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Abstract

Given graphs G and H, and a colouring of the edges of G with k colours, a

monochromatic H-decomposition of G is a partition of the edge set of G such

that each part is either a single edge or forms a monochromatic graph isomorphic

to H. Let φk(n,H) be the smallest number φ such that any graph G of order

n and any colouring of its edges with k colours, admits a monochromatic H-

decomposition with at most φ parts. Here we study the function φk(n,Kr) for

k ≥ 2 and r ≥ 3.
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1 Introduction

All graphs in this paper are finite, undirected and simple. For notation and terminol-

ogy not discussed here the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set

of G such that each part is either a single edge or forms an H-subgraph, i.e., a graph

isomorphic to H. We allow partitions only, that is, every edge of G appears in precisely

one part. Let φ(G,H) be the smallest possible number of parts in an H-decomposition

of G. It is easy to see that, for non-empty H, φ(G,H) = e(G) − pH(G)(e(H) − 1),

where pH(G) is the maximum number of pairwise edge-disjoint H-subgraphs that can

be packed into G and e(G) denotes the number of edges in G. Building upon a body

of previous research, Dor and Tarsi [4] showed that if H has a component with at

least 3 edges, then the problem of checking whether an input graph G is perfectly

decomposable into H-subgraphs is NP-complete. Hence, it is NP-hard to compute

the function φ(G,H) for such H. Therefore, the aim is to study the function

φ(n,H) = max{φ(G,H) | v(G) = n},

which is the smallest number such that any graph G of order n admits an H-

decomposition with at most φ(n,H) parts, where v(G) denotes the number of vertices

in G.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [5], who

were motivated by the problem of representing graphs by set intersections. They

proved that φ(n,K3) = t2(n), where Ks denotes the complete graph of order s and

we often refer to K3 as a triangle, and tr−1(n) denotes the number of edges in the

Turán graph of order n, Tr−1(n), which is the unique complete (r − 1)-partite graph

on n vertices where every partition class has either b n
r−1c or d n

r−1e vertices. Turán’s

Theorem [19] states that Tr−1(n) is the unique graph on n vertices that has the

maximum number of edges and contains no complete subgraph of order r. A decade

later, the result of Erdős, Goodman and Pósa was extended by Bollobás [1], who

proved that φ(n,Kr) = tr−1(n), for all n ≥ r ≥ 3.

General graphs H were only considered recently by Pikhurko and Sousa [15] who

proved the following result.
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Theorem 1.1. [15] Let H be any fixed graph of chromatic number r ≥ 3. Then,

φ(n,H) = tr−1(n) + o(n2).

However, the exact value of the function φ(n,H) is far from being known. A graph

H is edge-critical if there exists an edge e ∈ E(H) such that χ(H) > χ(H− e), where

χ(H) denotes the chromatic number of H. For r ≥ 4, a clique-extension of order

r is a connected graph that consists of a Kr−1 plus another vertex adjacent to at

most r − 2 vertices of Kr−1. Sousa determined the value of φ(n,H) for a few special

edge-critical graphs, namely for clique-extensions of order r ≥ 4 (for n ≥ r) [17] and

the cycles of length 5 (for n ≥ 6) and 7 (for n ≥ 10) [16, 18]. Later, Özkahya and

Person [14] determined it for all edge-critical graphs with chromatic number r ≥ 3 and

n sufficiently large. Let ex(n,H) denote the maximum number of edges in a graph

of order n, that does not contain H as a subgraph. Recall that ex(n,Kr) = tr−1(n).

They proved the following result.

Theorem 1.2. [14] Let H be any edge-critical graph with chromatic number r ≥ 3.

Then, there exists n0 such that φ(n,H) = ex(n,H), for all n ≥ n0. Moreover, the

only graph attaining φ(n,H) is the Turán graph Tr−1(n).

The case when H is a bipartite graph has been less studied. Pikhurko and Sousa

[15] determined φ(n,H) for any fixed bipartite graph with an O(1) additive error. For

a non-empty graph H, let gcd(H) denote the greatest common divisor of the degrees

of H. For example, gcd(K6,4) = 2, while for any tree T with at least 2 vertices we

have gcd(T ) = 1. They proved the following result.

Theorem 1.3. [15] Let H be a bipartite graph with m edges and let d = gcd(H).

Then there is n0 = n0(H) such that for all n ≥ n0 the following statements hold.

(a) If d = 1, then φ(n,H) =
⌊n(n−1)

2m

⌋
+ C, where C = m− 1 or C = m− 2.

(b) If d ≥ 2, then φ(n,H) = nd
2m

(⌊
n
d

⌋
− 1
)

+ 1
2
n(d− 1) +O(1).

Here, our aim is to consider a coloured version of the H-decomposition problem.

We define the problem more precisely.
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A k-edge-colouring of a graph G is a function c : E(G) → {1, . . . , k}. We think

of c as a colouring of the edges of G, where each edge is given one of k possible

colours. Given a fixed graph H, a graph G of order n and a k-edge-colouring of the

edges of G, a monochromatic H-decomposition of G is a partition of the edge set

of G such that each part is either a single edge or a monochromatic copy of H. Let

φk(G,H) be the smallest number such that, for any k-edge-colouring of G, there exists

a monochromatic H-decomposition of G with at most φk(G,H) elements. Our aim is

to study the function

φk(n,H) = max{φk(G,H) | v(G) = n},

which is the smallest number such that, any k-edge-coloured graph of order n admits

a monochromatic H-decomposition with at most φk(n,H) elements.

Here our goal is to study the function φk(n,Kr) for all k ≥ 2 and r ≥ 3. Our

results involve the Ramsey numbers and the Turán numbers. Recall that for r ≥ 3

and k ≥ 2, the Ramsey number for Kr, denoted by Rk(r), is the smallest value of s

for which every k-edge-colouring of Ks contains a monochromatic Kr. The Ramsey

numbers are notoriously difficult to calculate, even though, it is known that their

values are finite for all r ≥ 3 and k ≥ 2. In fact, for the Ramsey numbers Rk(r), only

three of them are currently known. In 1955, Greenwood and Gleason [8] were the first

to determine R2(3) = 6, R3(3) = 17 and R2(4) = 18.

In this work we will also consider ‘blow-up’ versions of k-edge-colourings. A more

precise definition of a ‘blow-up’ is as follows. For s ≥ 2, let G be an s-partite graph

with partition classes V1, . . . , Vs, let f be a k-edge-colouring of G, and let f ′ be a

k-edge-colouring of Ks. We say that f , or G, is a blow-up of f ′ if the vertices of Ks

can be labelled v1, . . . , vs such that, for all x ∈ Vi and y ∈ Vj with 1 ≤ i 6= j ≤ s, we

have f(xy) = f ′(vivj). We can easily prove a lower bound on the value of φk(n,Kr)

for all r ≥ 3 and k ≥ 2.

Lemma 1.4. Let r ≥ 3, k ≥ 2 and n ≥ Rk(r). Then,

φk(n,Kr) ≥ tRk(r)−1(n).

Proof. By the definition of Rk(r), there exists a k-edge-colouring f ′ of the com-

plete graph KRk(r)−1 with no monochromatic Kr. Now, consider the Turán graph
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TRk(r)−1(n) with a k-edge-colouring f which is a blow-up of f ′. Then the graph

TRk(r)−1(n) with the k-edge-colouring f has no monochromaticKr and thus φk(n,Kr) ≥
φk(TRk(r)−1(n), Kr) = tRk(r)−1(n).

Hence, the construction in Lemma 1.4 shows that we cannot be guaranteed to be

able to find a monochromatic Kr-decomposition of any k-edge-coloured graph on n

vertices, with less than tRk(r)−1(n) elements. In fact, we will prove that the value of

tRk(r)−1(n) is asymptotically correct for k ≥ 4 and r = 3 (see Theorem 1.5 below),

and exact for k = 2, 3 and r = 3 (see Theorem 1.7) and for k ≥ 2 and r ≥ 4 (see

Theorem 1.9), with n sufficiently large in both cases.

Theorem 1.5. For all k ≥ 2, we have

φk(n,K3) = tRk(3)−1(n) + o(n2). (1.1)

In particular, it is known that R2(3) = 6 and R3(3) = 17. Indeed, for two colours,

it is easy to see that the only 2-edge-colouring of K5 not containing a monochromatic

triangle is the one where each colour induces a cycle of length 5, as shown in Figure

1. Let f2 denote this 2-edge-colouring of K5.

Monochromatic K3-decompositions of graphs

February 23, 2012

Figure 1: The 2-edge-coloring of K5figure K_5

1

Figure 1: The 2-edge-colouring f2 of K5

For three colours, the Ramsey number R3(3) = 17 was first determined, in 1955, by

Greenwood and Gleason [8]. Later, in 1968, Kalbfleisch and Stanton [12] considered

the structures of all possible 3-edge-colourings of K16 not containing a monochromatic
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triangle. Their result is stated in terms of the Clebsch graph, which is a well-known

5-regular, Hamiltonian, triangle-free graph on 16 vertices and 40 edges.

Theorem 1.6. [12] There exist exactly two different 3-edge-colourings of K16 with no

monochromatic triangle. In each case, each colour class induces the Clebsch graph.

Let f3 and f ′3 be the two 3-edge-colourings of K16 as in Theorem 1.6. Consequently,

we can improve the upper bound in (1.1) for the cases k = 2, 3, as follows.

Theorem 1.7. Let k = 2, 3. There is an n0 such that, for all n ≥ n0, we have

φk(n,K3) = tRk(3)−1(n). (1.2)

That is, φ2(n,K3) = t5(n) and φ3(n,K3) = t16(n).

Moreover, the only k-edge-coloured graph G with φk(G,K3) = φk(n,K3) is G =

TRk(3)−1(n), and G is a blow-up of the 2-edge-colouring f2 for k = 2, or of the 3-edge-

colouring f3 or f ′3 for k = 3.

For monochromatic K3-decompositions we make the following conjecture.

Conjecture 1.8. Let k ≥ 4. Then φk(n,K3) = tRk(3)−1(n) for n ≥ Rk(3).

For larger cliques and n sufficiently large we are able to find the value of the

function φk(n,Kr) for all k ≥ 2 and r ≥ 4. We recall that the Ramsey number

R2(4) = 18 is also well-known.

Theorem 1.9. Let r ≥ 4, k ≥ 2. There is an n0 = n0(r, k) such that, for all n ≥ n0,

we have

φk(n,Kr) = tRk(r)−1(n). (1.3)

In particular, φ2(n,K4) = t17(n).

Moreover, the only graph attaining φk(n,Kr) is the Turán graph TRk(r)−1(n).

In Section 2 we will prove Theorem 1.5 and Theorem 1.7, and in Section 3 we will

prove Theorem 1.9.
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2 Monochromatic K3-decompositions

In this section we will prove Theorems 1.5 and 1.7. Before presenting the proofs, we

need to introduce the tools and prove some auxiliary results.

Firstly, we recall the following version of the Erdős-Stone-Simonovits Theorem

[7, 6] (see also [2], Ch. VI.4, Theorem 4.2).

Theorem 2.1 (Erdős-Stone-Simonovits Theorem [7, 6]). Let r ≥ 3, and G be a graph

on n vertices, with 1
2
(1 − 1

r−1 + o(1))n2 edges that does not contain a Kr. Then G

contains an (r − 1)-subgraph G′ with the following properties.

(a) Each partition class of G′ has ( 1
r−1 + o(1))n vertices.

(b) e(G′) = 1
2
(1− 1

r−1 + o(1))n2.

(c) The minimum degree of G′ is (1− 1
r−1 + o(1))n.

Using Theorem 2.1, we will prove an edge-coloured version of the Erdős-Stone-

Simonovits Theorem in the case when we forbid monochromatic triangles.

Proposition 2.2. Let k = 2, 3 and let G be a graph on n vertices with 1
2
(1− 1

Rk(3)−1
+

o(1))n2 edges. Suppose that G is k-edge-coloured so that there is no monochromatic

copy of K3. Then G contains an (Rk(3)−1)-partite subgraph G′ such that the following

properties hold.

(i) Each partition class of G′ has ( 1
Rk(3)−1

+ o(1))n vertices.

(ii) e(G′) = 1
2
(1− 1

Rk(3)−1
+ o(1))n2.

(iii) The minimum degree of G′ is (1− 1
Rk(3)−1

+ o(1))n.

(iv) The k-edge-colouring on G′ is a blow-up of the 2-edge-colouring f2 on K5 if

k = 2, or of the 3-edge-colouring f3 or f ′3 on K16 if k = 3.

Proof. Throughout, let k = 2 or k = 3. We note that G does not contain a KRk(3),

otherwise, a k-edge-coloured KRk(3) would contain a monochromatic copy of K3. By

Theorem 2.1, with r = Rk(3), G contains an (Rk(3) − 1)-partite subgraph G′ with
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partition classes V1, . . . , VRk(3)−1, where |Vi| = ( 1
Rk(3)−1

+ o(1))n for every 1 ≤ i ≤
Rk(3) − 1, e(G′) = 1

2
(1 − 1

Rk(3)−1
+ o(1))n2, and the minimum degree of G′ is (1 −

1
Rk(3)−1

+ o(1))n. We claim that G′ is the required subgraph. G′ satisfies properties

(i), (ii) and (iii), and in fact, property (iii) implies the following.

(iii∗) For every 1 ≤ i 6= j ≤ Rk(3) − 1 and v ∈ Vi, there are ( 1
Rk(3)−1

+ o(1))n edges

between v and Vj.

It remains to prove that G′ also satisfies property (iv).

Claim 1. Let 1 ≤ p ≤ Rk(3) − 1 and `1, . . . , `p ∈ {1, . . . , Rk(3) − 1} be all distinct.

For every 1 ≤ q ≤ p, let Uq ⊂ V`q be such that |Uq| ≥ (c + o(1))n, for some constant

c > 0. Then, there exist vertices x1, . . . , xp with xq ∈ Uq for every 1 ≤ q ≤ p, such

that x1, . . . , xp form a copy of Kp in G′.

Proof. We apply property (iii∗) repeatedly. Let x1 ∈ U1. For every 2 ≤ q ≤ p, let

U ′q ⊂ Uq be the neighbours of x1 in Uq, so that |U ′q| ≥ (c + o(1))n. Let x2 ∈ U ′2. For

every 3 ≤ q ≤ p, let U ′′q ⊂ U ′q be the neighbours of x2 in U ′q, so that |U ′′q | ≥ (c+o(1))n.

Let x3 ∈ U ′′3 . Repeating this procedure successively, we obtain the vertices x1, . . . , xp,

with xq ∈ Uq for every 1 ≤ q ≤ p, which are suitable for the claim.

Claim 2. For every 1 ≤ i 6= j ≤ Rk(3) − 1 and u ∈ Vi, all edges between u and Vj

have the same colour in G′.

Proof. For the sake of simplicity, assume that the edges of G are k-coloured with

colours red, blue if k = 2 and red, blue and green if k = 3. Suppose that there exist

v, w ∈ Vj such that uv is red and uw is blue. We show that this implies that there is

a monochromatic copy of K3, which will be a contradiction.

For k = 2, by property (iii∗), we can assume, without loss of generality, that there

exist `1, `2 ∈ {1, . . . , 5} \ {i, j} such that there are at least ( 1
10

+ o(1))n red edges

between u and each of V`1 and V`2 . Let U1 ⊂ V`1 and U2 ⊂ V`2 be the red neighbours

of u in V`1 ∪V`2 , and let U ′1 ⊂ U1 and U ′2 ⊂ U2 be the neighbours of v in U1∪U2. Note

that |U ′1|, |U ′2| ≥ ( 1
10

+ o(1))n. By Claim 1 with p = 2, there are vertices x1 ∈ U ′1 and

x2 ∈ U ′2 so that x1, x2 form a K2 in G′ and therefore u, v, x1, x2 form a K4 in G′. But
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then, either we have a red K3 using u and two of v, x1, x2, or we have a blue K3 on

v, x1, x2.

Similarly for k = 3, either there exist `1, . . . , `5 ∈ {1, . . . , 16} \ {i, j} such that

there are at least ( 1
48

+ o(1))n edges between u and each of V`1 , . . . , V`5 with all edges

red or all edges blue; or there exist `′1, . . . , `
′
6 ∈ {1, . . . , 16} \ {i, j} such that there

are at least ( 1
48

+ o(1))n green edges between u and each of V`′1 , . . . , V`′6 . It suffices to

consider the former, where the edges involved are red. Let U1 ⊂ V`1 , . . . , U5 ⊂ V`5 be

the red neighbours of u in V`1 ∪ · · · ∪V`5 , and U ′1 ⊂ U1, . . . , U
′
5 ⊂ U5 be the neighbours

of v in U1 ∪ · · · ∪ U5. Note that |U ′1|, . . . , |U ′5| ≥ ( 1
48

+ o(1))n. By Claim 1 with p = 5,

there are vertices x1 ∈ U ′1, . . . , x5 ∈ U ′5 such that x1, . . . , x5 form a K5 in G′ and

therefore u, v, x1, . . . , x5 form a K7 in G′. If there is a red edge among v, x1, . . . , x5,

then we have a red K3, using u and the red edge. Otherwise, v, x1, . . . , x5 form a

2-edge-coloured K6, using blue and green, and hence there is a blue K3 or a green

K3.

We are now able to conclude the proof of the proposition. By Claim 2 and property

(iii∗), we see that for every 1 ≤ i 6= j ≤ Rk(3)− 1, every edge between Vi and Vj must

have the same colour in G′. Otherwise, for some i 6= j, we have u, u′ ∈ Vi such that,

there are ( 1
Rk(3)−1

+o(1))n edges in one colour between u and Vj, and ( 1
Rk(3)−1

+o(1))n

edges in another colour between u′ and Vj. But then, there exists v ∈ Vj such that

there are two edges of different colours from v to Vi, contradicting Claim 2.

Finally, if some three of the Vi are such that the edges in G′ that they induce have

the same colour, then by Claim 1, we have a monochromatic K3. It follows that the

colouring on G′ must be a blow-up of f2 if k = 2, or of f3 or f ′3 if k = 3. Therefore,

property (iv) holds, and we are done.

The ideas used in the proof of Proposition 2.2 also enable us to deduce the following

corollary.

Corollary 2.3. For k = 2, 3, every k-edge-colouring of the Turán graph TRk(3)−1(n)

without a monochromatic copy of K3 is a blow-up of the 2-edge-colouring f2 of K5 if

k = 2, or of the 3-edge-colouring f3 or f ′3 of K16 if k = 3.

We now consider a long-standing conjecture of Tuza, which concerns the relation-
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ship between the minimum number of edges needed to cover all triangles in a graph

G and the maximum number of edge-disjoint triangles in G. For r ≥ 3, a Kr-cover in

a graph is a set of edges meeting all copies of Kr, that is, the removal of a Kr-cover

results in a Kr-free graph. A Kr-packing in a graph is a set of pairwise edge-disjoint

copies of Kr. The Kr-covering number of a graph G, denoted by τr(G), is the mini-

mum size of a Kr-cover of G and the Kr-packing number of G, denoted by νr(G), is

the maximum size of a Kr-packing of G.

One can easily observe that

ν3(G) ≤ τ3(G) ≤ 3ν3(G). (2.1)

In 1981, Tuza [20] conjectured that the second inequality of (2.1) is not optimal.

Conjecture 2.4. [20] For every graph G, we have τ3(G) ≤ 2ν3(G).

Conjecture 2.4 remains open, and many partial results have been proved. By

using results of Krivelevich [13], and Haxell and Rödl [11], Yuster [21] proved the

following theorem with states that, asymptotically, Tuza’s conjecture holds, and he

also extended the result to larger cliques.

Theorem 2.5. [13, 11, 21] Let G be a graph on n vertices. Then,

(i) τ3(G) ≤ 2ν3(G) + o(n2);

(ii) τr(G) ≤
⌊
r2

4

⌋
νr(G) + o(n2), for r ≥ 4.

Next, we recall the following result of Győri [9, 10] about the existence of edge-

disjoint copies of Kr in graphs on n vertices with more than tr−1(n) edges.

Theorem 2.6. [9, 10] Let r ≥ 3, and G be a graph on n vertices, with e(G) =

tr−1(n) + m, where m = o(n2). Then G contains m − O(m
2

n2 ) = (1 − o(1))m edge-

disjoint copies of Kr.

Finally, we recall that the chromatic index of a graph G, denoted by χ′(G), is the

minimum number of colours needed to colour the edges of G such that no two adjacent

edges have the same colour. The chromatic index of complete graphs is well-known

and we have the following result.
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Theorem 2.7 ([3], Ch. V.2). Let s ≥ 2. We have

χ′(Ks) =

{
s if s is odd,

s− 1 if s is even.

Hence, for any graph G on n vertices, the edge set of G can be partitioned into at

most n matchings.

We are now able to prove Theorems 1.5 and 1.7.

Proof of Theorem 1.5. The lower bound of (1.1) was proved in Lemma 1.4. We have

to prove the upper bound. Let k ≥ 2 be fixed, let ε > 0 be arbitrary and let n0 be

sufficiently large. Let G be a graph on n ≥ n0 vertices with its edges k-coloured with

colours 1, . . . , k. We will show that G admits a monochromatic K3-decomposition

with at most tRk(3)−1(n) + εn2 parts.

Let e(G) = tRk(3)−1(n) + εn2 +m, where m is an integer. If m ≤ 0 then G can be

decomposed into single edges and we are done.

Suppose that m > 0. Observe that it suffices to show that we can find at least
m
2

edge-disjoint monochromatic copies of K3, since then G admits a monochromatic

K3-decomposition with at most e(G) − 2 · m
2

= tRk(3)−1(n) + εn2 parts, as required.

Therefore, and in order to get a contradiction, assume that the maximum number

of edge-disjoint monochromatic copies of K3 in our graph G is at most m
2

. For 1 ≤
i ≤ k, let Gi be the subgraph of G on n vertices, containing all the edges in colour i.

Our assumption implies that
∑k

i=1 ν3(Gi) ≤ m
2

. By Theorem 2.5, we have τ3(Gi) ≤
2ν3(Gi) + ε

2k
n2 for every 1 ≤ i ≤ k. Therefore, we have

k∑
i=1

τ3(Gi) ≤
k∑

i=1

(
2ν3(Gi) +

ε

2k
n2
)
≤ m+

ε

2
n2.

That is, by deleting at most m+ ε
2
n2 edges from G, we obtain a subgraph F ⊂ G

which does not contain a monochromatic copy of K3. On the other hand, we have

e(F ) ≥ tRk(3)−1(n)+ ε
2
n2 > tRk(3)−1(n). Turán’s Theorem implies that F must contain

KRk(3) as a subgraph and hence F contains a monochromatic copy of K3. We have a

contradiction, and the upper bound of Theorem 1.5 follows.

11



Proof of Theorem 1.7. The lower bound of (1.2) was proved in Lemma 1.4. It remains

to prove the upper bound. Throughout, let k ∈ {2, 3}. Let n0 be sufficiently large

to satisfy all the inequalities we will encounter. Let n ≥ n0 and let G be a k-edge-

coloured graph on n vertices. For the sake of simplicity we assume that the colours

used are always red and blue if k = 2 and red, blue and green if k = 3. We want

to show that G admits a monochromatic K3-decomposition with at most tRk(3)−1(n)

parts, with equality if and only if G = TRk(3)−1(n), and G is a blow-up of the 2-

edge-colouring f2 (for k = 2), or of the 3-edge-colouring f3 or f ′3 (for k = 3). Let

e(G) = tRk(3)−1(n) +m, where m is an integer.

If m < 0, we can decompose G into single edges and there is nothing to prove.

If m = 0 and G contains a monochromatic copy of K3, then G admits a monochro-

matic K3-decomposition with at most tRk(3)−1(n) − 2 parts and we are done. Oth-

erwise, if G does not contain a monochromatic K3, then G does not contain a copy

of KRk(3). Thus, Turán’s Theorem implies that G = TRk(3)−1(n). By Corollary 2.3,

G is a blow-up of f2 (for k = 2), or of f3 or f ′3 (for k = 3). In each case, the only

monochromatic K3-decomposition of G has exactly tRk(3)−1(n) parts, each part being

a single edge.

Now, let m > 0. As before, it suffices to prove that G contains more than m
2

edge-disjoint monochromatic copies of K3.

If m = o(n2), then by Theorem 2.6 with r = Rk(3), G contains (1 − o(1))m > m
2

edge-disjoint copies of KRk(3). Since each KRk(3) contains a monochromatic copy of

K3, this implies that G contains more than m
2

edge-disjoint monochromatic copies of

K3.

Finally, assume that m ≥ Cn2, for some constant C > 0. In order to get a

contradiction, suppose that the maximum number of edge-disjoint monochromatic

copies of K3 in G is at most m
2

. Let G1 and G2 be the subgraphs of G on n vertices,

containing all the red and blue edges, and in addition for k = 3, letG3 be the analogous

green subgraph. By Theorem 2.5, our assumption implies that

k∑
p=1

τ3(Gp) ≤
k∑

p=1

2ν3(Gp) + o(n2) ≤ m+ o(n2).

That is, by deleting at most m + o(n2) edges from G, we obtain a subgraph
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F ⊂ G which does not contain a monochromatic copy of K3. Note that we must

delete precisely m + o(n2) edges, otherwise we would have e(F ) > tRk(3)−1(n), so

Turán’s Theorem implies that F contains KRk(3) as a subgraph, which contains a

monochromatic copy of K3, a contradiction.

Hence, we have e(F ) = tRk(3)−1(n) + o(n2) = 1
2
(1 − 1

Rk(3)−1
+ o(1))n2. By Propo-

sition 2.2, F contains an (Rk(3) − 1)-partite subgraph F ′ with partitition classes

V1, . . . , VRk(3)−1 such that

(a) |Vi| = ( 1
Rk(3)−1

+ o(1))n for every 1 ≤ i ≤ Rk(3)− 1;

(b) e(F ′) = 1
2
(1− 1

Rk(3)−1
+ o(1))n2;

(c) The k-edge-colouring on F ′ is a blow-up of the 2-edge-colouring f2 on K5 if

k = 2, and of the 3-edge-colouring f3 or f ′3 on K16 if k = 3.

Note that properties (a) and (b) imply:

(d) For every 1 ≤ i 6= j ≤ Rk(3)− 1, there are |Vi||Vj| − o(n2) edges between Vi and

Vj in F ′.

Now, restore the deleted edges which lie inside V1, . . . , VRk(3)−1 to obtain the sub-

graph G′ ⊂ G, and note that there are m − o(n2) such edges. Let W1, . . . ,WRk(3)−1

be a relabelling of V1, . . . , VRk(3)−1 such that for every 1 ≤ i ≤ Rk(3) − 1, all edges

between Wi and Wi+1 in F ′ are red (indices taken cyclically here and throughout).

This can clearly be done, since by property (c) and Theorem 1.6 (for k = 3), F ′ is a

blow-up of f2 (for k = 2), and of f3 or f ′3 (for k = 3), so that in each case, each colour

contains a Hamilton cycle in KRk(3)−1. Let 1 ≤ i ≤ Rk(3) − 1. By Theorem 2.7, we

can partition the restored red edges in Wi into at most |Wi| matchings. By property

(a), we can disregard o(n) matchings to get t remaining matchings M1, . . . ,Mt in

Wi, where t ≤ |Wi+1|. For each matching Mj, we associate Mj with a unique vertex

xj ∈ Wi+1, so that xj 6= xj′ for different matchings Mj,Mj′ . Let Ei,1 = M1 ∪ · · · ∪Mt.

By property (d), Ei,1 and {x1, . . . , xt} induce |Ei,1| − o(n2) red copies of K3, where

each red K3 has one edge in some Mj, and the third vertex is xj. Applying this

procedure for every 1 ≤ i ≤ Rk(3) − 1, we have
∑Rk(3)−1

i=1 |Ei,1| − o(n2) red copies

of K3. These red copies of K3 are edge-disjoint, since if T and T ′ are distinct such
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copies, then T has two vertices in W` and one vertex in W`+1, and T ′ has two vertices

in W`′ and one vertex in W`′+1, for some 1 ≤ `, `′ ≤ Rk(3)− 1. Clearly, T and T ′ are

edge-disjoint if ` 6= `′, or if ` = `′ with T and T ′ not sharing a vertex in W`. If ` = `′

with T and T ′ sharing a vertex in W`, then their vertices in W`+1 are distinct, so that

T and T ′ are again edge-disjoint.

We repeat this whole procedure for the blue edges, and also for the green edges

when k = 3, where on each occasion, we use a similar but different relabelling of

V1, . . . , VRk(3)−1. For the blue edges, let Ei,2 be the similarly obtained sets of blue

edges, and in addition, for k = 3 and the green edges, let Ei,3 be the similarly

obtained sets of green edges. It follows that we have

k∑
p=1

Rk(3)−1∑
i=1

|Ei,p| − o(n2) = (m− o(n2)− o(n2))− o(n2) >
m

2

edge-disjoint monochromatic copies of K3 in G′ ⊂ G. This is a contradiction and the

proof is completed.

3 Monochromatic Kr-decompositions

In this section we will study monochromatic Kr-decompositions for larger cliques and

we will prove Theorem 1.9. Throughout this section we fix k ≥ 2 and r ≥ 4.

Proof of Theorem 1.9. The lower bound of (1.3) was proved in Lemma 1.4. Let us

now prove the upper bound. Let n0 = n0(r, k) be sufficiently large to satisfy all

the inequalities we will encounter. Let n ≥ n0 and let G be any k-edge-coloured

graph on n vertices. For the sake of simplicity, let R = Rk(r). We will show that

φk(G,Kr) ≤ tR−1(n) with equality if and only if G = TR−1(n).

Let e(G) = tR−1(n)+m, where m is an integer. If m < 0, we can decompose G into

single edges and there is nothing to prove. If m = 0 and G contains a monochromatic

copy of Kr then G admits a monochromatic Kr-decomposition with at most tR−1(n)−(
r
2

)
+ 1 parts and we are done. If G does not contain a monochromatic Kr, then the

definition of the Ramsey number implies that G does not contain a copy of KR.

Therefore, G = TR−1(n) by Turán’s Theorem. Now, let m > 0 and let ` be the
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maximum number of edge-disjoint monochromatic copies of Kr in G. If ` > m

(r
2)−1

,

then

φk(G,Kr) ≤ `+ e(G)−
(
r

2

)
` < tR−1(n).

Therefore, it suffices to show that ` > m

(r
2)−1

.

Consider first the case m = o(n2). By Theorem 2.6 with r = R, the graph G con-

tains (1−o(1))m edge-disjoint copies of KR. Since each KR contains a monochromatic

copy of Kr, this implies that ` > m

(r
2)−1

and we are done.

Finally, assume that m ≥ Cn2, for some constant C > 0. In order to get a

contradiction, suppose that ` ≤ m

(r
2)−1

. For 1 ≤ i ≤ k, let Gi be the subgraph of G

on n vertices that contains all edges coloured with colour i. By Theorem 2.5, our

assumption implies that

k∑
i=1

τr(Gi) ≤
k∑

i=1

⌊r2
4

⌋
νr(Gi) + o(n2)

≤
⌊r2

4

⌋
`+ o(n2)

≤
⌊r2

4

⌋ m(
r
2

)
− 1

+ o(n2)

≤ 4

5
m+ o(n2), since r ≥ 4.

That is, by deleting at most 4
5
m + o(n2) edges from G, we obtain a subgraph G′

that does not contain a monochromatic copy of Kr. But

e(G′) ≥ e(G)− 4

5
m− o(n2) ≥ tR−1(n) +

1

5
m− o(n2) > tR−1(n).

Therefore, Turán’s Theorem implies that G′ must contain a copy of KR which con-

tains a monochromatic copy of Kr. This is a contradiction and our proof is complete.
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[10] E. Győri. On the number of edge disjoint cliques in graphs of given size. Com-

binatorica, 11(3):231–243, 1991.

16
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