Rainbow Vertex k-connection in Graphs

Henry Liu ${ }^{2 *}$, Ângela Mestre ${ }^{3 \dagger}$, and Teresa Sousa ${ }^{1,2 *}$
${ }^{1}$ Departamento de Matemática and ${ }^{2}$ Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal
henry.liu@cantab.net, $\{$ h.liu |tmjs $\}$ @ct.unl.pt
${ }^{3}$ Universidade de Lisboa
Centro de Estruturas Lineares e Combinatórias
Avenida Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
mestre@cii.fc.ul.pt

17 May 2013

Abstract

Let k be a positive integer and G be a k-connected graph. An edge-coloured path is rainbow if its edges have distinct colours. The rainbow k-connection number of G, denoted by $r c_{k}(G)$, is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by k internally vertex-disjoint rainbow paths. The function $r c_{k}(G)$ was first introduced by Chartrand, Johns, McKeon, and Zhang in 2009, and has since attracted considerable interest. In this paper, we consider a version of the function $r c_{k}(G)$ which involves vertex-colourings. A vertex-coloured path is vertex-rainbow if its internal vertices have distinct colours. The rainbow vertex k connection number of G, denoted by $r v c_{k}(G)$, is the minimum number of colours required to colour the vertices of G so that any two vertices of G are connected by k internally vertex-disjoint vertex-rainbow paths. We shall study the function $r v c_{k}(G)$ when G is a cycle, a wheel, and a complete multipartite graph. We also construct graphs G where $r c_{k}(G)$ is much larger than $r v c_{k}(G)$ and vice versa so that we cannot in general bound one of $r c_{k}(G)$ and $r v c_{k}(G)$ in terms of the other.

Keywords: Graph colouring, rainbow (vertex) connection number, k-connected

1 Introduction

In this paper, we consider graphs which are finite, simple, and undirected. For any undefined terms in graph theory, we refer the reader to the book by Bollobás [1].

[^0]Throughout the paper, let k be a positive integer. For simplicity, a set of internally vertex-disjoint paths will be called disjoint. Recall that, by Menger's theorem [13], a graph is k-connected if and only if any two vertices are connected by k disjoint paths. An edgecoloured path is rainbow if its edges have distinct colours. An edge-colouring of a k-connected graph G, not necessarily proper, is rainbow k-connected if any two vertices of G are connected by k disjoint rainbow paths. The rainbow k-connection number of G, denoted by $r c_{k}(G)$, is the minimum integer t such that there exists a rainbow k-connected colouring of G, using t colours. For simplicity, we write $r c(G)$ for $r c_{1}(G)$. Note that, by Menger's theorem, $r c_{k}(G)$ is well defined if G is k-connected. The function $r c_{k}(G)$ was first introduced by Chartrand et al. ([2] for $k=1$ (2008), and [3] for general k (2009)). Since then, a considerable amount of research has been carried out towards the study of $r c_{k}(G)$. The case for general k has been studied by Li and Sun [10, 11], and Fujita et al. [4], among others. For an overview of the rainbow connection subject, we refer the reader to the survey of Li et al. [9], and the book of Li and Sun [12].

Here, we consider a version of the function $r c_{k}(G)$ involving vertex-colourings. A vertexcoloured path is vertex-rainbow if the internal vertices have distinct colours. A vertexcolouring of a k-connected graph G, not necessarily proper and possibly with uncoloured vertices, is rainbow vertex k-connected if any two vertices of G are connected by k disjoint vertex-rainbow paths. The rainbow vertex k-connection number of G, denoted by $r v c_{k}(G)$, is the minimum integer t such that there exists a rainbow vertex k-connected colouring of G, using t colours. We write $r v c(G)$ for $r v c_{1}(G)$. Again by Menger's theorem, $r v c_{k}(G)$ is well defined if G is k-connected. The function $\operatorname{rvc}(G)$ was first introduced by Krivelevich and Yuster [5], and has since been studied by Li and Shi [8], Li and Liu [6], and Li et al. [7].

Some initial observations can be made. If G is a connected graph on n vertices, then $\operatorname{rvc}(G)=0$ if and only if G is a clique. If $n \geq 2$ and q is the number of vertices of G with degree at least 2, then $\operatorname{rvc}(G) \leq \min (n-2, q)$. Moreover, a result of Li et al. [7] implies that $\operatorname{rvc}(G)=n-2$ if and only if G is a path. Furthermore, it is easy to prove that $\operatorname{rvc}(G)=q$ if G is a tree. Also, if $\operatorname{diam}(G)$ denotes the diameter of G, then we have $r v c_{k}(G) \geq \operatorname{diam}(G)-1$, with equality if $k=1$ and $\operatorname{diam}(G)=1$ or 2 . In fact, we have $\operatorname{rvc}(G)=1$ if and only if $\operatorname{diam}(G)=2$. If $k \geq 2$ and G is a k-connected graph, then $r v c_{k}(G) \geq 1$, and equality holds if G is a clique on at least three vertices.

This paper is organised as follows. In Section 2, we determine the function $r v c_{k}(G)$ when G is a cycle, a wheel, and a complete multipartite graph. In Section 3, we compare the functions $r c_{k}(G)$ and $r v c_{k}(G)$. We show that we cannot bound one of $r c_{k}(G)$ and $r v c_{k}(G)$ in terms of the other, by constructing examples of graphs G where $r c_{k}(G)$ is much larger than $r v c_{k}(G)$, and vice versa.

2 Rainbow Vertex k-connection Numbers of some Graphs

In this section, we shall determine the function $r v c_{k}(G)$ for some specific graphs G. Here, we will only consider vertex-colourings. For simplicity, a vertex-rainbow path will be called rainbow.

Let $\kappa(G)=\max \{k: G$ is k-connected $\}$ denote the vertex-connectivity of G. Note that $r v c_{k}(G)$ is defined for all $1 \leq k \leq \kappa(G)$. We begin with the case when G is a cycle. Let C_{n} denote the cycle of order n. The function $\operatorname{rvc}\left(C_{n}\right)$ was determined by Li and Liu [6] as follows.

Theorem $1\left(\mathbf{L i}\right.$ and Liu [6]) For $3 \leq n \leq 15$, the values of $r v c\left(C_{n}\right)$ are given in the following table.

n	3	4	5	6	7	8	9	10	11	12	13	14	15
$r v c\left(C_{n}\right)$	0	1	1	2	3	3	3	4	5	5	6	7	7

For $n \geq 16$, we have $\operatorname{rvc}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Since $\kappa\left(C_{n}\right)=2$, in addition to Theorem 1, we determine $r v c_{2}\left(C_{n}\right)$.
Theorem $2 \operatorname{rvc}_{2}\left(C_{3}\right)=1, \operatorname{rvc}_{2}\left(C_{4}\right)=2$, and $r v c_{2}\left(C_{n}\right)=n$ for $n \geq 5$.
Proof. The assertion can be easily verified for C_{3} and C_{4}. Now, let $n \geq 5$. Clearly, we have $r v c_{2}\left(C_{n}\right) \leq n$, by considering the colouring of C_{n} where the vertices are given distinct colours. If we have a vertex-colouring of C_{n} with at most $n-1$ colours, then some two vertices u, v have the same colour. Since $n \geq 5$, we can take two vertices x, y which are internal vertices of one of the two $u-v$ paths. Then, we do not have two disjoint rainbow $x-y$ paths. Hence, $r v c_{2}\left(C_{n}\right) \geq n$.

A graph closely related to C_{n} is the wheel W_{n}. This is the graph obtained from C_{n} by joining a new vertex v to every vertex of C_{n}. The vertex v is the centre of W_{n}. Note that $\kappa\left(W_{n}\right)=3$. We have the following.

Theorem 3

(a) $\operatorname{rvc}\left(W_{3}\right)=0$ and $\operatorname{rvc}\left(W_{n}\right)=1$ for $n \geq 4$.
(b) $r v c_{2}\left(W_{3}\right)=1$ and $r v c_{2}\left(W_{n}\right)=\operatorname{rvc}\left(C_{n}\right)$ for $n \geq 4$ (hence, $r v c_{2}\left(W_{n}\right)$ is determined and given by Theorem 1 for $n \geq 4$).
(c) $r v c_{3}\left(W_{3}\right)=1, r v c_{3}\left(W_{4}\right)=2$, and $r v c_{3}\left(W_{n}\right)=n$ for $n \geq 5$.

Proof. (a) This is clear, since $\operatorname{rvc}\left(W_{3}\right)=\operatorname{rvc}\left(K_{4}\right)=0$ and $\operatorname{diam}\left(W_{n}\right)=2$ for $n \geq 4$.
(b) The assertion $r v c_{2}\left(W_{3}\right)=1$ is easily verified. Now, let $n \geq 4$. Clearly, $r v c_{2}\left(W_{n}\right) \leq$ $\operatorname{rvc}\left(C_{n}\right)$, since by taking a rainbow vertex connected colouring for the cycle C_{n} in W_{n} with $\operatorname{rvc}\left(C_{n}\right)$ colours, and then colouring the centre with any used colour, we have a rainbow vertex 2 -connected colouring for W_{n}. On the other hand, suppose that we have a vertexcolouring for W_{n} with fewer than $\operatorname{rvc}\left(C_{n}\right)$ colours. Then, for some two vertices x, y in the cycle C_{n} of W_{n}, we do not have a rainbow $x-y$ path along the cycle. Hence, there is at most one rainbow $x-y$ path in W_{n} (using the centre of W_{n}). Therefore, $r v c_{2}\left(W_{n}\right) \geq r v c\left(C_{n}\right)$.
(c) This can be proved in a similar way as the proof of Theorem 2.

We now consider the function $r v c_{k}(G)$ when G is a complete multipartite graph. Let G have partite class-sizes $1 \leq n_{1} \leq \cdots \leq n_{t}$ for some $t \geq 2$. We write $G=K_{n_{1}, \ldots, n_{t}}$.

The analogous problem of the determination of $r c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)$ has only been solved completely for $k=1$ by Chartrand et al. [2], as follows. For the bipartite case $r c\left(K_{m, n}\right)$, where $1 \leq m \leq n$, we have

$$
r c\left(K_{m, n}\right)= \begin{cases}n & \text { if } m=1 \\ \min (\lceil\sqrt[m]{n}\rceil, 4) & \text { if } m \geq 2 .\end{cases}
$$

For the general multipartite case $r c\left(K_{n_{1}, \ldots, n_{t}}\right)$, where $t \geq 3,1 \leq n_{1} \leq \cdots \leq n_{t}, m=$ $\sum_{i=1}^{t-1} n_{i}$, and $n=n_{t}$, we have

$$
r c\left(K_{n_{1}, \ldots, n_{t}}\right)= \begin{cases}1 & \text { if } n_{t}=1 \\ 2 & \text { if } n_{t} \geq 2 \text { and } m>n, \\ \min (\lceil\sqrt[m]{n}\rceil, 3) & \text { if } m \leq n\end{cases}
$$

The problem remains open for $k \geq 2$. In the case of the balanced complete bipartite graph $K_{n, n}$, Chartrand et al. [3] proved that $r c_{k}\left(K_{n, n}\right)=3$ if $k \geq 2$ and $n=2 k\left\lceil\frac{k}{2}\right\rceil$. This result was later improved by Li and Sun [11], who proved that $r c_{k}\left(K_{n, n}\right)=3$ if $k \geq 2$ and $n \geq 2 k\left\lceil\frac{k}{2}\right\rceil$, and by Fujita et al. [4], who proved that $r c_{k}\left(K_{n, n}\right)=3$ if k is sufficiently large and $n \geq 2 k+o(k)$. As for balanced complete multipartite graphs, Fujita et al. also proved that $r c_{k}\left(K_{t \times n}\right)=2$ if $t \geq 3, k$ is sufficiently large, and $n \geq \frac{2 k}{t-2}+o(k)$, where $K_{t \times n}$ denotes the complete t-partite graph with each class having n vertices. For general complete multipartite graphs, Fujita et al. asked the question of whether, for $k, t \geq 2$, there is a function $g(k, t)$ such that, if $n_{1} \geq g(k, t)$, then $r c_{k}\left(K_{n_{1}, n_{2}}\right)=3$ or 4 , and $r c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ or 3 if $t \geq 3$. Moreover, they also asked the following: when do we have $r c_{k}\left(K_{n_{1}, n_{2}}\right)=3$, and when do we have $r c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ if $t \geq 3$?

Here, we are able to completely determine $\operatorname{rvc}_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)$ for every complete multipartite graph $K_{n_{1}, \ldots, n_{t}}$ and every $1 \leq k \leq \kappa\left(K_{n_{1}, \ldots, n_{t}}\right)=m=\sum_{i=1}^{t-1} n_{i}$. Obviously, if $n_{t}=1$, then $K_{n_{1}, \ldots, n_{t}}=K_{t}$. Hence, $\operatorname{rvc}\left(K_{n_{1}, \ldots, n_{t}}\right)=0$ and $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)=1$ for $2 \leq k \leq m$. Now, let $n_{t} \geq 2$. The bipartite case of $t=2$ can be easily obtained. We have $\operatorname{rvc}\left(K_{n_{1}, n_{2}}\right)=1$ and $r v c_{k}\left(K_{n_{1}, n_{2}}\right)=2$ for $2 \leq k \leq m$. For the general multipartite case when $t \geq 3$, we have the following result.

Theorem 4 Let $1 \leq n_{1} \leq \cdots \leq n_{t}$, where $t \geq 3, n_{t} \geq 2$ and $m=\sum_{i=1}^{t-1} n_{i}$.
(a) If $1 \leq k \leq m-2$, then we have the following.
(i) $\operatorname{rvc} c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)=1$ if $1 \leq k \leq m-n_{t-1}+1$.
(ii) $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ if $m-n_{t-1}+2 \leq k \leq m-2$.
(b) (i) $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right)=1$ if $n_{t-1} \leq 2$.
(ii) $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ if $n_{t-1} \geq 3$ and we do not have $n_{t}=n_{t-1}=n_{t-2}$ odd.
(iii) $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right)=3$ if $n_{t}=n_{t-1}=n_{t-2} \geq 3$ are odd.
(c) (i) $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=1$ if $n_{t-1}=1$.
(ii) $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ if $2 \leq n_{t-1} \leq n_{t}-2$.
(iii) $\operatorname{rvc} c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=2$ if $n_{t-1}=n_{t}-1 \geq 2$ and $n_{t-2} \leq 2$, or $n_{t-1}=n_{t} \geq 2$ and $n_{t-2}=1$.
(iv) $\operatorname{rvc} c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=3$ if $n_{t-1}=n_{t}-1$ and $n_{t-2} \geq 3$, or $n_{t-1}=n_{t} \geq 3, n_{t-2} \geq 2$, and we do not have $n_{t}=n_{t-1}=n_{t-2}=n_{t-3}=4$ and $t \geq 4$.
(v) $\operatorname{rvc} c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=4$ if $t \geq 4$ and $n_{t}=n_{t-1}=n_{t-2}=n_{t-3}=4$.
(vi) $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right)=s$ if $n_{t}=n_{t-1}=\cdots=n_{t-s+1}=2$ and $n_{t-s}=n_{t-s-1}=\cdots=$ $n_{1}=1$, for $1 \leq s \leq t$.

Before we proceed to the proof of Theorem 4, we shall prove two auxiliary lemmas. Let H be a vertex-coloured complete bipartite graph with classes X and Y. We say that a matching in H is vertex-rainbow if, for every edge in the matching, the end-vertices have distinct colours. For $A \subset X$ and $B \subset Y$, let (A, B) denote the complete bipartite subgraph of H with classes A and B.

Lemma 5 Let $1 \leq p \leq q$. Consider the complete bipartite graph $K_{p, q}$ with classes X and Y, where $|X|=p$ and $|Y|=q$. Suppose that $\left\lceil\frac{p}{2}\right\rceil$ vertices of X and b vertices of Y have colour 1 , and $\left\lfloor\frac{p}{2}\right\rfloor$ vertices of X and a vertices of Y have colour 2 , where $a+b=q$. Let $u \in X$ and $v \in Y$.
(a) If $a=\left\lceil\frac{q}{2}\right\rceil$ and $b=\left\lfloor\frac{q}{2}\right\rfloor$, then there exist p disjoint rainbow $u-v$ paths if $q \geq p+2$, and $p-1$ disjoint rainbow $u-v$ paths if $q=p$ or $q=p+1$.
(b) If $a=\left\lfloor\frac{q}{2}\right\rfloor$ and $b=\left\lceil\frac{q}{2}\right\rceil$, then there exist $p-2$ disjoint rainbow $u-v$ paths if $p=q \geq 3$ are odd, and $p-1$ disjoint rainbow $u-v$ paths otherwise.

Proof. The lemma holds for $p=1$, so assume that $p \geq 2$. Clearly, for both (a) and (b), one rainbow $u-v$ path is the edge $u v$. To find the other rainbow $u-v$ paths, it is enough to find a sufficiently large vertex-rainbow matching in $K_{p, q}-\{u, v\}$. Such a matching with size h then gives h disjoint rainbow $u-v$ paths, where each path has the form uyxv for some $x \in X \backslash\{u\}$ and $y \in Y \backslash\{v\}$, with $x y$ an edge of the matching. Together with the edge $u v$, we have $h+1$ disjoint rainbow $u-v$ paths. For $i=1,2$, let X_{i} and Y_{i} be the sets of vertices with colour i in $X \backslash\{u\}$ and $Y \backslash\{v\}$, respectively.
(a) If $q \geq p+2$, then $\left|Y_{2}\right| \geq\left\lceil\frac{q}{2}\right\rceil-1 \geq\left\lceil\frac{p}{2}\right\rceil \geq\left|X_{1}\right|$, and $\left|Y_{1}\right| \geq\left\lfloor\frac{q}{2}\right\rfloor-1 \geq\left\lfloor\frac{p}{2}\right\rfloor \geq\left|X_{2}\right|$. Hence, we can find matchings in $\left(X_{1}, Y_{2}\right)$ and $\left(X_{2}, Y_{1}\right)$ of sizes $\left|X_{1}\right|$ and $\left|X_{2}\right|$, respectively. Thus, there is a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $\left|X_{1}\right|+\left|X_{2}\right|=p-1$, and we have p disjoint rainbow $u-v$ paths. Now, let $q=p$ or $q=p+1$. If v has colour 1 , then $\left|Y_{2}\right|=\left\lceil\frac{q}{2}\right\rceil \geq\left\lceil\frac{p}{2}\right\rceil \geq\left|X_{1}\right|$ and $\left|Y_{1}\right|=\left\lfloor\frac{q}{2}\right\rfloor-1 \geq\left\lfloor\frac{p}{2}\right\rfloor-1 \geq\left|X_{2}\right|-1$. If v has colour 2, then similarly we have $\left|Y_{2}\right| \geq\left|X_{1}\right|-1$ and $\left|Y_{1}\right| \geq\left|X_{2}\right|$. In both cases, we obtain a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $\left|X_{1}\right|+\left|X_{2}\right|-1=p-2$, and we have $p-1$ disjoint rainbow $u-v$ paths.
(b) For $p=q \geq 3$ odd, $\left|Y_{2}\right| \geq\left\lfloor\frac{q}{2}\right\rfloor-1=\left\lceil\frac{p}{2}\right\rceil-2 \geq\left|X_{1}\right|-2$, and $\left|Y_{1}\right| \geq\left\lceil\frac{q}{2}\right\rceil-1=\left\lfloor\frac{p}{2}\right\rfloor \geq\left|X_{2}\right|$. As before, we have a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $\left|X_{1}\right|+\left|X_{2}\right|-2=p-3$, which gives $p-2$ disjoint rainbow $u-v$ paths. Now, suppose that we do not have $p=q \geq 3$ odd. If q is even, then, by (a), we have $p-1$ disjoint rainbow $u-v$ paths. If q is odd, then $q \geq p+1$. We delete a vertex of colour 1 from Y and apply (a) to the resulting $K_{p, q-1}$. This again gives $p-1$ disjoint rainbow $u-v$ paths.

Lemma 6 Let $1 \leq p \leq q$ with $(p, q) \neq(2,2),(4,4)$. Consider the complete bipartite graph $K_{p, q}$ with classes X and Y, where $|X|=p$ and $|Y|=q$. Suppose that $\left\lceil\frac{p}{3}\right\rceil$ vertices of X and $\left\lceil\frac{q}{3}\right\rceil$ vertices of Y have colour $1,\left\lfloor\frac{p}{3}\right\rfloor$ vertices of X and $\left\lfloor\frac{q}{3}\right\rfloor$ vertices of Y have colour 3 , and all the other vertices have colour 2. Then, for all $u \in X$ and $v \in Y$, there are p disjoint rainbow $u-v$ paths.

Proof. Clearly, if the lemma holds for (p, q), then it holds for $\left(p, q^{\prime}\right)$ for any $q^{\prime} \geq q$. Hence, it suffices to prove the lemma for $(p, q)=(2,3),(4,5)$ and $(p, q)=(a, a)$ for $a \neq 2$, 4. As in Lemma 5 , it suffices to find a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $p-1$ (i.e., the matching is maximum, and perfect if $p=q$). For $1 \leq i \leq 3$, let X_{i} and Y_{i} be the sets
of vertices with colour i in $X \backslash\{u\}$ and $Y \backslash\{v\}$, respectively, and $p_{i}=\left|X_{i}\right|, q_{i}=\left|Y_{i}\right|$. We obtain a suitable matching as follows.
Case 1. $p=q \equiv 0(\bmod 3)$.
Without loss of generality, u has colour 1 , and v has colour 1 or colour 2. If v has colour 2, then we take perfect matchings in $\left(X_{1}, Y_{2}\right),\left(X_{2}, Y_{3}\right)$ and $\left(X_{3}, Y_{1}\right)$. If v has colour 1 , then let $y \in Y_{2}$, and take perfect matchings in $\left(X_{1}, Y_{2} \backslash\{y\}\right),\left(X_{2}, Y_{3}\right)$ and $\left(X_{3}, Y_{1} \cup\{y\}\right)$. In both cases, we have a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $p-1$.
Case 2. $p \not \equiv 0(\bmod 3)$.
The cases $(p, q)=(1,1),(2,3),(4,5)$ can be verified easily. Now, let $p=q \geq 5$. Note that $q_{2}-1 \leq p_{1} \leq q_{2}+2$, and since $p \not \equiv 0(\bmod 3)$, we have $q_{1}-2 \leq p_{3} \leq q_{1}$.
Subcase 2.1. $p_{1}=q_{2}-1$.
Note that u has colour 1 , and hence $X_{3} \neq \emptyset$. Let $Z_{1} \subset Y_{1}$ with $\left|Z_{1}\right|=p_{3}-1$ (note that $\left.0 \leq p_{3}-1<q_{1}\right)$, and $y \in Y_{2}$. Take perfect matchings in $\left(X_{1}, Y_{2} \backslash\{y\}\right),\left(X_{2},\left(Y_{1} \backslash Z_{1}\right) \cup Y_{3}\right)$ and $\left(X_{3}, Z_{1} \cup\{y\}\right)$. We have a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $p-1$.
Subcase 2.2. $q_{2} \leq p_{1} \leq q_{2}+2$.
We have $p_{1} \leq\left\lceil\frac{p}{3}\right\rceil \leq p-\left\lceil\frac{p}{3}\right\rceil-1 \leq q_{2}+q_{3}$ (since $p \geq 5$). Let $Z_{1} \subset Y_{1}$ with $\left|Z_{1}\right|=p_{3}$ (note that $p_{3} \leq q_{1}$), and $Z_{3} \subset Y_{3}$ with $\left|Z_{3}\right|=p_{1}-q_{2}$ (note that $0 \leq p_{1}-q_{2} \leq q_{3}$). Take perfect matchings in $\left(X_{1}, Y_{2} \cup Z_{3}\right),\left(X_{2},\left(Y_{1} \backslash Z_{1}\right) \cup\left(Y_{3} \backslash Z_{3}\right)\right)$ and $\left(X_{3}, Z_{1}\right)$. Again, we have a vertex-rainbow matching in $K_{p, q}-\{u, v\}$ of size $p-1$.
Proof of Theorem 4. For $1 \leq i \leq t$, let V_{i} denote the class of $K_{n_{1}, \ldots, n_{t}}$ with n_{i} vertices.
Since $n_{t} \geq 2$, clearly $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq 1$ for $1 \leq k \leq m$. Observe that, given any vertexcolouring of $K_{n_{1}, \ldots, n_{t}}$, any two vertices in the same class, say V_{i}, have $m+n_{t}-n_{i} \geq m$ disjoint rainbow paths of length 2 connecting them. Hence, to prove the theorem, it is enough to consider, in each case, pairs of vertices where the two vertices are in different classes.

First, let $1 \leq k \leq m-n_{t-1}+1$. We colour all the vertices of $K_{n_{1}, \ldots, n_{t}}$ with the same colour. If $u \in V_{i}$ and $v \in V_{j}$ for some $i \neq j$, then there are $1+m+n_{t}-n_{i}-n_{j} \geq k$ disjoint rainbow $u-v$ paths, each with length at most 2 . Hence, we have $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 1$, and this proves part (i) of (a), (b) and (c). Next, let $k \geq m-n_{t-1}+2$. Suppose that all the vertices of $K_{n_{1}, \ldots, n_{t}}$ are coloured with the same colour. Then, if $u \in V_{t-1}$ and $v \in V_{t}$, it is clear that the maximum number of disjoint $u-v$ paths of length at most 2 is $1+m-n_{t-1}<k$. Hence, we cannot have k disjoint rainbow $u-v$ paths, and $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq 2$. This proves that 2 is a lower bound for the remaining parts, except for part (c)(vi) when $s=1$. We now prove the remaining assertions.
(a)(ii) We construct a colouring of $K_{n_{1}, \ldots, n_{t}}$ with two colours, as follows. Assign colour 1 to $\left\lceil\frac{n_{\ell}}{2}\right\rceil$ vertices of V_{ℓ} for every $\ell<t$, and to $\left\lfloor\frac{n_{t}}{2}\right\rfloor$ vertices of V_{t}. Colour the remaining vertices with colour 2. Now, let $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$. Using both (a) and (b) in Lemma 5, we have $n_{i}-2$ disjoint rainbow $u-v$ paths, each using edges between V_{i} and V_{j}. With all the paths of $\left\{u w v: w \notin V_{i} \cup V_{j}\right\}$, we have $\left(n_{i}-2\right)+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m-2$ disjoint rainbow $u-v$ paths. Hence, $r v c_{k}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 2$.
(b)(ii) Consider the same colouring of $K_{n_{1}, \ldots, n_{t}}$ with two colours as described in (a)(ii). Let $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$.

- If $j=t$, then, by Lemma $5(\mathrm{a})$, we have $n_{i}-1$ disjoint rainbow $u-v$ paths, each using edges between V_{i} and V_{t}. With all the paths of $\left\{u w v: w \notin V_{i} \cup V_{t}\right\}$, we have
$\left(n_{i}-1\right)+\left(m-n_{i}\right)=m-1$ disjoint rainbow $u-v$ paths.
- Let $j<t$. If $n_{j} \leq n_{t}-1$, then, by Lemma $5(\mathrm{~b})$, we have $n_{i}-2$ disjoint rainbow $u-v$ paths between V_{i} and V_{j}. As before, we have $\left(n_{i}-2\right)+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m-1$ disjoint rainbow $u-v$ paths. Now, let $n_{j}=n_{t}$. Since we do not have $n_{t}=n_{t-1}=n_{t-2}$ odd, this means that we cannot have $n_{i}=n_{j}$ odd. By Lemma $5(\mathrm{~b})$, we have $n_{i}-1$ disjoint rainbow $u-v$ paths between V_{i} and V_{j}, which again gives $\left(n_{i}-1\right)+\left(m+n_{t}-n_{i}-n_{j}\right)=$ $m-1$ disjoint rainbow $u-v$ paths.
Hence, $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 2$.
(b)(iii) Suppose that we have a colouring of $K_{n_{1}, \ldots, n_{t}}$ with two colours. Without loss of generality, there are sets $A \subset V_{t-1}$ and $B \subset V_{t}$ with $|A|=|B|=\frac{1}{2}\left(n_{t}+1\right)$, and all the vertices of $A \cup B$ have the same colour. Let $u \in V_{t-1} \backslash A$ and $v \in V_{t} \backslash B$. The maximum number of disjoint rainbow $u-v$ paths, using edges between V_{t-1} and V_{t}, is $n_{t}-2$. Hence, the maximum number of disjoint rainbow $u-v$ paths is $\left(n_{t}-2\right)+\left(m-n_{t-1}\right)<m-1$. Therefore, $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq 3$.

The upper bound $r v c_{m-1}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 3$ will follow immediately once we have proved the upper bound of part (c)(iv).
(c)(ii) Again, consider the same colouring of $K_{n_{1}, \ldots, n_{t}}$ with two colours as described in (a)(ii). Let $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$.

- If $j=t$, then, by Lemma $5(\mathrm{a})$, we have n_{i} disjoint rainbow $u-v$ paths, each using edges between V_{i} and V_{t}. With all the paths of $\left\{u w v: w \notin V_{i} \cup V_{t}\right\}$, we have $n_{i}+\left(m-n_{i}\right)=m$ disjoint rainbow $u-v$ paths.
- If $j<t$, then, by Lemma $5(\mathrm{~b})$, we have $n_{i}-2$ disjoint rainbow $u-v$ paths between V_{i} and V_{j}. Then, as before, we have $\left(n_{i}-2\right)+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m$ disjoint rainbow $u-v$ paths.
Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 2$.
(c)(iii) We colour $K_{n_{1}, \ldots, n_{t}}$ with two colours, where all the vertices of V_{t} have colour 1 and all the other vertices have colour 2 . Then, if $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$, we can easily check that there are m disjoint rainbow $u-v$ paths. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 2$.
(c)(iv) Suppose that there is a rainbow vertex m-connected colouring of $K_{n_{1}, \ldots, n_{t}}$ with two colours, say colours 1 and 2 . Then, for any $u \in V_{t-1}$ and $v \in V_{t}$, there must exist n_{t-1} disjoint rainbow $u-v$ paths, each using edges between V_{t-1} and V_{t}; otherwise, the maximum number of disjoint rainbow $u-v$ paths would be less than $n_{t-1}+\left(m-n_{t-1}\right)=m$. It follows that all the vertices of V_{t} must have the same colour, and the same for V_{t-1}. Otherwise, if a and b vertices of V_{t-1} have colour 1 and colour 2, respectively, where $a+b=n_{t-1}$ and $a, b>0$, then $b+1$ and $a+1$ vertices of V_{t} have colour 1 and colour 2 , respectively, contradicting $n_{t-1}=n_{t}-1$ or $n_{t-1}=n_{t}$. Assume that all the vertices of V_{t} have colour 1, and all the vertices of V_{t-1} have colour 2. Now, take a set $A \subset V_{t-2}$ such that $|A|=\left\lceil\frac{n_{t-2}}{2}\right\rceil$, with all the vertices of A having the same colour. Let $u \in V_{t-2} \backslash A$. If the vertices of A have colour 1 (respectively, colour 2), then let $v \in V_{t}$ (respectively, $v \in V_{t-1}$). There are at most $\left\lfloor\frac{n_{t-2}}{2}\right\rfloor$ disjoint rainbow $u-v$ paths, each using edges between V_{t-2} and V_{t} (respectively, $\left.V_{t-1}\right)$. Then, we can only have at most $\left\lfloor\frac{n_{t-2}}{2}\right\rfloor+m+n_{t}-n_{t-1}-n_{t-2}<m$ disjoint rainbow $u-v$ paths, a contradiction. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq 3$.

Now, assume that, in addition, we have $\left(n_{t}, n_{t-1}, n_{t-2}, n_{t-3}\right) \neq(4,4,4,4)$ and $t \geq 4$. We construct a colouring of $K_{n_{1}, \ldots, n_{t}}$ with three colours as follows. If $\left(n_{t}, n_{t-1}\right) \neq(4,4)$, then, for every V_{i}, we colour $\left\lceil\frac{n_{i}}{3}\right\rceil$ and $\left\lfloor\frac{n_{i}}{3}\right\rfloor$ vertices in V_{i} with colour 1 and colour 3 , respectively, and
colour the remaining vertices with colour 2 . If $\left(n_{t}, n_{t-1}\right)=(4,4)$, we colour two vertices of V_{t} with colour 1 and the other two vertices with colours 2 and 3 , and colour two vertices of V_{t-1} with colour 2 and the other two vertices with colours 3 and 1 . If in addition $n_{t-2}=4$, we colour two vertices of V_{t-2} with colour 3 and the other two vertices with colours 1 and 2 . In both cases, colour each remaining V_{i} with three colours, as described in the case $\left(n_{t}, n_{t-1}\right) \neq$ $(4,4)$. Let $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$. By Lemma 6 , if $\left(n_{i}, n_{j}\right) \neq(2,2),(4,4)$, then there are n_{i} disjoint rainbow $u-v$ paths, each using edges between V_{i} and V_{j}. With the paths of $\left\{u w v: w \notin V_{i} \cup V_{j}\right\}$, we have $n_{i}+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m$ disjoint rainbow $u-v$ paths. If $\left(n_{i}, n_{j}\right)=(2,2)$, then similarly we have $1+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m$ disjoint rainbow $u-v$ paths. If $\left(n_{i}, n_{j}\right)=(4,4)$ and $n_{j}<n_{t}$, then we have $3+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m$ disjoint rainbow $u-v$ paths. If $\left(n_{i}, n_{j}\right)=(4,4)$ and $n_{j}=n_{t}$, then we have $4+\left(m+n_{t}-n_{i}-n_{j}\right)=m$ disjoint rainbow $u-v$ paths. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 3$ in all cases. This also completes the proof of part (b)(iii).
(c)(v) Suppose that we have a colouring of $K_{n_{1}, \ldots, n_{t}}$ with at most three colours. Without loss of generality, we have $y, y^{\prime} \in V_{t}$ and $x, x^{\prime} \in V_{t-1}$, all having the same colour. Let $u \in V_{t-1} \backslash\left\{x, x^{\prime}\right\}$ and $v \in V_{t} \backslash\left\{y, y^{\prime}\right\}$. Then, the maximum number of disjoint rainbow $u-v$ paths is $3+\left(m-n_{t-1}\right)<m$. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq 4$. Now, consider the colouring of $K_{n_{1}, \ldots, n_{t}}$ with four colours, where, for every V_{i}, the vertices have colours $1, \ldots, n_{i}$. Let $u \in V_{i}$ and $v \in V_{j}$ for some $i<j$. If $\left(n_{i}, n_{j}\right) \neq(2,2)$, then there are $n_{i}+\left(m+n_{t}-n_{i}-n_{j}\right) \geq m$ disjoint rainbow $u-v$ paths. If $\left(n_{i}, n_{j}\right)=(2,2)$, then there are $1+\left(m+n_{t}-n_{i}-n_{j}\right)>m$ disjoint rainbow $u-v$ paths. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq 4$.
(c)(vi) The assertion holds for $s=1$, so let $s \geq 2$. If we have a colouring of $K_{n_{1}, \ldots, n_{t}}$ with at most $s-1$ colours, then, without loss of generality, there are $y \in V_{t}$ and $x \in V_{t-1}$ with the same colour. Let $u \in V_{t-1} \backslash\{x\}$ and $v \in V_{t} \backslash\{y\}$. Then, we can only have at most $m-1$ rainbow $u-v$ paths. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \geq s$. Now, the colouring where, for $1 \leq i \leq s$, both vertices of V_{t-i+1} have colour i, and all the other vertices have colour 1, is a rainbow vertex m-connected colouring. Hence, $r v c_{m}\left(K_{n_{1}, \ldots, n_{t}}\right) \leq s$.

The completes the proof of Theorem 4.

3 Comparing $r c_{k}(G)$ and $r v c_{k}(G)$

In [5], Krivelevich and Yuster compared the functions $r c(G)$ and $r v c(G)$. They observed that we cannot bound one of $r c(G)$ and $\operatorname{rvc}(G)$ in terms of the other, by providing examples of graphs G where $\operatorname{rc}(G)$ is much larger than $\operatorname{rvc}(G)$, and vice versa. Their examples were as follows. By taking G to be the star $K_{1, s}$, we have $r c(G)=s$ and $r v c(G)=1$. On the other hand, let G be constructed as follows. Take s vertex-disjoint triangles and, by designating a vertex from each triangle, add a complete graph on the designated vertices. Then $\operatorname{rc}(G) \leq 4$ and $\operatorname{rvc}(G)=s$.

Here, our goal is to compare the functions $r c_{k}(G)$ and $r v c_{k}(G)$. First, we construct graphs G where $r c_{k}(G)$ is larger than $r v c_{k}(G)$. Observe that we can extend a star to a broom. This is a graph formed by taking a path $x x_{1} \cdots x_{t}$ of length t and adding a star with centre x_{t} and leaves y_{1}, \ldots, y_{s}, for some $t, s \geq 1$. Let $B_{t, s}$ denote this broom graph; see Figure 1(a). Then, note that we have $r c\left(B_{t, s}\right)=t+s$ and $r v c\left(B_{t, s}\right)=t$. Hence, given any two integers $1 \leq b<a$, there exists a graph G^{\prime} with $r c\left(G^{\prime}\right)=a$ and $\operatorname{rvc}\left(G^{\prime}\right)=b$: we take $G^{\prime}=B_{b, a-b}$. This fact has the following generalisation.

Theorem 7 Given $1 \leq t<s$, there exists a graph G such that $r c_{k}(G) \geq s$ and $r v c_{k}(G)=t$.
Proof. We take G to be a blow-up of the broom $B_{t, s}$, as follows. Take vertices x, y_{1}, \ldots, y_{s} and t copies of the clique K_{k} with vertex sets X_{1}, \ldots, X_{t}. Add all the edges between x and $X_{1} ; X_{i}$ and X_{i+1} for all $1 \leq i \leq t-1$ (if $t \geq 2$); and y_{j} and X_{t} for all $1 \leq j \leq s$. See Figure 1(b). Then, $r c_{k}(G) \geq s$. Otherwise, if we have an edge-colouring of G with fewer than s colours, we do not have k disjoint rainbow $y_{j}-y_{j^{\prime}}$ paths, for some $1 \leq j<j^{\prime} \leq s$. Also, we have $r v c_{k}(G) \geq \operatorname{diam}(G)-1=t$. Finally, consider the vertex-colouring with t colours, where x, y_{1}, \ldots, y_{s} are given colour 1 , and all the vertices of X_{i} are given colour i for $1 \leq i \leq t$. Then, we can easily check that this colouring is rainbow vertex k-connected. Hence, $r v c_{k}(G) \leq t$.

Figure 1. The broom $B_{t, s}$, and its blow-up.
Now, we proceed to construct graphs G where $r v c_{k}(G)$ is larger than $r c_{k}(G)$. We need the following result of Chartrand et al. [3].

Theorem 8 (Chartrand et al. [3]) For $k \geq 2$ and $n \geq(k+1)^{2}$, we have $r c_{k}\left(K_{n}\right)=2$.
We have the following result.
Theorem 9 Let $s \geq(k+1)^{2}$. Then, there exists a graph G such that $r c_{k}(G) \leq 9$ and $r v c_{k}(G)=s$.

Proof. The case $k=1$ follows from the construction of Krivelevich and Yuster with the disjoint triangles attached to the clique K_{s}, as described earlier. Now, let $k \geq 2$. We generalise the same construction by taking a blow-up, as follows. Take s disjoint k-sets of vertices V_{1}, \ldots, V_{s}. Let $V_{i}=\left\{v_{1}^{i}, \ldots, v_{k}^{i}\right\}$ for every $1 \leq i \leq s$. For every $1 \leq p \leq k$, we add a clique on $\left\{v_{p}^{1}, \ldots, v_{p}^{s}\right\}$. This gives k disjoint copies of K_{s}. Let G_{p} be the copy of K_{s} on $\left\{v_{p}^{1}, \ldots, v_{p}^{s}\right\}(1 \leq p \leq k)$. Take further disjoint sets X_{1}, \ldots, X_{s} and Y_{1}, \ldots, Y_{s}, each with $(k+1)^{2}$ vertices. For each $1 \leq i \leq s$, add a clique with vertex set $X_{i} \cup Y_{i}$, and a complete
bipartite graph with classes $X_{i} \cup Y_{i}$ and V_{i}. Let G be the resulting graph. We show that G is a suitable graph for the theorem. Let $x_{1} \in X_{1}, \ldots, x_{s} \in X_{s}$ and $y_{1} \in Y_{1}, \ldots, y_{s} \in Y_{s}$.

We first define an edge-colouring of G using nine colours. For every $1 \leq i \leq s$, colour all edges from x_{i} to V_{i} with colour 1, and those from y_{i} to V_{i} with colour 3. Colour all edges between $X_{i} \backslash\left\{x_{i}\right\}$ and V_{i} with colour 2; those between $Y_{i} \backslash\left\{y_{i}\right\}$ and V_{i} with colour 4; and those between X_{i} and Y_{i} with colour 5. By Theorem 8, we colour the edges of the copies of $K_{(k+1)^{2}}$ on X_{i} and Y_{i} with colours 6 and 7 , and the edges of G_{1} with colours 8 and 9 , so that the edge-colouring within each clique is rainbow k-connected. Finally, colour the edges of G_{2}, \ldots, G_{k} identically as G_{1}. That is, for $1 \leq i<j \leq s$ and $2 \leq p \leq k$, the edge $v_{p}^{i} v_{p}^{j}$ has the same colour as the edge $v_{1}^{i} v_{1}^{j}$.

We claim that this is a rainbow k-connected colouring for G. Let $u, v \in V(G)$. It is easy to see that, if $u, v \in X_{i} \cup Y_{i} \cup V_{i}$ for some $1 \leq i \leq s$, or if $u \in X_{i} \cup Y_{i}$ and $v \in X_{j} \cup Y_{j}$ for some $1 \leq i<j \leq s$, then there are k disjoint rainbow $u-v$ paths. Note that, in the former, we use Theorem 8 when $u, v \in X_{i}$ or $u, v \in Y_{i}$. It remains to consider the case when $u \in V_{i}$ and $v \in X_{j} \cup Y_{j} \cup V_{j}$ for some $1 \leq i<j \leq s$. For simplicity, assume that $i=1$, $j=2$, and $u=v_{1}^{1}$. By Theorem 8, there are k disjoint rainbow $u-v_{1}^{2}$ paths in G_{1}, say $u v_{1}^{2}, u v_{1}^{\ell_{1}} v_{1}^{2}, \ldots, u v_{1}^{\ell_{k-1}} v_{1}^{2}$ for some $3 \leq \ell_{1}<\cdots<\ell_{k-1} \leq s$. If $v \in V_{2}$ with $v=v_{1}^{2}$, then these are $u-v$ paths. Otherwise, if $v=v_{p}^{2}$ for some $1<p \leq k$, then we have k disjoint rainbow $u-v$ paths of the form

$$
u v_{1}^{2} x_{2} x_{2}^{\prime} v, u v_{1}^{\ell_{1}} x_{\ell_{1}} x_{\ell_{1}}^{\prime} v_{p}^{\ell_{1}} v, \ldots, u v_{1}^{\ell_{k-1}} x_{\ell_{k-1}} x_{\ell_{k-1}}^{\prime} v_{p}^{\ell_{k-1}} v
$$

where $x_{2}^{\prime} \in X_{2}, x_{\ell_{1}}^{\prime} \in X_{\ell_{1}}, \ldots, x_{\ell_{k-1}}^{\prime} \in X_{\ell_{k-1}}$. If $v \in X_{2}$ then we have k disjoint rainbow $u-v$ paths, where one path is $u v_{1}^{2} v$, and the other $k-1$ paths are of the form

$$
u v_{1}^{\ell_{1}} y \ell_{1} y_{\ell_{1}}^{\prime} v_{2}^{\ell_{1}} v_{2}^{2} v, u v_{1}^{\ell_{2}} y_{\ell_{2}} y_{\ell_{2}}^{\prime} v_{3}^{\ell_{2}} v_{3}^{2} v, \ldots, u v_{1}^{\ell_{k-1}} y_{\ell_{k-1}} y_{\ell_{k-1}}^{\prime} v_{k}^{\ell_{k-1}} v_{k}^{2} v,
$$

where $y_{\ell_{1}}^{\prime} \in Y_{\ell_{1}}, \ldots, y_{\ell_{k-1}}^{\prime} \in Y_{\ell_{k-1}}$. A similar argument holds for $v \in Y_{2}$. Hence, the colouring is rainbow k-connected, so $r c_{k}(G) \leq 9$.

Next, suppose that we have a vertex-colouring of G with fewer than s colours. Then, without loss of generality, v_{1}^{1} and v_{1}^{2} have the same colour, and we cannot have k disjoint vertex-rainbow $u-v$ paths for any $u \in X_{1} \cup Y_{1}$ and $v \in X_{2} \cup Y_{2}$. Hence, $r v c_{k}(G) \geq s$.

Finally, consider the vertex-colouring of G with s colours, where for $1 \leq i \leq s$ and $1 \leq p \leq k$, the vertex v_{p}^{i} is given colour $i+p-1$ (modulo s); the vertices of X_{i} are given colour $i+k$ (modulo s); and those of Y_{i} are given colour $i+k+1$ (modulo s). We claim that this is a rainbow vertex k-connected colouring for G. Let $u, v \in V(G)$. Again, it is easy to check that, if $u, v \in V_{i} \cup X_{i} \cup Y_{i}$, or if $u \in X_{i} \cup Y_{i}$ and $v \in X_{j} \cup Y_{j}$, or if $u=v_{p}^{i}$ and $v=v_{p}^{j}$ for some $1 \leq i \neq j \leq s$ and $1 \leq p \leq k$, then there are k disjoint vertex-rainbow $u-v$ paths. Now, let $u \in V_{i}$ and $v \in V_{j} \cup X_{j} \cup Y_{j}$ for some $1 \leq i \neq j \leq s$. Let $u=v_{p}^{i}$ for some $1 \leq p \leq k$. If $v \in V_{j}$ with $v=v_{q}^{j}$ for some $1 \leq q \neq p \leq k$, then, for any $\ell_{1}, \ldots, \ell_{k} \in\{1, \ldots, s\} \backslash\{i, j\}$, the paths $u v_{p}^{\ell_{1}} x_{\ell_{1}} v_{q}^{\ell_{1}} v_{q}^{j}, \ldots, u v_{p}^{\ell_{k}} x_{\ell_{k}} v_{q}^{\ell_{k}} v_{q}^{j}$ are disjoint vertex-rainbow $u-v$ paths. If $v \in X_{j} \cup Y_{j}$, then we obtain k disjoint vertex-rainbow $u-v$ paths, as follows. One path is $u v_{p}^{j} v$. To obtain the other $k-1$ paths, perform the following procedure. For each $1 \leq q \neq p \leq k$, choose $h_{q} \in\{1, \ldots, s\} \backslash\{i, j\}$ such that $v_{p}^{h_{q}}$ uses a different colour to that of v_{q}^{j}; then choose one of the paths $v v_{p}^{h_{q}} x_{h_{q}} v_{q}^{h_{q}} v_{q}^{j} v$ or $v v_{p}^{h_{q}} y_{h_{q}} v_{q}^{h_{q}} v_{q}^{j} v$, whichever one is vertex-rainbow. We choose h_{q} so that distinct q are assigned to distinct h_{q}, and this is possible since $s \geq(k+1)^{2}$. Hence, the colouring is rainbow vertex k-connected, and $r v c_{k}(G) \leq s$.

Acknowledgements

Henry Liu and Teresa Sousa acknowledge the support from FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PEst-OE/MAT/UI0297/2011 (CMA) and PTDC/MAT/113207/2009. Ângela Mestre acknowledges the support through a fellowship provided by FCT - Fundação para a Ciência e a Tecnologia (Portugal), reference SFRH/BPD/48223/2008. The authors would also like to thank the anonymous referees for reading the paper carefully.

References

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998, xiv+394 pp.
[2] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(1) (2008), 85-98.
[3] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, The rainbow connectivity of a graph, Networks 54(2) (2009), 75-81.
[4] S. Fujita, H. Liu, and C. Magnant, Rainbow k-connection in dense graphs, J. Combin. Math. Combin. Comput., in press.
[5] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(3) (2010), 185-191.
[6] X. Li and S. Liu, Rainbow vertex-connection number of 2-connected graphs, arXiv:1110.5770v1 (2011).
[7] X. Li, Y. Mao, and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math., in press.
[8] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33(2) (2013), 307-313.
[9] X. Li, Y. Shi, and Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29(1) (2013), 1-38.
[10] X. Li and Y. Sun, On the rainbow k-connectivity of complete graphs, Australas. J. Combin. 49 (2011), 217-226.
[11] X. Li and Y. Sun, Note on the rainbow k-connectivity of regular complete bipartite graphs, Ars Combin. 101 (2011), 513-518.
[12] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer-Verlag, New York, 2012, viii+103 pp.
[13] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96-115.

[^0]: *Research partially supported by FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PEst-OE/MAT/UI0297/2011 (CMA) and PTDC/MAT/113207/2009.
 ${ }^{\dagger}$ Research supported by FCT - Fundação para a Ciência e a Tecnologia (Portugal), reference SFRH/BPD/48223/2008.

