 1)? instead of s > 11k + 1470.

We observe that the difference between trcg(G) and max(reg(G), rveg(G)) can be arbi-
trarily large. Take a path zgzi---xzs of length s > 4. Then, take a blow-up by replacing
each vertex z; (1 < i < s—1) with a clique K (r11)2 on vertex set X;, and joining all edges
between xg and X7; s and X,_1; and X; and X;41 for 1 <7 < s—2. Let G be the resulting
graph. Clearly, treg(G) > 2s — 1 and rveg(G) = s — 1. Using s > 4 and Theorem 12, we
have rci(G) = s, and hence treg(G) —max(reg(G), rveg(G)) > s —1 can be arbitrarily large.

However, in this simple construction, we see that max(rc(G), rvcg(G)) = s is unbounded
as s increases. We may ask the following question.

(%) For fized k, does there exist an infinite family F of k-connected graphs such that
max(rcg(G), rveg(Q)) is bounded on F, but tregy(G) is not?

We see that the constructions of Corollaries 15 and 16 do not answer this question. In
the first construction, we have rcg(G) > s. Similarly in the second construction, using
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Theorem 11, we have rvcg(G) = treg(G) = s if we also have s > 11k 4 1470. In both cases,
max(rcg(G), rveg(G)) is unbounded as s increases.
We make the following conjecture.

Conjecture 17. For every k > 1, there exists a function fr : N — N such that if G is a
k-connected graph and max(rcg(G), rveg(G)) = ¢, then treg(G) < fi(c).

A positive solution to Conjecture 17 would imply that the answer to the question (%) is

“no” .
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