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Abstract

Let G be a graph whose edges are coloured with k colours, and H =

(H1, . . . ,Hk) be a k-tuple of graphs. A monochromatic H-decomposition of

G is a partition of the edge set of G such that each part is either a single edge

or forms a monochromatic copy of Hi in colour i, for some 1 ≤ i ≤ k. Let

φk(n,H) be the smallest number φ, such that, for every order-n graph and ev-

ery k-edge-colouring, there is a monochromatic H-decomposition with at most

φ elements. Extending the previous results of Liu and Sousa [“Monochromatic

Kr-decompositions of graphs”, Journal of Graph Theory, 76:89–100, 2014], we

solve this problem when each graph in H is a clique and n ≥ n0(H) is suffi-

ciently large.
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1 Introduction

All graphs in this paper are finite, undirected and simple. For standard graph-
theoretic terminology the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set
of G such that each part is either a single edge or forms a subgraph isomorphic to H.
Let φ(G,H) be the smallest possible number of parts in an H-decomposition of G. It
is easy to see that, if H is non-empty, we have φ(G,H) = e(G) − νH(G)(e(H) − 1),
where νH(G) is the maximum number of pairwise edge-disjoint copies of H that can
be packed into G. Dor and Tarsi [4] showed that if H has a component with at least 3
edges then it is NP-complete to determine if a graph G admits a partition into copies
of H. Thus, it is NP-hard to compute the function φ(G,H) for such H. Nonetheless,
many exact results were proved about the extremal function

φ(n,H) = max{φ(G,H) | v(G) = n},

which is the smallest number such that any graph G of order n admits an H-
decomposition with at most φ(n,H) elements.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [6], who
proved that φ(n,K3) = t2(n), where Ks denotes the complete graph (clique) of order
s, and tr−1(n) denotes the number of edges in the Turán graph Tr−1(n), which is the
unique (r− 1)-partite graph on n vertices that has the maximum number of edges. A
decade later, Bollobás [2] proved that φ(n,Kr) = tr−1(n), for all n ≥ r ≥ 3.

Recently Pikhurko and Sousa [13] studied φ(n,H) for arbitrary graphs H. Their
result is the following.

Theorem 1.1. [13] Let H be any fixed graph of chromatic number r ≥ 3. Then,

φ(n,H) = tr−1(n) + o(n2).

Let ex(n,H) denote the maximum number of edges in a graph on n vertices not
containing H as a subgraph. The result of Turán [20] states that Tr−1(n) is the
unique extremal graph for ex(n,Kr). The function ex(n,H) is usually called the
Turán function for H. Pikhurko and Sousa [13] also made the following conjecture.

Conjecture 1.2. [13] For any graph H of chromatic number r ≥ 3, there exists

n0 = n0(H) such that φ(n,H) = ex(n,H) for all n ≥ n0.
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A graph H is edge-critical if there exists an edge e ∈ E(H) such that χ(H) >
χ(H − e), where χ(H) denotes the chromatic number of H. For r ≥ 4, a clique-
extension of order r is a connected graph that consists of a Kr−1 plus another vertex,
say v, adjacent to at most r− 2 vertices of Kr−1. Conjecture 1.2 has been verified by
Sousa for some edge-critical graphs, namely, clique-extensions of order r ≥ 4 (n ≥ r)
[18] and the cycles of length 5 (n ≥ 6) and 7 (n ≥ 10) [17, 19]. Later, Özkahya and
Person [12] verified the conjecture for all edge-critical graphs with chromatic number
r ≥ 3. Their result is the following.

Theorem 1.3. [12] For any edge-critical graph H with chromatic number r ≥ 3, there

exists n0 = n0(H) such that φ(n,H) = ex(n,H), for all n ≥ n0. Moreover, the only

graph attaining ex(n,H) is the Turán graph Tr−1(n).

Recently, as an extension of Özkahya and Person’s work (and as further evidence
supporting Conjecture 1.2), Allen, Böttcher, and Person [1] improved the error term
obtained by Pikhurko and Sousa in Theorem 1.1. In fact, they proved that the error
term o(n2) can be replaced by O(n2−α) for some α > 0. Furthermore, they also
showed that this error term has the correct order of magnitude. Their result is indeed
an extension of Theorem 1.3 since the error term O(n2−α) that they obtained vanishes
for every edge-critical graph H.

Motivated by the recent work about H-decompositions of graphs, a natural prob-
lem to consider is the Ramsey (or coloured) version of this problem. More precisely,
let G be a graph on n vertices whose edges are coloured with k colours, for some k ≥ 2
and let H = (H1, . . . , Hk) be a k-tuple of fixed graphs, where repetition is allowed.
A monochromatic H-decomposition of G is a partition of its edge set such that each
part is either a single edge, or forms a monochromatic copy of Hi in colour i, for some
1 ≤ i ≤ k. Let φk(G,H) be the smallest number, such that, for any k-edge-colouring
of G, there exists a monochromatic H-decomposition of G with at most φk(G,H)
elements. Our goal is to study the function

φk(n,H) = max{φk(G,H) | v(G) = n},

which is the smallest number φ such that, any k-edge-coloured graph of order n admits
a monochromaticH-decomposition with at most φ elements. In the case when Hi

∼= H
for every 1 ≤ i ≤ k, we simply write φk(G,H) = φk(G,H) and φk(n,H) = φk(n,H).

The function φk(n,Kr), for k ≥ 2 and r ≥ 3, has been studied by Liu and
Sousa [11], who obtained results involving the Ramsey numbers and the Turán num-
bers. Recall that for k ≥ 2 and integers r1, . . . , rk ≥ 3, the Ramsey number for
Kr1 , . . . , Krk , denoted by R(r1, . . . , rk), is the smallest value of s, such that, for ev-
ery k-edge-colouring of Ks, there exists a monochromatic Kri in colour i, for some
1 ≤ i ≤ k. For the case when r1 = · · · = rk = r, for some r ≥ 3, we simply write
Rk(r) = R(r1, . . . , rk). Since R(r1, . . . , rk) does not change under any permutation of
r1, . . . , rk, without loss of generality, we assume throughout that 3 ≤ r1 ≤ · · · ≤ rk.
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The Ramsey numbers are notoriously difficult to calculate, even though, it is known
that their values are finite [15]. To this date, the values of R(3, r2) have been deter-
mined exactly only for 3 ≤ r2 ≤ 9, and these are shown in the following table [14].

r2 3 4 5 6 7 8 9
R(3, r2) 6 9 14 18 23 28 36

The remaining Ramsey numbers that are known exactly areR(4, 4) = 18, R(4, 5) =
25, and R(3, 3, 3) = 17. The gap between the lower bound and the upper bound for
other Ramsey numbers is generally quite large.

For the case R(3, 3) = 6, it is easy to see that the only 2-edge-colouring of K5 not
containing a monochromatic K3 is the one where each colour induces a cycle of length
5. From this 2-edge-colouring, observe that we may take a ‘blow-up’ to obtain a 2-
edge-colouring of the Turán graph T5(n), and easily deduce that φ2(n,K3) ≥ t5(n).
See Figure 1.
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Figure 1. The 2-edge-colouring of K5, and its blow-up

This example was the motivation for Liu and Sousa [11] to studyKr-monochromatic
decompositions of graphs, for r ≥ 3 and k ≥ 2. They have recently proved the follow-
ing result.

Theorem 1.4. [11]

(a) φk(n,K3) = tRk(3)−1(n) + o(n2);

(b) φk(n,K3) = tRk(3)−1(n) for k = 2, 3 and n sufficiently large;

(c) φk(n,Kr) = tRk(r)−1(n), for k ≥ 2, r ≥ 4 and n sufficiently large.

Moreover, the only graph attaining φk(n,Kr) in cases (b) and (c) is the Turán

graph TRk(r)−1(n).
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They also made the following conjecture.

Conjecture 1.5. [11] Let k ≥ 4. Then φk(n,K3) = tRk(3)−1(n) for n ≥ Rk(3).

Here, we will study an extension of the monochromatic Kr-decomposition problem
when the clique Kr is replaced by a fixed k-tuple of cliques C = (Kr1 , . . . , Krk). Our
main result, stated in Theorem 1.6, is clearly an extension of Theorem 1.4. Also, it
verifies Conjecture 1.5 for sufficiently large n.

Theorem 1.6. Let k ≥ 2, 3 ≤ r1 ≤ · · · ≤ rk, and R = R(r1, . . . , rk). Let C =

(Kr1 , . . . , Krk). Then, there is an n0 = n0(r1, . . . , rk) such that, for all n ≥ n0, we

have

φk(n, C) = tR−1(n).

Moreover, the only order-n graph attaining φk(n, C) is the Turán graph TR−1(n)

(with a k-edge-colouring that does not contain a colour-i copy of Kri for any 1 ≤ i ≤
k).

The upper bound of Theorem 1.6 is proved in Section 2. The lower bound follows
easily by the definition of the Ramsey number. Indeed, take a k-edge-colouring f ′ of
the complete graph KR−1 without a monochromatic Kri in colour i, for all 1 ≤ i ≤ k.
Note that f ′ exists by definition of the Ramsey number R = R(r1, . . . , rk). Let
u1, . . . , uR−1 be the vertices of the KR−1. Now, consider the Turán graph TR−1(n) with
a k-edge-colouring f which is a ‘blow-up’ of f ′. That is, if TR−1(n) has partition classes
V1, . . . , VR−1, then for v ∈ Vj and w ∈ V` with j 6= `, we define f(vw) = f ′(uju`).
Then, TR−1(n) with this k-edge-colouring has no monochromatic Kri in colour i, for
every 1 ≤ i ≤ k. Therefore, φk(n, C) ≥ φk(TR−1(n), C) = tR−1(n) and the lower bound
in Theorem 1.6 follows.

In particular, when all the cliques in C are equal, Theorem 1.6 completes the results
obtained previously by Liu and Sousa in Theorem 1.4. In fact, we get the following
direct corollary from Theorem 1.6.

Corollary 1.7. Let k ≥ 2, r ≥ 3 and n be sufficiently large. Then,

φk(n,Kr) = tRk(r)−1(n).

Moreover, the only order-n graph attaining φk(n,Kr) is the Turán graph TRk(r)−1(n)

(with a k-edge-colouring that does not contain a monochromatic copy of Kr).

2 Proof of Theorem 1.6

In this section we will prove the upper bound in Theorem 1.6. Before presenting
the proof we need to introduce the tools. Throughout this section, let k ≥ 2, 3 ≤

5



r1 ≤ · · · ≤ rk be an increasing sequence of integers, R = R(r1, . . . , rk) be the Ramsey
number for Kr1 , . . . , Krk , and C = (Kr1 , . . . , Krk) be a fixed k-tuple of cliques.

We first recall the following stability theorem of Erdős and Simonovits [5, 16].

Theorem 2.1 (Stability Theorem [5, 16]). Let r ≥ 3, and G be a graph on n vertices

with e(G) ≥ tr−1(n) + o(n2) and not containing Kr as a subgraph. Then, there exists

an (r − 1)-partite graph G′ on n vertices with partition classes V1, . . . , Vr−1, where

|Vi| = n
r−1

+ o(n) for 1 ≤ i ≤ r − 1, that can be obtained from G by adding and

subtracting o(n2) edges.

Next, we recall the following result of Győri [7, 8] about the existence of edge-
disjoint copies of Kr in graphs on n vertices with more than tr−1(n) edges.

Theorem 2.2. [7, 8] For every r ≥ 3 there is C such that every graph G with n ≥ C

vertices and e(G) = tr−1(n) + m edges, where m ≤
(
n
2

)
/C, contains at least m −

Cm2/n2 edge-disjoint copies of Kr.

Now, we will consider coverings and packings of cliques in graphs. Let r ≥ 3 and
G be a graph. Let K be the set of all Kr-subgraphs of G. A Kr-cover is a set of
edges of G meeting all elements in K, that is, the removal of a Kr-cover results in
a Kr-free graph. A Kr-packing in G is a set of pairwise edge-disjoint copies of Kr.
The Kr-covering number of G, denoted by τr(G), is the minimum size of a Kr-cover
of G, and the Kr-packing number of G, denoted by νr(G), is the maximum size of
a Kr-packing of G. Next, a fractional Kr-cover of G is a function f : E(G) → R+,
such that

∑
e∈E(H) f(e) ≥ 1 for every H ∈ K, that is, for every copy of Kr in G the

sum of the values of f on its edges is at least 1. A fractional Kr-packing of G is
a function p : K → R+ such that

∑
H∈K:e∈E(H) p(H) ≤ 1 for every e ∈ E(G), that

is, the total weight of Kr’s that cover any edge is at most 1. Here, R+ denotes the
set of non-negative real numbers. The fractional Kr-covering number of G, denoted
by τ ∗r (G), is the minimum of

∑
e∈E(G) f(e) over all fractional Kr-covers f , and the

fractional Kr-packing number of G, denoted by ν∗r (G), is the maximum of
∑

H∈K p(H)
over all fractional Kr-packings p.

One can easily observe that

νr(G) ≤ τr(G) ≤
(
r

2

)
νr(G).

For r = 3, we have τ3(G) ≤ 3ν3(G). A long-standing conjecture of Tuza [21] from
1981 states that this inequality can be improved as follows.

Conjecture 2.3. [21] For every graph G, we have τ3(G) ≤ 2ν3(G).
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Conjecture 2.3 remains open although many partial results have been proved. By
using the earlier results of Krivelevich [10], and Haxell and Rödl [9], Yuster [22] proved
the following theorem which will be crucial to the proof of Theorem 1.6. In the case
r = 3, it is an asymptotic solution of Tuza’s conjecture.

Theorem 2.4. [22] Let r ≥ 3 and G be a graph on n vertices. Then

τr(G) ≤
⌊r2

4

⌋
νr(G) + o(n2). (2.1)

We now prove the following lemma which states that a graph G with n vertices
and at least tR−1(n) + Ω(n2) edges falls quite short of being optimal.

Lemma 2.5. For every k ≥ 2 and c0 > 0 there are c1 > 0 and n0 such that for

every graph G of order n ≥ n0 with at least tR−1(n) + c0n
2 edges, we have φk(G, C) ≤

tR−1(n)− c1n
2.

Proof. Suppose that the lemma is false, that is, there is c0 > 0 such that for some

increasing sequence of n there is a graph G on n vertices with e(G) ≥ tR−1(n) + c0n
2

and φk(G, C) ≥ tR−1(n) + o(n2). Fix a k-edge-colouring of G and, for 1 ≤ i ≤ k, let

Gi be the subgraph of G on n vertices that contains all edges with colour i.

Let m = e(G)− tR−1(n), and let s ∈ {0, . . . , k} be the maximum such that

r1 = · · · = rs = 3.

Let us very briefly recall the argument from [11] that shows φk(G, C) ≤ tR−1(n) +

o(n2), adopted to our purposes. If we remove a Kri-cover from Gi for every 1 ≤ i ≤ k,

then we destroy all copies of KR in G. By Turán’s theorem, at most tR−1(n) edges

remain. Thus,
k∑
i=1

τri(Gi) ≥ m. (2.2)

By Theorem 2.4, if we decompose G into a maximum Kri-packing in each Gi and

the remaining edges, we obtain that

φk(G, C) ≤ e(G)−
k∑
i=1

((
ri
2

)
− 1

)
νri(Gi)

≤ tR−1(n) +m−
k∑
i=1

(
ri
2

)
− 1

br2
i /4c

τri(Gi) + o(n2) (2.3)

≤ tR−1(n) +m−
k∑
i=1

τri(Gi)−
1

4

k∑
i=s+1

τri(Gi) + o(n2) ≤ tR−1(n) + o(n2).
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The third inequality holds since (
(
r
2

)
− 1)/br2/4c ≥ 5/4 for r ≥ 4 and is equal to 1

for r = 3.

Let us derive a contradiction from this by looking at the properties of our hypo-

thetical counterexample G. First, all inequalities that we saw have to be equalities

within an additive term o(n2). In particular, the slack in (2.2) is o(n2), that is,

k∑
i=1

τri(Gi) = m+ o(n2). (2.4)

Also,
∑k

i=s+1 τri(Gi) = o(n2). In particular, we have that s ≥ 1. To simplify the

later calculations, let us re-define G by removing a maximum Kri-packing from Gi for

each i ≥ s+ 1. The new graph is still a counterexample to the lemma if we decrease

c0 slightly, since the number of edges removed is at most
∑k

i=s+1

(
ri
2

)
τri(Gi) = o(n2).

Suppose that we remove, for each i ≤ s, an arbitrary (not necessarily minimum)

K3-cover Fi from Gi such that

s∑
i=1

|Fi| ≤ m+ o(n2). (2.5)

Let G′ ⊆ G be the obtained KR-free graph. (Recall that we assumed that Gi is

Kri-free for all i ≥ s + 1.) Let G′i ⊆ Gi be the colour classes of G′. We know by

(2.5) that e(G′) ≥ tR−1(n) + o(n2). Since G′ is KR-free, we conclude by the Stability

Theorem (Theorem 2.1) that there is a partition V (G) = V (G′) = V1 ∪̇ . . . ∪̇VR−1

such that

∀ i ∈ {1, . . . , R−1}, |Vi| =
n

R− 1
+o(n) and |E(T )\E(G′)| = o(n2), (2.6)

where T is the complete (R− 1)-partite graph with parts V1, . . . , VR−1.

Next, we essentially expand the proof of (2.1) for r = 3 and transform it into an

algorithm that produces K3-coverings Fi of Gi, with 1 ≤ i ≤ s, in such a way that

(2.5) holds but (2.6) is impossible whatever V1, . . . , VR−1 we take, giving the desired

contradiction.

Let H be an arbitrary graph of order n. By the LP duality, we have that

τ ∗r (H) = ν∗r (H). (2.7)

By the result of Haxell and Rödl [9] we have that

ν∗r (H) = νr(H) + o(n2). (2.8)

8



Krivelevich [10] showed that

τ3(H) ≤ 2τ ∗3 (H). (2.9)

Thus, τ3(H) ≤ 2ν3(H) + o(n2) giving (2.1) for r = 3.

The proof of Krivelevich [10] of (2.9) is based on the following result.

Lemma 2.6. Let H be an arbitrary graph and f : E(H) → R+ be a minimum

fractional K3-cover. Then τ3(H) ≤ 3
2
τ ∗3 (H) or there is xy ∈ E(H) with f(xy) = 0

that belongs to at least one triangle of H.

Proof. If there is an edge xy ∈ E(H) that does not belong to a triangle, then neces-

sarily f(xy) = 0 and xy does not belong to any optimal fractional or integer K3-cover.

We can remove xy from E(H) without changing the validity of the lemma. Thus, we

can assume that every edge of H belongs to a triangle.

Suppose that f(xy) > 0 for every edge xy of H, for otherwise we are done. Take a

maximum fractional K3-packing p. Recall that it is a function that assigns a weight

p(xyz) ∈ R+ to each triangle xyz of H such that for every edge xy the sum of weights

over all K3’s of H containing xy is at most 1, that is,∑
z∈Γ(x)∩Γ(y)

p(xyz) ≤ 1, (2.10)

where Γ(v) denotes the set of neighbours of the vertex v in H.

This is the dual LP to the minimum fractional K3-cover problem. By the comple-

mentary slackness condition (since f and p are optimal solutions), we have equality

in (2.10) for every xy ∈ E(H). This and the LP duality imply that

τ ∗3 (H) = ν∗3(H) =
∑

triangle xyz

p(xyz) =
1

3

∑
xy∈E(H)

∑
z∈Γ(x)∩Γ(y)

p(xyz) =
1

3
e(H).

On the other hand τ3(H) ≤ 1
2
e(H): take a bipartite subgraph of H with at least

half of the edges; then the remaining edges form a K3-cover. Putting the last two

inequalities together, we obtain the required result.

Let 1 ≤ i ≤ s. We now describe an algorithm for finding a K3-cover Fi in Gi.

Initially, let H = Gi and Fi = ∅. Repeat the following.

Take a minimum fractional K3-cover f of H. If the first alternative of Lemma 2.6

is true, pick a K3-cover of H of size at most 3
2
τ ∗3 (H), add it to Fi and stop. Otherwise,

fix some edge xy ∈ E(H) returned by Lemma 2.6. Let F ′ consist of all pairs xz and

9



yz over z ∈ Γ(x) ∩ Γ(y). Add F ′ to Fi and remove F ′ from E(H). Repeat the whole

step (with the new H and f).

Consider any moment during this algorithm, when we had f(xy) = 0 for some edge

xy of H. Since f is a fractional K3-cover, we have that f(xz) + f(yz) ≥ 1 for every

z ∈ Γ(x) ∩ Γ(y). Thus, if H ′ is obtained from H by removing 2` such pairs, where

` = |Γ(x)∩Γ(y)|, then τ ∗3 (H ′) ≤ τ ∗3 (H)− ` because f when restricted to E(H ′) is still

a fractional cover (although not necessarily an optimal one). Clearly, |Fi| increases

by 2` during this operation. Thus, indeed we obtain, at the end, a K3-cover Fi of Gi

of size at most 2τ ∗3 (Gi).

Also, by (2.7) and (2.8) we have that

s∑
i=1

|Fi| ≤ 2
s∑
i=1

ν3(Gi) + o(n2).

Now, since all slacks in (2.3) are o(n2), we conclude that

s∑
i=1

ν3(Gi) ≤
m

2
+ o(n2)

and (2.5) holds. In fact, (2.5) is equality by (2.4).

Recall that G′i is obtained from Gi by removing all edges of Fi and G′ is the edge-

disjoint union of the graphs G′i. Suppose that there exist V1, . . . , VR−1 satisfying (2.6).

Let M = E(T ) \ E(G′) consist of missing edges. Thus, |M | = o(n2).

Let

X = {x ∈ V (T ) | degM(x) ≥ c2n},

where we define c2 = (4(R− 1))−1. Clearly,

|X| ≤ 2|M |/c2n = o(n).

Observe that, for every 1 ≤ i ≤ s, if the first alternative of Lemma 2.6 holds at

some point, then the remaining graph H satisfies τ ∗3 (H) = o(n2). Indeed, otherwise

by τ3(Gi) ≤ 2τ ∗3 (Gi) − τ ∗3 (H)/2 + o(n2) we get a strictly smaller constant than 2 in

(2.9) and thus a gap of Ω(n2) in (2.3), a contradiction. Therefore, all but o(n2) edges

in Fi come from some parent edge xy that had f -weight 0 at some point.

When our algorithm adds pairs xz and yz to Fi with the same parent xy, then

it adds the same number of pairs incident to x as those incident to y. Let P consist

of pairs xy that are disjoint from X and were a parent edge during the run of the

algorithm. Since the total number of pairs in Fi incident to X is at most n|X| = o(n2),

there are |Fi| − o(n2) pairs in Fi such that their parent is in P .
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Let us show that y0 and y1 belong to different parts Vj for every pair y0y1 ∈ P .

Suppose on the contrary that, say, y0, y1 ∈ V1. For each 2 ≤ j ≤ R − 1 pick an

arbitrary yj ∈ Vj \ (ΓM(y0) ∪ ΓM(y1)). Since y0, y1 6∈ X, the possible number of

choices for yj is at least

n

R− 1
− 2c2n+ o(n) ≥ n

R− 1
− 3c2n.

Let

Y = {y0, . . . , yR−1}.

By the above, we have at least ( n
R−1
−3c2n)R−2 = Ω(nR−2) choices of Y . Note that

by the definition, all edges between {y0, y1} and the rest of Y are present in E(G′).

Thus, the number of sets Y containing at least one edge of M different from y0y1 is

at most

|M | × nR−4 = o(nR−2).

This is o(1) times the number of choices of Y . Thus, for almost every Y , H = G′[Y ] is

a clique (except perhaps the pair y0y1). In particular, there is at least one such choice

of Y ; fix it. Let i ∈ {1, . . . , k} be arbitrary. Adding back the pair y0y1 coloured i to

H (if it is not there already), we obtain a k-edge-colouring of the complete graph H

of order R. By the definition of R = R(r1, . . . , rk), there must be a monochromatic

triangle on abc of colour h ≤ s. (Recall that we assumed at the beginning that Gj is

Krj -free for each j > s.) But abc has to contain an edge from the K3-cover Fh, say

ab. This edge ab is not in G′ (it was removed from G). If a, b lie in different parts

Vj, then ab ∈ M , a contradiction to the choice of Y . The only possibility is that

ab = y0y1. Then h = i. Since both y0c and y1c are in G′i, they were never added to

the K3-cover Fi by our algorithm. Therefore, y0y1 was never a parent, which is the

desired contradiction.

Thus, every xy ∈ P connects two different parts Vj. For every such parent xy, the

number of its children in M is at least half of all its children. Indeed, for every pair

of children xz and yz, at least one connects two different parts; this child necessarily

belongs to M . Thus,

|Fi ∩M | ≥
1

2
|Fi|+ o(n2).

(Recall that parent edges that intersect X produce at most 2n|X| = o(n2) children.)

Therefore,

|M | ≥ 1

2

s∑
i=1

|Fi|+ o(n2) ≥ m

2
+ o(n2) = Ω(n2),

contradicting (2.6). This contradiction proves Lemma 2.5.
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We are now able to prove Theorem 1.6.

Proof of the upper bound in Theorem 1.6. Let C be the constant returned by Theo-

rem 2.2 for r = R. Let n0 = n0(r1, . . . , rk) be sufficiently large to satisfy all the

inequalities we will encounter. Let G be a k-edge-coloured graph on n ≥ n0 vertices.

We will show that φk(G, C) ≤ tR−1(n) with equality if and only if G = TR−1(n), and

G does not contain a monochromatic copy of Kri in colour i for every 1 ≤ i ≤ k.

Let e(G) = tR−1(n) + m, where m is an integer. If m < 0, we can decompose G

into single edges and there is nothing to prove.

Suppose m = 0. If G contains a monochromatic copy of Kri in colour i for

some 1 ≤ i ≤ k, then G admits a monochromatic C-decomposition with at most

tR−1(n) −
(
ri
2

)
+ 1 < tR−1(n) parts and we are done. Otherwise, the definition of R

implies that G does not contain a copy of KR. Therefore, G = TR−1(n) by Turán’s

theorem and φk(G, C) = tR−1(n) as required.

Now suppose m > 0. We can also assume that m <
(
n
2

)
/C for otherwise we

are done: φk(G, C) < tR−1(n) by Lemma 2.5. Thus, by Theorem 2.2, the graph G

contains at least m−Cm2/n2 > m
2

edge-disjoint copies of KR. Since each KR contains

a monochromatic copy of Kri in the colour-i graph Gi, for some 1 ≤ i ≤ k, we conclude

that
∑k

i=1 νri(Gi) >
m
2

, so that
∑k

i=1(
(
ri
2

)
− 1)νri(Gi) ≥

∑k
i=1 2νri(Gi) > m. We have

φk(G, C) = e(G)−
k∑
i=1

(
ri
2

)
νri(Gi) +

k∑
i=1

νri(Gi) < tR−1(n),

giving the required.

Remark. By analysing the above argument, one can also derive the following stability
property for every fixed family C of cliques as n → ∞: every graph G on n vertices
with φk(G, C) = tR−1(n) + o(n2) is o(n2)-close to the Turán graph TR−1(n) in the edit
distance.
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[12] L. Özkahya and Y. Person. Minimum H-decompositions of graphs: edge-critical
case. J. Combin. Theory Ser. B, 102:715–725, 2012.

[13] O. Pikhurko and T. Sousa. Minimum H-decompositions of graphs. J. Combin.
Theory Ser. B, 97:1041–1055, 2007.

[14] S. P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., DS01:Dynamic
Survey, Version of 12 January, 2014.

[15] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264–
286, 1930.

13



[16] M. Simonovits. A method for solving extremal problems in graph theory, stability
problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319.
Academic Press, New York, 1968.

[17] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs. Elec-
tron. J. Combin., 12:Research Paper 49, 7 pp. (electronic), 2005.

[18] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin.,
100:465–472, 2011.

[19] T. Sousa. Decompositions of graphs into cycles of length seven and single edges.
Ars Combin., to appear.

[20] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452,
1941.

[21] Zs. Tuza. In Finite and Infinite Sets, volume 37 of Colloquia Mathematica Soci-
etatis János Bolyai, page 888. North-Holland Publishing Co., Amsterdam, 1984.

[22] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing.
Combin. Probab. Comput., 21:952–962, 2012.

14


