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Abstract

Given graphs G and H, and a colouring of the edges of G with k colours, a
monochromatic H-decomposition of G is a partition of the edge set of G such that
each part is either a single edge or forms a monochromatic graph isomorphic to H.
Let φk(n,H) be the smallest number φ such that any k-edge-coloured graph G of
order n, admits a monochromatic H-decomposition with at most φ parts. Here we
study the function φk(n,Kr) for k ≥ 2 and r ≥ 3.

1 Introduction

Given two graphs G and H, an H-decomposition of G is a partition of its edge set, such
that, each part is either a single edge or forms an H-subgraph, i.e., a graph isomorphic to
H. Let φ(G,H) be the smallest possible number of parts in an H-decomposition of G. It
is easy to see that, for non-empty H, φ(G,H) = e(G)− pH(G)(e(H)− 1), where pH(G) is
the maximum number of pairwise edge-disjoint copies of H in G. Consider the function

φ(n,H) = max{φ(G,H) | v(G) = n}.
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which is the smallest number such that any graphG of order n admits anH-decompositions
with at most φ(n,H) parts. This function was first studied, in 1966, by Erdős, Goodman
and Pósa [2], who were motivated by the problem of representing graphs by set intersec-
tions. They proved that φ(n,K3) = t2(n), where tr−1(n) denotes the number of edges in
the Turán graph of order n, Tr−1(n), which is the unique complete (r − 1)-partite graph
on n vertices that has the maximum number of edges and contains no complete subgraph
of order r. Later, Bollobás [1], proved that φ(n,Kr) = tr−1(n), for all n ≥ r ≥ 3.

General graphs H were only considered recently by Pikhurko and Sousa [8] who proved
the following result.

Theorem 1.1. [8] Let H be any fixed graph of chromatic number r ≥ 3. Then,

φ(n,H) = tr−1(n) + o(n2).

However, the exact value of the function φ(n,H) is far from being known. Sousa
determined it for a few special edge-critical graphs, namely for clique-extensions of order
r ≥ 4 (n ≥ r) [10] and the cycles of length 5 (n ≥ 6) and 7 (n ≥ 10) [9, ?]. Later, Özkahya
and Person [7] determined it for all edge-critical graphs with chromatic number r ≥ 3
and n sufficiently large. Let ex(n,H) denote the maximum number of edges in a graph
of order n, that does not contain H as a subgraph. They proved the following result.

Theorem 1.2. [7] Let H be any edge-critical graph with chromatic number r ≥ 3. Then,
there exists n0 such that φ(n,H) = ex(n,H), for all n ≥ n0. Moreover, the only graph
attaining φ(n,H) is the Turán graph Tr−1(n).

We consider a coloured version of the H-decomposition problem. We define the prob-
lem more precisely.

A k-edge-colouring of a graph G is a function c : E(G) → {1, . . . , k}. Given a fixed
graph H, a graph G of order n and a k-edge-colouring of the edges of G, a monochromatic
H-decomposition of G is a partition of the edge set of G such that each part is either a
single edge or a monochromatic copy of H. Let φk(G,H) be the smallest number such
that, for any k-edge-colouring of G, there exists a monochromatic H-decomposition of G
with at most φk(G,H) elements. The goal is to study the function

φk(n,H) = max{φk(G,H) | v(G) = n},

which is the smallest number such that, any k-edge-coloured graph of order n admits a
monochromatic H-decomposition with at most φk(n,H) elements.

In this note we study the function φk(n,Kr) for all k ≥ 2 and r ≥ 3.

2 Monochromatic Kr-decompositions of graphs

In this work we will determine the asymptotic value of the function φk(n,K3) for all k ≥ 2
(see Theorem 2.1) and the exact value of the function φk(n,Kr) for all k ≥ 2 and r ≥ 4
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(see Theorem 2.2). Our results involve the Ramsey numbers and the Turán numbers.
Recall that for r ≥ 3 and k ≥ 2, the Ramsey number for Kr, denoted by Rk(r), is the
smallest value of s for which every k-edge-colouring of Ks contains a monochromatic Kr.
The Ramsey numbers are notoriously difficult to calculate, even though, it is known that
their values are finite for all r ≥ 3 and k ≥ 2. In fact, for the Ramsey numbers Rk(r),
only three of them are currently known. In 1955, Greenwood and Gleason [3] were the
first to determine R2(3) = 6, R3(3) = 17 and R2(4) = 18.

Theorem 2.1. For all k ≥ 2, we have

φk(n,K3) = tRk(3)−1(n) + o(n2).

For larger cliques we are able to find the exact value of the function φk(n,Kr) for all
k ≥ 2 and r ≥ 4.

Theorem 2.2. Let r ≥ 4, k ≥ 2. There is an n0 = n0(r, k) such that, for all n ≥ n0, we
have

φk(n,Kr) = tRk(r)−1(n).

Moreover, the only graph attaining φk(n,Kr) is the Turán graph TRk(r)−1(n).

Before presenting the proofs, we need to introduce the tools and some auxiliary results.

A Kr-cover in a graph is a set of edges meeting all Kr’s, that is, the removal of a Kr-
cover results in a Kr-free graph. A Kr-packing in a graph is a set of pairwise edge-disjoint
Kr’s. The Kr-covering number of a graph G, denoted by τr(G), is the minimum size of a
Kr-cover of G and the Kr-packing number of G, denoted by νr(G), is the maximum size
of a Kr-packing of G.

A long-standing conjecture of Tuza, states the following.

Conjecture 2.3. [11] For every graph G, we have τ3(G) ≤ 2ν3(G).

Conjecture 2.3 remains open, and many partial results have been proved. By com-
bining results of Krivelevich [6], and Haxell and Rödl [5], Yuster [12] observed that,
asymptotically, Tuza’s conjecture holds. We have the following result which is crucial to
the proofs of Theorems 2.1 and 2.2.

Theorem 2.4. [12] Let G be a graph on n vertices. Then,

(i) τ3(G) ≤ 2ν3(G) + o(n2);

(ii) τr(G) ≤
⌊
r2

4

⌋
νr(G) + o(n2), for r ≥ 4.

Next, we recall the following result of Győri [4] about the existence of edge-disjoint
copies of Kr in graphs on n vertices with more than tr−1(n) edges.
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Theorem 2.5. [4] Let r ≥ 3, and G be a graph on n vertices with e(G) = tr−1(n) + m,
where m = o(n2). Then G contains m−O(m

2

n2 ) = (1− o(1))m edge-disjoint copies of Kr.

We are now able to prove Theorem 2.1 and Theorem 2.2. We will start by proving
the lower bound for both theorems.

Proof of the lower bound in Theorems 2.1 and 2.2: By the definition of Rk(r), there ex-
ists a k-edge-colouring f ′ of the complete graph KRk(r)−1 with no monochromatic Kr.
Now, consider the Turán graph TRk(r)−1(n) with a k-edge-colouring f which is a blow-up
of f ′. Then the graph TRk(r)−1(n) with the k-edge-colouring f has no monochromatic Kr

and thus φk(n,Kr) ≥ φk(TRk(r)−1(n), Kr) = tRk(r)−1(n).

Proof of the upper bound in Theorem 2.1: Let k ≥ 2 be fixed, let ε > 0 be arbitrary and
let n0 be sufficiently large. Let G be a k-edge-coloured graph on n ≥ n0 vertices. For
the sake of simplicity, let R = Rk(3). We will show that G admits a monochromatic
K3-decomposition with at most tR−1(n) + εn2 parts.

Let e(G) = tR−1(n) + εn2 + m, where m is an integer. If m ≤ 0 then G can be
decomposed into single edges and we are done.

Suppose that m > 0. Observe that it suffices to show that we can find at least m
2

edge-disjoint monochromatic copies of K3, since then G admits a monochromatic K3-
decomposition with at most e(G) − 2 · m

2
= tR−1(n) + εn2 parts, as required. Therefore,

and in order to get a contradiction, assume that the maximum number of edge-disjoint
monochromatic copies of K3 in our graph G is at most m

2
. For 1 ≤ i ≤ k, let Gi be

the subgraph of G on n vertices, containing all the edges in colour i. Our assumption
implies that

∑k
i=1 ν3(Gi) ≤ m

2
. By Theorem 2.4, we have τ3(Gi) ≤ 2ν3(Gi) + ε

2k
n2 for

every 1 ≤ i ≤ k. Therefore, we have

k∑
i=1

τ3(Gi) ≤
k∑

i=1

(
2ν3(Gi) +

ε

2k
n2
)
≤ m+

ε

2
n2.

That is, by deleting at most m + ε
2
n2 edges from G, we obtain a subgraph G′ which

does not contain a monochromatic copy of K3. On the other hand, we have e(G′) ≥
tR−1(n)+ ε

2
n2 > tR−1(n). Turán’s Theorem implies that G′ must contain KR as a subgraph

and hence G′ contains a monochromatic copy of K3. We have a contradiction, and the
upper bound of Theorem 2.1 follows.

Proof of the upper bound in Theorem 2.2: Let n0 = n0(r, k) be sufficiently large, let n ≥
n0 and let G be any k-edge-coloured graph on n vertices. For the sake of simplicity,
let R = Rk(r). We will show that φk(G,Kr) ≤ tR−1(n) with equality if and only if
G = TR−1(n).

Let e(G) = tR−1(n) + m, where m is an integer. If m < 0, we can decompose G into
single edges and there is nothing to prove. If m = 0 and G contains a monochromatic copy
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of Kr then G admits a monochromatic Kr-decomposition with at most tR−1(n)−
(
r
2

)
+ 1

parts and we are done. If G does not contain a monochromatic Kr, then the definition
of the Ramsey number implies that G does not contain a copy of KR. Therefore, G =
TR−1(n) by Turán’s Theorem. Now, let m > 0 and let ` be the maximum number of
edge-disjoint monochromatic Kr’s in G. If ` > m

(r
2)−1

, then

φk(G,Kr) ≤ `+ e(G)−
(
r

2

)
` < tR−1(n).

Therefore, it suffices to show that ` > m

(r
2)−1

.

Consider first the case m = o(n2). By Theorem 2.5 the graph G contains (1− o(1))m
edge-disjoint copies of KR. Since each KR contains a monochromatic copy of Kr, this
implies that ` > m

(r
2)−1

and we are done.

Finally, assume that m ≥ Cn2, for some constant C > 0. In order to get a contradic-
tion, suppose that ` ≤ m

(r
2)−1

. For 1 ≤ i ≤ k, let Gi be the subgraph of G on n vertices

that contains all edges coloured with colour i. By Theorem 2.4, our assumption implies
that

k∑
i=1

τr(Gi) ≤
k∑

i=1

⌊r2
4

⌋
νr(Gi) + o(n2) ≤

⌊r2
4

⌋
`+ o(n2)

≤
⌊r2

4

⌋ m(
r
2

)
− 1

+ o(n2)

≤ 4

5
m+ o(n2), since r ≥ 4.

That is, by deleting at most 4
5
m+ o(n2) edges from G, we obtain a subgraph G′ that

does not contain a monochromatic copy of Kr. But

e(G′) ≥ e(G)− 4

5
m− o(n2) ≥ tR−1(n) +

1

5
m− o(n2) > tR−1(n).

Therefore, Turán’s Theorem implies that G′ must contain a copy of KR which contains
a monochromatic copy of Kr. This is a contradiction and our proof is complete.
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