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Abstract

Let k be a positive integer and G be a k-connected graph. An edge-coloured path
is rainbow if its edges have distinct colours. The rainbow k-connection number of G,
denoted by rcg(G), is the minimum number of colours required to colour the edges of
G so that any two vertices of G are connected by k internally vertex-disjoint rainbow
paths. The function rcg(G) was first introduced by Chartrand, Johns, McKeon, and
Zhang in 2009, and has since attracted considerable interest. In this paper, we consider
a version of the function rci(G) which involves vertex-colourings. A vertex-coloured
path is vertex-rainbow if its internal vertices have distinct colours. The rainbow vertex k-
connection number of G, denoted by rvcy(G), is the minimum number of colours required
to colour the vertices of G so that any two vertices of G are connected by k internally
vertex-disjoint vertex-rainbow paths. We shall study the function rve,(G) when G is a
cycle, a wheel, and a complete multipartite graph. We also construct graphs G where
rek(QG) is much larger than rvc,(G) and vice versa so that we cannot in general bound
one of rci(G) and rveg(G) in terms of the other.

Keywords: Graph colouring, rainbow (vertex) connection number, k-connected

1 Introduction

In this paper, we consider graphs which are finite, simple, and undirected. For any undefined
terms in graph theory, we refer the reader to the book by Bollobds [1].
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Throughout the paper, let k be a positive integer. For simplicity, a set of internally
vertex-disjoint paths will be called disjoint. Recall that, by Menger’s theorem [13], a graph
is k-connected if and only if any two vertices are connected by & disjoint paths. An edge-
coloured path is rainbow if its edges have distinct colours. An edge-colouring of a k-connected
graph G, not necessarily proper, is rainbow k-connected if any two vertices of G are connected
by k disjoint rainbow paths. The rainbow k-connection number of G, denoted by rci(G), is
the minimum integer ¢ such that there exists a rainbow k-connected colouring of G, using t
colours. For simplicity, we write rc¢(G) for rci(G). Note that, by Menger’s theorem, rc,(G)
is well defined if G is k-connected. The function rci(G) was first introduced by Chartrand
et al. ([2] for k£ =1 (2008), and [3] for general k£ (2009)). Since then, a considerable amount
of research has been carried out towards the study of rcix(G). The case for general k has
been studied by Li and Sun [10, 11], and Fujita et al. [4], among others. For an overview
of the rainbow connection subject, we refer the reader to the survey of Li et al. [9], and the
book of Li and Sun [12].

Here, we consider a version of the function rcg(G) involving vertex-colourings. A vertex-
coloured path is vertex-rainbow if the internal vertices have distinct colours. A vertex-
colouring of a k-connected graph G, not necessarily proper and possibly with uncoloured
vertices, is rainbow vertex k-connected if any two vertices of G are connected by k disjoint
vertex-rainbow paths. The rainbow vertezx k-connection number of G, denoted by rvcg(G),
is the minimum integer ¢ such that there exists a rainbow vertex k-connected colouring of
G, using t colours. We write rvc(G) for rvei(G). Again by Menger’s theorem, rvcg(G) is
well defined if G is k-connected. The function rve(G) was first introduced by Krivelevich
and Yuster [5], and has since been studied by Li and Shi [8], Li and Liu [6], and Li et al. [7].

Some initial observations can be made. If G is a connected graph on n vertices, then
rve(G) = 0 if and only if G is a clique. If n > 2 and ¢ is the number of vertices of G with
degree at least 2, then rve(G) < min(n — 2, q). Moreover, a result of Li et al. [7] implies that
rve(G) = n—2 if and only if G is a path. Furthermore, it is easy to prove that rve(G) = ¢ if
G is a tree. Also, if diam(G) denotes the diameter of G, then we have rvcg(G) > diam(G)—1,
with equality if £ = 1 and diam(G) = 1 or 2. In fact, we have rve(G) = 1 if and only if
diam(G) = 2. If £ > 2 and G is a k-connected graph, then rvcg(G) > 1, and equality holds
if G is a clique on at least three vertices.

This paper is organised as follows. In Section 2, we determine the function rvcg(G) when
G is a cycle, a wheel, and a complete multipartite graph. In Section 3, we compare the
functions rci(G) and rvcg(G). We show that we cannot bound one of r¢i(G) and rvcg(G)
in terms of the other, by constructing examples of graphs G where rci(G) is much larger
than rveg(G), and vice versa.

2 Rainbow Vertex k-connection Numbers of some Graphs

In this section, we shall determine the function rvcg(G) for some specific graphs G. Here,
we will only consider vertex-colourings. For simplicity, a vertex-rainbow path will be called
rainbow.

Let x(G) = max{k : G is k-connected} denote the vertez-connectivity of G. Note that
rvcg(G) is defined for all 1 < k < k(G). We begin with the case when G is a cycle. Let
C,, denote the cycle of order n. The function rve(C),) was determined by Li and Liu [6] as
follows.



Theorem 1 (Li and Liu [6]) For 3 < n < 15, the values of rve(Cy) are given in the
following table.

n 3141567891011 |12|13|14]|15
roc(Cp) |01 (1]2|3|3[3|4 |5 |56 |77

For n > 16, we have rve(Cy) = [5].
Since k(C)) = 2, in addition to Theorem 1, we determine rvce(Ch).
Theorem 2 rvcy(Cs) =1, rvea(Cy) = 2, and rvea(Cy) = n for n > 5.

Proof. The assertion can be easily verified for C'5 and Cy. Now, let n > 5. Clearly, we
have rvca(Cy,) < n, by considering the colouring of C), where the vertices are given distinct
colours. If we have a vertex-colouring of C),, with at most n — 1 colours, then some two
vertices u,v have the same colour. Since n > 5, we can take two vertices x,y which are
internal vertices of one of the two u — v paths. Then, we do not have two disjoint rainbow
x — y paths. Hence, rvce(Cy,) > n. O

A graph closely related to C, is the wheel W,,. This is the graph obtained from C,, by
joining a new vertex v to every vertex of C),. The vertex v is the centre of W,,. Note that
k(Wy) = 3. We have the following.

Theorem 3
(a) rvc(Ws3) =0 and rvc(Wy,) =1 forn > 4.

(b) rveca(W3) =1 and rvca(Wy,) = rve(Cy,) for n >4 (hence, rvea(Wy,) is determined and
given by Theorem 1 forn > 4).

(c) rves(W3) = 1, rves(Wy) = 2, and rves(Wy,) =n forn > 5.

Proof. (a) This is clear, since rvc(W3) = rve(Ky) = 0 and diam(W,,) = 2 for n > 4.

(b) The assertion rvca(W3) = 1 is easily verified. Now, let n > 4. Clearly, rvca(W,,) <
rvc(Cy), since by taking a rainbow vertex connected colouring for the cycle C), in W,, with
rve(Cy,) colours, and then colouring the centre with any used colour, we have a rainbow
vertex 2-connected colouring for W,,. On the other hand, suppose that we have a vertex-
colouring for W,, with fewer than rvc(Cy,) colours. Then, for some two vertices z,y in the
cycle C,, of W,,, we do not have a rainbow x —y path along the cycle. Hence, there is at most
one rainbow x — y path in W,, (using the centre of W,,). Therefore, rvce(W,,) > rvc(C,,).

(c¢) This can be proved in a similar way as the proof of Theorem 2. O

We now consider the function rvcg(G) when G is a complete multipartite graph. Let G
have partite class-sizes 1 < ny < --- < n; for some t > 2. We write G = Ky, n,-

The analogous problem of the determination of rci(Ky, ... n,) has only been solved com-
pletely for £ = 1 by Chartrand et al. [2], as follows. For the bipartite case rc(Kp, ), where
1 <m < n, we have

(o) n ifm=1,
rc\Bmmn) =
’ min([3/n |,4) if m > 2.



For the general multipartite case rc(Kp, .. pn,), where t > 3,1 < ng3 < --- < ny, m =
Zf;i n;, and n = ng, we have

1 if ny = 1,
re(Kn,,..n) =< 2 if ng > 2 and m > n,

min([3/n,3) if m <n.

The problem remains open for £ > 2. In the case of the balanced complete bipartite
graph K, ,,, Chartrand et al. [3] proved that rcg(Kp,) = 3 if k > 2 and n = 2k[%]. This
result was later improved by Li and Sun [11], who proved that rcg (K, ,) = 3 if £ > 2 and
n > 2k[%], and by Fujita et al. [4], who proved that rcy,(K,,,) = 3 if k is sufficiently large and
n > 2k + o(k). As for balanced complete multipartite graphs, Fujita et al. also proved that
reg(Kixn) = 2 if t > 3, k is sufficiently large, and n > % + o(k), where Ky, denotes the
complete t-partite graph with each class having n vertices. For general complete multipartite
graphs, Fujita et al. asked the question of whether, for k,¢ > 2, there is a function g(k,t)
such that, if n; > g(k,t), then rcg(Kp, n,) = 3 or 4, and reg(Ky,, . n,) = 2 or 3if t > 3.
Moreover, they also asked the following: when do we have rcg(Ky, n,) = 3, and when do we
have rcg(Kn,,..n,) =2 if t > 37

Here, we are able to completely determine rvcy(Kp, . m) for every complete multipartite
graph K, ., and every 1 <k < k(Ky,, . n,) =m = Z lnz Obviously, if n; = 1, then
Ky, ..n, = K. Hence, rve(Ky, .. n,) =0 and rveg(Ky, . n,) = 1 for 2 <k < m. Now, let
nt > 2. The bipartite case of t = 2 can be easily obtained. We have rvc(Ky, »,) = 1 and
rvck(Kn,my,) = 2 for 2 < k < m. For the general multipartite case when ¢ > 3, we have the
following result.

Theorem 4 Let 1 <ny <---<nyg, wheret >3, ny > 2 and m = ZZ 1 M.
(a) If 1 < k <m — 2, then we have the following.

(i) rveg(Kny,..ony) =1 4f1 <k <m—nsq+1.
(11) rvcg(Kn,y,..n) =24 m—mnp_1+2<k<m-—2.

(b) (Z) TVCm— 1( N1 yeesTl ): 1 ifnt_l < 2.
(“) rvcm—l(Knh.‘.,nt) =2 Zf nt—1 Z 3 and we do not have Ng = Ng—1 = N¢—2 odd.

(111) rvem—1(Kn,,..n,) =3 if ng = ng—1 = ny—2 > 3 are odd.

(c) (i) rvep(Kn,,..n) =1 if ng—q = 1.
(11) rvem(Kny,omy) =2 if 2 <mngqg < my — 2.

(111) rvem(Kny,om) =2 if mg—1 =ng— 1> 2 and ng—g < 2, or ng—1 = ny > 2 and
ni—o = 1.

() rvem(Kn,,..ny) =3 if ng—1 =ng — 1 and ng—o > 3, or ny—1 = ng > 3, ng—a > 2,
and we do not have ny = ng_1 =ny_9o =ny_3 =4 and t > 4.

(v) rvCm (Kny,..n) =4 ift >4 and ny =ng—1 =np_g =np_3 = 4.

(Vi) Tvem(Kn . ny) =8 ifng =mnp1 = =ny_sp1 =2 and ny—g = Ny—g_1 = -
ny =1, for1 <s<t.



Before we proceed to the proof of Theorem 4, we shall prove two auxiliary lemmas. Let
H be a vertex-coloured complete bipartite graph with classes X and Y. We say that a
matching in H is vertex-rainbow if, for every edge in the matching, the end-vertices have
distinct colours. For A C X and B C Y, let (A4, B) denote the complete bipartite subgraph
of H with classes A and B.

Lemma 5 Let 1 < p < q. Consider the complete bipartite graph K, , with classes X and Y,
where | X| = p and |Y| = q. Suppose that [5] vertices of X and b vertices of Y have colour
1, and LgJ vertices of X and a vertices of Y have colour 2, where a+b=¢q. Let u € X and
veY.

(a) If a =[] and b = |%], then there exist p disjoint rainbow v — v paths if ¢ > p+ 2,
and p — 1 disjoint rainbow u — v paths if g =p or q =p+ 1.

(b) Ifa = [2] and b= [1], then there exist p —2 disjoint rainbow u — v paths if p=q >3
are odd, and p — 1 disjoint rainbow u — v paths otherwise.

Proof. The lemma holds for p = 1, so assume that p > 2. Clearly, for both (a) and (b), one
rainbow u — v path is the edge uv. To find the other rainbow u — v paths, it is enough to
find a sufficiently large vertex-rainbow matching in K, ; — {u,v}. Such a matching with size
h then gives h disjoint rainbow u — v paths, where each path has the form uyzv for some
x € X\ {u}and y € Y \ {v}, with zy an edge of the matching. Together with the edge wuv,
we have h + 1 disjoint rainbow u — v paths. For ¢ = 1,2, let X; and Y; be the sets of vertices
with colour 7 in X \ {u} and Y \ {v}, respectively.

(a) If g > p+2, then Y] > [4] =1 > [2] > |Xy|, and [Vi| > (4] — 1> (2] > |Xal.
Hence, we can find matchings in (X1,Y2) and (X9, Y1) of sizes |X1| and |X2|, respectively.
Thus, there is a vertex-rainbow matching in K, , — {u,v} of size |Xi| + |X2| = p — 1, and
we have p disjoint rainbow u — v paths. Now, let ¢ = p or ¢ = p+ 1. If v has colour 1, then
Ya| = [2] > [§] > |X1| and [Y1] = [2] =1 > |§] =1 > |Xa| — 1. If v has colour 2, then
similarly we have |Ya| > |X1| — 1 and |Y1| > | X2|. In both cases, we obtain a vertex-rainbow
matching in K, ; — {u, v} of size | X1| 4 |X2| —1 = p—2, and we have p — 1 disjoint rainbow
u — v paths.

(b) Forp=gq>3odd, [Yo| > [§|-1=[§]-2 > |X1[-2,and [V1]| > [§]-1= [§] > |X>].
As before, we have a vertex-rainbow matching in K, ; — {u, v} of size | X;|+|X2| -2 =p—3,
which gives p — 2 disjoint rainbow u — v paths. Now, suppose that we do not have p =¢ > 3
odd. If ¢ is even, then, by (a), we have p — 1 disjoint rainbow u — v paths. If ¢ is odd, then
g > p+1. We delete a vertex of colour 1 from Y and apply (a) to the resulting K, ;1. This
again gives p — 1 disjoint rainbow u — v paths. O

Lemma 6 Let 1 < p < q with (p,q) # (2,2),(4,4). Consider the complete bipartite graph
Kpq with classes X andY, where | X| = p and |Y| = q. Suppose that [§] vertices of X and
[4] wertices of Y have colour 1, |§] vertices of X and | 2] wvertices of Y have colour 3, and
all the other vertices have colour 2. Then, for all u € X and v € Y, there are p disjoint
rainbow u — v paths.

Proof. Clearly, if the lemma holds for (p, q), then it holds for (p,q’) for any ¢’ > ¢. Hence,
it suffices to prove the lemma for (p,q) = (2,3),(4,5) and (p,q) = (a,a) for a # 2,4. As in
Lemma 5, it suffices to find a vertex-rainbow matching in K, , — {u,v} of size p — 1 (i.e.,
the matching is maximum, and perfect if p = ¢). For 1 <1 < 3, let X; and Y; be the sets



of vertices with colour i in X \ {u} and Y \ {v}, respectively, and p; = |X;|, ¢; = |Yi|. We
obtain a suitable matching as follows.

Case 1. p=q =0 (mod 3).

Without loss of generality, u has colour 1, and v has colour 1 or colour 2. If v has colour
2, then we take perfect matchings in (X1, Y2), (X2,Y3) and (X3,Y7). If v has colour 1, then
let y € Ys, and take perfect matchings in (X1, Y2\ {y}), (X2,Y3) and (X3,Y; U{y}). In both
cases, we have a vertex-rainbow matching in K, — {u, v} of size p — 1.

Case 2. p # 0 (mod 3).

The cases (p,q) = (1,1),(2,3), (4,5) can be verified easily. Now, let p = ¢ > 5. Note that
g2 —1<p; < g2+ 2, and since p Z 0 (mod 3), we have ¢ — 2 < p3 < ¢3.

Subcase 2.1. p1 = q2 — 1.

Note that u has colour 1, and hence X3 # (). Let Z; C Yy with |Z;] = p3 — 1 (note that
0<p3s—1<q), and y € Ya. Take perfect matchings in (X1,Y2 \ {y}), (X2, (Y1 \ Z1) UY3)
and (X3, Z; U {y}). We have a vertex-rainbow matching in K, — {u,v} of size p — 1.

Subcase 2.2. qo < p1 < g2 + 2.

We have p1 < [5] <p—[§] =1 < g2+ g3 (since p > 5). Let Z; C Y7 with [Z1] = p3
(note that ps < q1), and Z3 C Y3 with |Z3] = p1 — g2 (note that 0 < p; — ¢2 < ¢3). Take
perfect matchings in (X1, Yo U Z3), (X2, (Y1 \ Z1) U (Y3 \ Z3)) and (X3, Z;1). Again, we have
a vertex-rainbow matching in K, ; — {u, v} of size p — 1. O

Proof of Theorem 4. For 1 <i <t, let V; denote the class of K, . ,, with n; vertices.

Since ny > 2, clearly rveg(Ky,,...n,) > 1 for 1 <k < m. Observe that, given any vertex-
colouring of Ky, . n,, any two vertices in the same class, say V;, have m+n; —n; > m disjoint
rainbow paths of length 2 connecting them. Hence, to prove the theorem, it is enough to
consider, in each case, pairs of vertices where the two vertices are in different classes.

First, let 1 < k < m —ny;—1 + 1. We colour all the vertices of K, ., with the same
colour. If u € V; and v € V; for some i # j, then there are 1 +m + n; —n; —n; > k disjoint
rainbow u—v paths, each with length at most 2. Hence, we have rvcg (K, .. n,) < 1, and this
proves part (i) of (a), (b) and (c). Next, let & > m —n;—; + 2. Suppose that all the vertices
of Ky, . n, are coloured with the same colour. Then, if u € V;_; and v € V}, it is clear that
the maximum number of disjoint © — v paths of length at most 2 is 1+m —n;_1 < k. Hence,
we cannot have k disjoint rainbow w — v paths, and rvcg(Ky, . n,) > 2. This proves that 2
is a lower bound for the remaining parts, except for part (c¢)(vi) when s = 1. We now prove
the remaining assertions.

(a)(ii) We construct a colouring of Ky, ., with two colours, as follows. Assign colour
1 to [%] vertices of V; for every £ < t, and to [ %] vertices of V;. Colour the remaining
vertices with colour 2. Now, let v € V; and v € Vj for some i < j. Using both (a) and (b) in
Lemma 5, we have n; — 2 disjoint rainbow u — v paths, each using edges between V; and V.
With all the paths of {uwv : w ¢ V; UV;}, we have (n; —2) + (m+ny —n; —nj) > m —2
disjoint rainbow u — v paths. Hence, rvcg(Ky,, . n,) < 2.

(b)(ii) Consider the same colouring of K, ., with two colours as described in (a)(ii).
Let u € V; and v € Vj; for some i < j.

e If j = ¢, then, by Lemma 5(a), we have n; — 1 disjoint rainbow u — v paths, each
using edges between V; and V;. With all the paths of {uwv : w € V; U V;}, we have



(n; — 1) + (m —n;) = m — 1 disjoint rainbow u — v paths.

o Let j <t. If nj <ny— 1, then, by Lemma 5(b), we have n; — 2 disjoint rainbow u — v
paths between V; and V. As before, we have (n;—2)+(m+n;—n; —n;) > m—1 disjoint
rainbow u — v paths. Now, let n; = n;. Since we do not have n; = ny_1 = ns_2 odd,
this means that we cannot have n; = n; odd. By Lemma 5(b), we have n; — 1 disjoint
rainbow u—v paths between V; and Vj}, which again gives (n; — 1)+ (m+n; —n; —n;) =
m — 1 disjoint rainbow u — v paths.

Hence, rvepm—1(Kn,,...n.) < 2.

(b)(iii) Suppose that we have a colouring of K,  ,, with two colours. Without loss of
generality, there are sets A C V;_1 and B C V; with |A| = |B| = £(n; + 1), and all the
vertices of A U B have the same colour. Let u € V;_1 \ A and v € V; \ B. The maximum
number of disjoint rainbow w — v paths, using edges between V;_1 and V;, is ny — 2. Hence,
the maximum number of disjoint rainbow u — v paths is (ny — 2) + (m — ng—1) < m — 1.
Therefore, rvcy,—1(Kp,,..n,) > 3.

The upper bound rvey,—1(Kp, ... n,) < 3 will follow immediately once we have proved the
upper bound of part (c)(iv).

(c)(ii) Again, consider the same colouring of K, ., with two colours as described in
(a)(ii). Let u € V; and v € V; for some i < j.

e If j = ¢, then, by Lemma 5(a), we have n; disjoint rainbow u—uv paths, each using edges
between V; and V;. With all the paths of {uwv : w ¢ V;UV,}, we have n;+(m—n;) =m
disjoint rainbow u — v paths.

e If j < ¢, then, by Lemma 5(b), we have n; — 2 disjoint rainbow u — v paths between V;
and Vj. Then, as before, we have (n; —2) + (m + ny —n; —n;) > m disjoint rainbow
u — v paths.

Hence, rvep (Kn,,...n,) < 2.

(c)(iil) We colour Ky, . n, with two colours, where all the vertices of V; have colour 1 and
all the other vertices have colour 2. Then, if v € V; and v € V; for some ¢ < j, we can easily
check that there are m disjoint rainbow u — v paths. Hence, rvey, (Kp, .. pn,) < 2.

(c)(iv) Suppose that there is a rainbow vertex m-connected colouring of K, . ,, with
two colours, say colours 1 and 2. Then, for any u € V;_1 and v € V4, there must exist n;_;
disjoint rainbow u — v paths, each using edges between V;_1 and V;; otherwise, the maximum
number of disjoint rainbow u — v paths would be less than ny—1 + (m —ny—1) = m. It follows
that all the vertices of V; must have the same colour, and the same for V;_;. Otherwise,
if a and b vertices of V;_1 have colour 1 and colour 2, respectively, where a + b = ns_1
and a,b > 0, then b+ 1 and a + 1 vertices of V; have colour 1 and colour 2, respectively,
contradicting ns—1 = ny — 1 or ny—1 = ng. Assume that all the vertices of V; have colour 1,
and all the vertices of V;_; have colour 2. Now, take a set A C V;_y such that |A| = [*52],
with all the vertices of A having the same colour. Let u € V;_o \ A. If the vertices of A
have colour 1 (respectively, colour 2), then let v € V; (respectively, v € V;_1). There are at
most | “452 | disjoint rainbow u—v paths, each using edges between V;_ and V; (respectively,
Vi—1). Then, we can only have at most [“52] +m 4 ny —ny—1 —ny—2 < m disjoint rainbow
u — v paths, a contradiction. Hence, rve,, (Ky, . n,) > 3.

Now, assume that, in addition, we have (ng,ni_1,n4—2,n4—3) # (4,4,4,4) and t > 4. We
construct a colouring of K, ,, with three colours as follows. If (n;,n;—1) # (4,4), then, for
every V;, we colour [% ] and | %] vertices in V; with colour 1 and colour 3, respectively, and




colour the remaining vertices with colour 2. If (ny, ns—1) = (4,4), we colour two vertices of V;
with colour 1 and the other two vertices with colours 2 and 3, and colour two vertices of V;_4
with colour 2 and the other two vertices with colours 3 and 1. If in addition n;_o = 4, we
colour two vertices of V;_9 with colour 3 and the other two vertices with colours 1 and 2. In
both cases, colour each remaining V; with three colours, as described in the case (n¢, ni—1) #
(4,4). Let w € V; and v € Vj for some ¢ < j. By Lemma 6, if (n;,n;) # (2,2),(4,4), then
there are n; disjoint rainbow u — v paths, each using edges between V; and V;. With the
paths of {uwv : w ¢ V; UV;}, we have n; + (m + ny — n; —nj) > m disjoint rainbow u — v
paths. If (n;,n;) = (2,2), then similarly we have 1+ (m+n¢ —n; —n;) > m disjoint rainbow
u—v paths. If (nj,n;) = (4,4) and n; < ny, then we have 3+ (m+n; —n; —n;) > m disjoint
rainbow u—v paths. If (n;,n;) = (4,4) and n; = ny, then we have 4+ (m+n¢—n; —n;j) =m
disjoint rainbow w — v paths. Hence, rvcy, (Ky,,...n,) < 3 in all cases. This also completes
the proof of part (b)(iii).

(c)(v) Suppose that we have a colouring of K, ., with at most three colours. Without
loss of generality, we have y,v' € V; and z,2’ € V;_1, all having the same colour. Let
ue Vi1 \{z,2'} and v € V;\ {y,y'}. Then, the maximum number of disjoint rainbow u — v
paths is 3 + (m — ny—1) < m. Hence, rvep, (Ky,,...n,) > 4. Now, consider the colouring of
Ky, ....n, with four colours, where, for every V;, the vertices have colours 1,...,n;. Let u € V;
and v € Vj for some i < j. If (n;,n;) # (2,2), then there are n; + (m +ny —n; —nj) > m
disjoint rainbow u — v paths. If (n;,n;) = (2,2), then there are 1 + (m 4+ ny —n; —nj) >m
disjoint rainbow u — v paths. Hence, rvcy, (Kn, . n,) < 4.

(c)(vi) The assertion holds for s =1, so let s > 2. If we have a colouring of Ky, ., with
at most s — 1 colours, then, without loss of generality, there are y € V; and « € V;_; with
the same colour. Let u € V;_; \ {z} and v € V;\ {y}. Then, we can only have at most m — 1
rainbow w — v paths. Hence, rvey,(Kp, .. pn,) > s. Now, the colouring where, for 1 < i <'s,
both vertices of V;_;11 have colour ¢, and all the other vertices have colour 1, is a rainbow
vertex m-connected colouring. Hence, rvey, (Kp, .. pn,) < s.

The completes the proof of Theorem 4. O

3 Comparing rc;(G) and rvc(G)

In [5], Krivelevich and Yuster compared the functions r¢(G) and rve(G). They observed
that we cannot bound one of r¢(G) and rve(G) in terms of the other, by providing examples
of graphs G where r¢(G) is much larger than rve(G), and vice versa. Their examples were as
follows. By taking G to be the star K 5, we have r¢(G) = s and rve(G) = 1. On the other
hand, let G be constructed as follows. Take s vertex-disjoint triangles and, by designating a
vertex from each triangle, add a complete graph on the designated vertices. Then r¢(G) < 4
and rve(G) = s.

Here, our goal is to compare the functions rcg(G) and rveg(G). First, we construct graphs
G where rci(G) is larger than rvcg(G). Observe that we can extend a star to a broom. This
is a graph formed by taking a path zx---x; of length ¢ and adding a star with centre x;
and leaves yi,...,ys, for some t,s > 1. Let B, denote this broom graph; see Figure 1(a).
Then, note that we have re(Bys) =t + s and rvc(Bys) = t. Hence, given any two integers
1 < b < a, there exists a graph G’ with r¢(G’) = a and rvc(G’) = b: we take G’ = By 4_p.
This fact has the following generalisation.



Theorem 7 Given 1 <t <s, there exists a graph G such that rcx(G) > s and rveg(G) = t.

Proof. We take G to be a blow-up of the broom B; g, as follows. Take vertices x,y1,...,¥s
and t copies of the clique K} with vertex sets Xi,..., X;. Add all the edges between x and
Xi; X and Xjpq forall 1 < ¢ <t —1(ift > 2); and y; and X; for all 1 < j < 's. See
Figure 1(b). Then, rcx(G) > s. Otherwise, if we have an edge-colouring of G with fewer
than s colours, we do not have k disjoint rainbow y; — y;» paths, for some 1 < j < j' < s.
Also, we have rvc(G) > diam(G) — 1 = t. Finally, consider the vertex-colouring with ¢

colours, where x,yi,...,ys are given colour 1, and all the vertices of X; are given colour ¢
for 1 < ¢ <t. Then, we can easily check that this colouring is rainbow vertex k-connected.
Hence, rveg(G) < t. O

x :EA\
1 X1 @ Ky
9 Xo @ Ky

Figure 1. The broom B; ,, and its blow-up.

Now, we proceed to construct graphs G where rvcg(G) is larger than rcg(G). We need
the following result of Chartrand et al. [3].

Theorem 8 (Chartrand et al. [3]) For k> 2 and n > (k+ 1)2, we have reg(K,) = 2.

We have the following result.

Theorem 9 Let s > (k + 1)2. Then, there exists a graph G such that rep(G) < 9 and
rveg(G) = s.

Proof. The case kK = 1 follows from the construction of Krivelevich and Yuster with the
disjoint triangles attached to the clique K, as described earlier. Now, let £ > 2. We
generalise the same construction by taking a blow-up, as follows. Take s disjoint k-sets of
vertices Vi,...,Vs. Let V; = {v!,... vi} for every 1 < i < s. For every 1 < p < k, we add
a clique on {vll,, .., vp}. This gives k disjoint copies of Ks. Let Gj be the copy of K5 on
{v;,...,v;} (1 < p < k). Take further disjoint sets X,..., X and Y7,...,Y;, each with
(k + 1) vertices. For each 1 < i < s, add a clique with vertex set X; UY;, and a complete



bipartite graph with classes X; UY; and V;. Let G be the resulting graph. We show that G
is a suitable graph for the theorem. Let z1 € Xq,...,2s € Xs and y1 € Y1,...,ys € Y.

We first define an edge-colouring of GG using nine colours. For every 1 < i < s, colour all
edges from x; to V; with colour 1, and those from y; to V; with colour 3. Colour all edges
between X; \ {z;} and V; with colour 2; those between Y; \ {y;} and V; with colour 4; and
those between X; and Y; with colour 5. By Theorem 8, we colour the edges of the copies
of K(j41)2 on X; and Y; with colours 6 and 7, and the edges of G1 with colours 8 and 9, so
that the edge-colouring within each clique is rainbow k-connected. Finally, colour the edges
of Go, ..., Gy identically as GG1. That is, for 1 <i < j < s and 2 < p < k, the edge v]’;v{, has
the same colour as the edge viv{.

We claim that this is a rainbow k-connected colouring for G. Let u,v € V(G). It is easy
to see that, if u,v € X; UY; UV, for some 1 < i < s, orifu € X;UY; and v € X; UY]
for some 1 < i < j < s, then there are k disjoint rainbow u — v paths. Note that, in the
former, we use Theorem 8 when u,v € X; or u,v € Y;. It remains to consider the case when
ue€ Viand v € X; UY; UV for some 1 < i < j < s. For simplicity, assume that ¢ = 1,

j = 2, and u = v}i. By Theorem 8, there are k disjoint rainbow u — v? paths in G, say

L— .
uv%,uv{lv%, ooy uvy* Mo for some 3 < fy < - < fy_1 < s. If v € Vo with v = v?, then these

are u — v paths. Otherwise, if v = vg for some 1 < p < k, then we have k disjoint rainbow
u — v paths of the form

2 121 V4 L1 L1
UVT TV, vy T, Ty VU, vy T g, w0y,

where 25 € Xo, 7y € X¢y,...,7, € Xy . If v € Xy then we have k disjoint rainbow

k—1
u — v paths, where one path is uv?v, and the other k — 1 paths are of the form

2 £ L1 / )
u”l yhyzlvz Va0, UU1 y£2y€21)3203v v Y 1Y, Vi Uk,
where yél eYy,..., yqu € Yy, _,. A similar argument holds for v € Y. Hence, the colouring

is rainbow k-connected, so rcx(G) < 9.

Next, suppose that we have a vertex-colouring of G with fewer than s colours. Then,
without loss of generality, v{ and v? have the same colour, and we cannot have k disjoint
vertex-rainbow u — v paths for any v € X; UY; and v € X UY,. Hence, rvcg(G) > s.

Finally, consider the vertex-colouring of G with s colours, where for 1 < ¢ < s and
1 < p <k, the vertex v}i, is given colour i + p — 1 (modulo s); the vertices of X; are given
colour i+ k (modulo s); and those of Y; are given colour i+ k+ 1 (modulo s). We claim that
this is a rainbow vertex k-connected colouring for G. Let u,v € V(G). Again, it is easy to
check that, if u,v € V;UX; UY;, orifu e X; UY; and v € X; UY]), or ifu:v; andvzvf;
for some 1 <7 # j < sand 1 < p <k, then there are k disjoint vertex-rainbow u — v paths.
Now, let u € V; and v € V; U X;UY; for some 1 <i # j < s. Letu:v;forsomelgpgk.
Ifv eV Withv = ) for some 1 < q #p <k, then, for any £,.... 0, € {1,...,s}\ {4, j}, the
paths uv, xglvélvq, .. uvé’vmgk 2
then we obtain k disjoint vertex-rainbow u—v paths, as follows. One path is uvpv. To obtain
the other k£ — 1 paths, perform the following procedure. For each 1 < ¢ # p < k, choose

vikul are disjoint vertex-rainbow u — v paths If ve X;UYj,

hg € {1,...,s}\ {i,j} such that qu uses a different colour to that of v; then choose one of

hq hq hq hq
the paths vUp Th, Vg fuév or vup?Yp, Vg’ qu whichever one is vertex-rainbow. We choose h,

so that distinct ¢ are assigned to distinct hy, and this is possible since s > (k + 1)2. Hence
the colouring is rainbow vertex k-connected, and rvcg(G) < s. 0
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