FRIENDSHIP DECOMPOSITIONS OF GRAPHS

Teresa Sousa

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

E-mail: tmjs@fct.unl.pt

July 4, 2007

Abstract

We investigate the maximum number of elements in an optimal t-friendship decomposition of graphs of order n. Asymptotic results will be obtained for all fixed $t \geq 4$ and for t = 2, 3 exact results will be derived.

1 Introduction and Terminology

For notation and terminology not discussed here the reader is referred to [?]. All graphs considered here are finite and simple, i.e., they have no loops or multiple edges. Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). The set of neighbors of v is denoted by $N_G(v)$ or briefly by N(v) if it is clear which graph is being considered. We always have $v \notin N(v)$. Let $\overline{N}_G(v) = V - (N_G(v) \cup \{v\})$. A clique is a complete graph and the complete bipartite graph with parts of size m and n will be denoted by $K_{m,n}$. A graph of the form $K_{1,m}$ with possible some isolated vertices will be called a star. The center of a star is its vertex of maximum degree.

Let $t \geq 1$ be fixed. A graph that consists of t edge disjoint cliques sharing a vertex v is said to be a t-friendship graph (t-fs graph) with center v. A t-friendship decomposition of a graph G is a set, \mathcal{F} , of edge disjoint t-friendship subgraphs of G, such that any edge of G is an edge of exactly one element of \mathcal{F} . For $t \geq 1$ let $\phi_t(G)$ denote the minimum number of t-friendship graphs in a t-friendship decomposition of the graph G and $\phi_t(n) = \max \phi_t(G)$ where G runs over all graphs of order n. In [2] Erdös, Goodman and Pósa proved that $\phi_1(n) = \lfloor n^2/4 \rfloor$. In our paper we will study the function $\phi_t(n)$ for every fixed $t \geq 2$. For $t \geq 4$ asymptotic results will be obtained and for t = 2, 3 the exact value will be derived.

2 t-Friendship Decompositions

We start by studying the decomposition problem of any graph of order n into t-friendship graphs, for all fixed $t \geq 2$. This problem will be asymptotically solved. However, for t = 2, 3 we will be able to improve our proof in order to obtain exact results.

Theorem 2.1. Any graph of order n admits a t-friendship decomposition with at most $\frac{n^2}{4t} + \frac{n}{4t} + n$ elements, for all fixed $t \geq 2$.

To prove the theorem we will need the following trivial lemma:

Lemma 2.2. [3] Let G be an arbitrary graph of order n such that $\deg v \geq d$ for every vertex v of G. Then there exists a partition of V(G) such that the number of the classes of the partition is n-d and such that every class of the partition spans a clique. \square

Proof of Theorem 2.1. By induction on the number of vertices in a graph. The theorem is obviously true for n = 2. Let v be a vertex of minimum degree and let $\delta := \delta(G)$.

If $\delta \leq n/2$ we consider the edges incident with v as $\lceil \frac{\deg v}{t} \rceil$ elements of a t-fs decomposition and consider an optimal decomposition of G - v. Then

$$\phi_t(G) \le \phi_t(G - v) + \left\lceil \frac{\delta}{t} \right\rceil.$$
 (2.1)

If $\delta > n/2$ then $\deg_{G[N(v)]}(u) \geq \delta - 1 - (n - \delta - 1) = 2\delta - n > 0$, for all $u \in N(v)$. Lemma 2.2 implies that there exists a partition $\{R_1, \ldots, R_{n-\delta}\}$ of N(v) such that $G[R_i]$ is a clique, for $i=1,\ldots,n-\delta$. Then $G[R_i \cup \{v\}]$ is also a clique for $i=1,\ldots,n-\delta$. Therefore by grouping all these cliques into t-tuples we obtain $\lceil \frac{n-\delta}{t} \rceil$ t-fs graphs and combining them with an optimal t-fs decomposition of the remaining graph H, where $V(H) = V - \{v\}$ and $E(H) = E(G) - \bigcup_{i=1}^{n-\delta} E(G[R_i \cup \{v\}])$, we obtain

$$\phi_t(G) \le \phi_t(H) + \left\lceil \frac{n-\delta}{t} \right\rceil.$$
 (2.2)

Let n = 2tk + r, with $0 \le r < 2t$. If $\delta \le n/2$ then from (2.1) we obtain

$$\phi_t(G) \le \phi_t(G - v) + k + 1.$$

If $\delta > n/2$ then (2.2) implies that

$$\phi_t(G) \le \phi_t(H) + k + 1.$$

Therefore,

$$\phi_t(G) \le \frac{(n-1)^2}{4t} + \frac{n-1}{4t} + n - 1 + k + 1$$

$$\le \frac{(n-1)^2}{4t} + \frac{n-1}{4t} + n - 1 + \frac{n-r}{2t} + 1$$

$$\le \frac{n^2}{4t} + \frac{n}{4t} + n.$$

By considering the graph $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ we trivially have that $\phi_t(n) \geq \phi_t(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) \geq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil / t \geq \frac{n^2 - 1}{4t}$. Therefore, for fixed $t \geq 2$ the decomposition problem into t-friendship graphs is asymptotically solved and we have the following theorem.

Theorem 2.3.

$$\phi_t(n) = \left(\frac{1}{4t} + o(1)\right) n^2$$
, for all fixed $t \ge 2$.

3 2-Friendship Decompositions

For the special case of t=2 the proof of Theorem 2.1 can be improved to give us the exact value of $\phi_2(n)$, for all $n \geq 1$.

Theorem 3.1. Any graph of order n can be decomposed into at most $\lceil n^2/8 \rceil$ 2-friendship graphs if n is even and at most $(n^2 - 1)/8$ 2-friendship graphs if n is odd. Moreover, this bound is sharp for the bipartite graph $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Proof. By induction on the number of vertices in a graph. Clearly the result holds for all graphs with at most three vertices. Let G be a graph having n vertices where $n \geq 4$. Let v be a vertex of minimum degree and let $\delta := \delta(G)$. Let n = 4k + r, with $0 \leq r \leq 3$ and $k \geq 1$. The theorem follows directly from (2.1) or (2.2) and the induction hypothesis for all values of n except for n = 4k + 3 and $\delta \in \{2k + 1, 2k + 2\}$.

Let n = 4k + 3 and $\delta = 2k + 1$. If G[N(v)] has an edge, say e, then the edge e and the edges incident with v form at most k 2-fs graphs. Hence

$$\phi_2(G) \le \phi_2(G - v - e) + k \le \left\lceil \frac{(n-1)^2}{8} \right\rceil + k = \frac{n^2 - 1}{8}.$$

Assume that G[N(v)] has no edges and let $u \in N(v)$. Then deg $u \leq 2k + 2$ and we have

$$\phi_2(G) \le \phi_2(G - \{v, u\}) + \left\lceil \frac{\deg v - 1}{2} \right\rceil + \left\lceil \frac{\deg u}{2} \right\rceil = \frac{n^2 - 1}{8}.$$

Finally, let n=4k+3 and $\delta=2k+2$. In this case $\deg_{G[N(v)]}(u)\geq 1$, for all $u\in N(v)$. If $\deg_{G[N(v)]}(u)\geq 2$, for all $u\in N(v)$, then by Lemma 2.2 the edges incident with v can be decomposed into at most k 2-fs graphs and the result follows by the induction hypothesis. Suppose that $\deg_{G[N(v)]}(u)=1$ for some $u\in N(v)$. In this case observe that $\deg u=2k+2$ and let $w\in N(v)$ be adjacent to u. Consider the 2-fs graph, F, with edges vu,vw,uw and uw' for some $w'\in N(u)-\{v,w\}$. Observe that such w' exists since we assumed that $k\geq 1$. Let G_1 be the graph obtained after deleting the edges of F. Then $\deg_{G_1}(v)=2k$ and $\deg_{G_1}(u)=2k-1$. Therefore,

$$\phi_2(G) \le \phi_2(G_1 - \{v, u\}) + \left\lceil \frac{\deg_{G_1}(v)}{2} \right\rceil + \left\lceil \frac{\deg_{G_1}(u)}{2} \right\rceil + 1$$

$$\le \frac{(n-2)^2 - 1}{8} + 2k + 1 = \frac{n^2 - 1}{8}.$$

To complete the proof it remains to see that the bound is sharp for $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$. We trivially have $\phi_2(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) \geq \lceil |E(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil})|/2 \rceil$, therefore $\phi_2(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) \geq \lceil n^2/8 \rceil$ if n is even and $\phi_2(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) \geq (n^2 - 1)/8$ if n is odd, hence the equality.

4 3-Friendship Decompositions

As we did for 2-friendship decompositions of graphs we can also obtain exact results for 3-friendship decompositions of graphs. However, in this case, the calculations will not be so straightforward as they were for the case t = 2. Next theorem is our main result of this section.

Theorem 4.1. Any graph of order n, except the 5-cycle, can be decomposed into at most $\lceil n^2/12 \rceil$ 3-friendship graphs if n is even and at most $\lceil (n^2-1)/12 \rceil$ 3-friendship graphs if n is odd. Moreover, this bound is sharp for the bipartite graph $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Before proving the general case, and for the sake of simplicity, we will see that Theorem 4.1 holds for some special types of graphs needed later.

Lemma 4.2. Theorem 4.1 holds for bipartite graphs.

Proof. Let G be a bipartite graph of order n with parts A and B of size s and t respectively. We will see that $\phi_3(G) \leq \lceil st/3 \rceil$.

Let $s=3k_1+r_1$ and $t=3k_2+r_2$ with $0 \le r_1 \le 2$ and $0 \le r_2 \le 2$. Assume $r_1 \le r_2$. Let $A=A_1\cup A_2$ where $|A_1|=3k_1$ and $|A_2|=r_1$ and $B=B_1\cup B_2$ where $|B_1|=3k_2$ and $|B_2|=r_2$. Consider the subgraph induced by $A\cup B_1$. Clearly its edges can be decomposed into at most sk_2 3-fs graphs. Now consider the subgraph induced by $A_1\cup B_2$ and remove all 3-fs graphs with centers in B_2 , at most r_2k_1 of them. Finally, observe that the edges left have endpoints in $A_2\cup B_2$, hence it suffices to remove all 3-fs graphs with centers in A_2 , at most r_1 of them. Therefore, $\phi_3(G) \le sk_2 + r_2k_1 + r_1 \le \left\lceil \frac{st}{3} \right\rceil$, where the last inequality follows from the fact that $0 \le r_1 \le r_2 \le 2$. Moreover, $\lceil st/3 \rceil$ is at most $\lceil (s+t)^2/12 \rceil$ if s+t is even and at most $\lceil \frac{(s+t)^2-1}{12} \rceil$ if s+t is odd.

To complete the proof it remains to observe that for $s = \lfloor n/2 \rfloor$ and $t = \lceil n/2 \rceil \lceil st/3 \rceil$ equals $\lceil n^2/12 \rceil$ if n is even and $\lceil (n^2-1)/12 \rceil$ if n is odd.

Given a graph G and two disjoint sets $A, B \subseteq V(G)$ we denote by G[A, B] the bipartite graph with all the edges of G with one endpoint in A and the other in B. Recall that a star with center y is a graph of the form $K_{1,m}$ with possible some isolated vertices where y is its vertex of maximum degree.

Lemma 4.3. Let G be a graph with n=6k+5 vertices and minimum degree 3k+2. Let v be a vertex of minimum degree and assume that G[N(v)] has no edges, $G[\overline{N}(v)]$ is a star or an empty graph and $G[N(v), \overline{N}(v)]$ is a complete bipartite graph. Then G admits a 3-friendship decomposition with at most $\lceil (n^2-1)/12 \rceil = 3k^2+5k+2$ elements.

Proof. Let $N(v) = \{u_1, \ldots, u_{3k+1}, u\}$ and $\overline{N}(v) = \{y_1, \ldots, y_{3k+1}, y\}$ and let y be the center of the star (in case $G[\overline{N}(v)]$ is an empty graph, y is any vertex in $\overline{N}(v)$). For $i = 1 \ldots 3k+1$ remove the 3-fs graph induced by the vertices u_i, y, y_i, v . In this step we removed 3k+1 3-fs graphs. Now $G[\overline{N}(v)]$ has no edges and we are left with a bipartite graph. Hence it suffices to remove all 3-fs graphs with centers in N(v). Observe that in the remaining graph deg $u_i = 3k$ for $i = 1, \ldots 3k+1$ and deg u = 3k+3 so all these edges can be decomposed into at most k(3k+1) + k+1 3-fs graphs. Therefore,

$$\phi_3(G) \le 3k + 1 + k(3k+1) + k + 1 = 3k^2 + 5k + 2.$$

Lemma 4.4. Let G be a graph with n = 6k+5 vertices and minimum degree 3k+3. Let v be a vertex of minimum degree and assume that $G[N(v)] = K_{1,3k+2}$, $G[\overline{N}(v)]$ has no edges, and $G[N(v), \overline{N}(v)]$ is a complete bipartite graph. Then G admits a 3-friendship decomposition with at most $3k^2 + 4k + 2 < \lceil (n^2 - 1)/12 \rceil$ elements.

Proof. Let $N(v) = \{u_1, \ldots, u_{3k+2}, u\}$, let u be adjacent to all vertices of N(v) and let $\overline{N}(v) = \{y_1, \ldots, y_{3k+1}\}$. The edges incident with u and the edges vu_{3k+2} , u_1y_1 , u_2y_2 , \cdots , $u_{3k+1}y_{3k+1}$ can be decomposed using k+1 3-fs graphs as described by Figure 1. Remove all edges incident with y_i except the edge y_iu_{3k+2} for $i=1,\ldots,3k$ and all edges incident with y_{3k+1} except the edge $y_{3k+1}u_1$. In total we removed k(3k+1) 3-fs graphs. The edges left can be decomposed using 2k+1 3-fs graphs. Therefore,

$$\phi_3(G) \le k + 1 + k(3k + 1) + 2k + 1 = 3k^2 + 4k + 2.$$

Lemma 4.5. Let G be a graph with n = 6k+5 vertices and minimum degree 3k+3. Let v be a vertex of minimum degree. Assume that $G[\overline{N}(v)]$ has no edges, $G[N(v), \overline{N}(v)]$ is a complete bipartite graph and G[N(v)] looks like the graph described in Figure 2 with the edge $\{w_1, w_2\}$ being present or not. Then G admits a 3-friendship decomposition with at most $\lceil (n^2-1)/12 \rceil = 3k^2+5k+2$ elements.

Figure 1: $i \equiv 1 \pmod{3}$ and $i \leq 3k - 2$

Figure 2: An illustration of the graph G[N(v)] as in Lemma 4.5

Proof. Let $N(v) = \{u_1, \dots, u_{3k+1}, w_1, w_2\}, \overline{N}(v) = \{y_1, \dots, y_{3k+1}\}$ and $\deg_{G[N(v)]} u_i = 2$ for all $i = 1, \dots, 3k + 1$.

We first consider the case 3k+1 even. We start our 3-fs decomposition by removing the 3-fs graphs with edge sets y_iu_i , y_iw_1 , u_iw_1 , y_iw_2 , y_iu_{i+1} , $u_{i+1}w_2$, and $y_{i+1}u_i$, $y_{i+1}u_2$, u_iw_2 , $y_{i+1}w_1$, $y_{i+1}u_{i+1}$, $u_{i+1}w_1$, where $1 \leq i \leq 3k+1$ and i is odd (See Figure 3). We remove 3k+1 3-fs graphs. After this first step the edges left are incident with the vertices v, y_1, \ldots, y_{3k+1} and we might also have the edge w_1w_2 . Furthermore, in the graph left v has degree 3k+3 and the vertices y_1, \ldots, y_{3k+1} have degree 3k-1. Therefore, the edges incident with v and the edge w_1w_2 if it exists, can be decomposed using at most k+1 3-fs graphs and for $1 \leq i \leq 3k+1$ the edges incident with y_i can be decomposed using at most k 3-fs graphs.

Therefore,

$$\phi_3(G) \le 3k + 1 + k + 1 + (3k+1)k = 3k^2 + 5k + 2.$$

Suppose that 3k+1 is odd. We repeat the procedure described before to decompose all the edges incident y_1, \ldots, y_{3k} . In total we remove $3k+3k^2$ 3-fs graphs. If the edge w_1w_2 exists then the vertices w_1 , w_2 and u_{3k+1} induce a triangle, so the edges incident with v plus the above triangle can be decomposed into k+1 3-fs graphs. The edges left are incident with y_{3k+1} and can be decomposed using k+1 3-fs graphs. If the edge w_1w_2 is not in the graph then the edge w_1u_{3k+1} and the edges incident with v can be decomposed into k+1 3-fs graphs and the edge w_2u_{3k+1} and the edges incident with y_{3k+1} can be decomposed into k+1 3-fs graphs and this completes the proof.

Figure 3: Decomposition used in the proof of Lemma 4.5

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. By induction on the number of vertices in a graph. By inspection, and using Harary's [4] atlas of all graphs of order at most 5, we can see that the result holds for all graphs with at most 5 vertices. Let G be a graph having n vertices, where $n \geq 6$. Let v be a vertex of minimum degree and let $\delta := \delta(G)$.

Let n = 6k + r, with $0 \le r \le 5$ and $k \ge 1$. The result follows directly from (2.1) or (2.2) and the induction hypothesis for all values of n except for n = 6k + 3 and $\delta \in \{3k + 1, 3k + 2\}$ and for n = 6k + 5 and $\delta \in \{3k + 1, 3k + 2, 3k + 3, 3k + 4\}$.

Consider the case n = 6k + 3 and $\delta = 3k + 1$. If G[N(v)] has an edge, say e, then the edges incident with v and the edge e form at most k 3-fs graphs, hence

$$\phi_3(G) \le \phi_3(G - v - e) + k \le \left\lceil \frac{(n-1)^2}{12} \right\rceil + k = \left\lceil \frac{n^2 - 1}{12} \right\rceil.$$

Assume that G[N(v)] has no edges and let $u \in N(v)$. Then deg $u \leq 3k + 2$ and we have

$$\phi_3(G) \le \phi_3(G - \{v, u\}) + \left\lceil \frac{\deg v - 1}{3} \right\rceil + \left\lceil \frac{\deg u}{3} \right\rceil = \left\lceil \frac{n^2 - 1}{12} \right\rceil.$$

Let n=6k+3 and $\delta=3k+2$. Then $\deg_{G[N(v)]}(u)\geq 1$ for all $u\in N(v)$. If $\deg_{G[N(v)]}(u)\geq 2$, for all $u\in N(v)$, then using Lemma 2.2 we can decompose the edges incident with v and some edges in $G[\overline{N}(v)]$ into at most k 3-fs graphs and the result follows by induction. Suppose that $\deg_{G[N(v)]}(u)=1$ for some $u\in N(v)$. In this case observe that $\deg u=3k+2$ and let $w\in N(v)$ be adjacent to u. Consider the 3-fs graph, F, with edges vu,vw,uw,vx and vy for some $x,y\in N(v)-\{u,w\}$. Observe that such x,y exist since we assumed that $k\geq 1$. Let G_1 be the graph obtained after deleting the edges of F. Then $\deg_{G_1}(v)=3k-2$ and $\deg_{G_1}(u)=3k$. Therefore,

$$\phi_3(G) \le \phi_3(G_1 - \{v, u\}) + \left\lceil \frac{\deg_{G_1}(v)}{3} \right\rceil + \left\lceil \frac{\deg_{G_1}(u)}{3} \right\rceil + 1 = \left\lceil \frac{n^2 - 1}{12} \right\rceil.$$

From now and until the end of the proof let n = 6k + 5. Observe that

$$\left\lceil \frac{n^2 - 1}{12} \right\rceil = \left\lceil \frac{(n-1)^2}{12} \right\rceil + k = \left\lceil \frac{(n-2)^2 - 1}{12} \right\rceil + 2k + 1.$$

Let $\delta = 3k + 1$. If G[N(v)] has an edge e then the e and the edges incident with v form at most k 3-fs graphs and we are done. Assume that G[N(v)] has no edges and let $u \in N(v)$. Then $\deg u \leq 3k + 4$. By Lemma 4.2 we can assume that G is not bipartite, so $G[\overline{N}(v)]$ must have at least one edge. Therefore the edges incident with v and u form at most 2k + 1 3-fs graphs and the result holds.

Let $\delta = 3k + 2$. If $\deg_{G[N(v)]}(u) \geq 2$, for all $u \in N(v)$, then using Lemma 2.2 we can decompose the edges incident with v into at most k 3-fs graphs. Suppose first that exists $u \in N(v)$ such that $\deg_{G[N(v)]}(u) = 1$, then $\deg u \leq 3k + 4$. Therefore, the edges incident with v and u can be decomposed into at most 2k + 1 3-fs graphs.

Now suppose that for all $u \in N(v)$ we have either $\deg_{G[N(v)]}(u) = 0$ or $\deg_{G[N(v)]}(u) \ge 2$. If the latter condition happens then it is not hard to see that N(v) must contain at least 2 independent edges or a triangle. Thus, the edges incident with v can be decomposed into at most k 3-fs graphs and the result follows by induction. Therefore it remains to consider the case when $\deg_{G[N(v)]}(u) = 0$ for all $u \in N(v)$.

(a) If deg u = 3k + 3 for all $u \in N(v)$ then $G[N(v), \overline{N}(v)]$ is a complete bipartite graph. Let $u \in N(v)$. By Lemma 4.2 we can assume that G is not bipartite, that is,

 $G[\overline{N}(v)]$ must have at least one edge. If $G[\overline{N}(v)]$ has 2 independent edges or a triangle then the edges incident with v and u can be decomposed into at most k+1 and k 3-fs graphs respectively and the result follows by induction. If $G[\overline{N}(v)]$ has at most one independent edge and no triangles, then $G[\overline{N}(v)]$ is a star and our graph is as in Lemma 4.3 so the result holds.

(b) Suppose now that exists $u \in N(v)$ such that $\deg u = 3k + 2$. Then $\exists y \in \overline{N}(v)$ such that u is not adjacent to y. If G[N(u)] has an edge then the edges incident with v and u can be decomposed into at most 2k + 1 3-fs graphs. If G[N(u)] has no edges then all edges in $G[\overline{N}(v)]$ are incident with y, i.e., $G[\overline{N}(v)]$ is a star with center y. Assume first that $G[\overline{N}(v)]$ has exactly one edge, say yy'. Then y and y' must have at least one common neighbor in N(v), say u'. Remove the 3-fs graph with edges $u'y, u'y', yy', u'y_1, u'y_2$, for some $y_1, y_2 \in \overline{N}(v) - \{y, y'\}$. The graph left is bipartite, hence it suffices to remove all 3-fs graphs with centers in N(v). Let u_1, \ldots, u_{3k} be the remaining vertices of N(v). Observe that $\deg u_i = 3k + 3$, for $i = 1, \ldots, 3k$. Then,

$$\phi_3(G) \le 1 + \left\lceil \frac{\deg u}{3} \right\rceil + \left\lceil \frac{\deg u' - 4}{3} \right\rceil + 3k \left\lceil \frac{\deg u_1}{3} \right\rceil$$
$$\le 1 + k + 1 + k + 3k(k+1) = \left\lceil \frac{n^2 - 1}{12} \right\rceil.$$

Now, assume that $G[\overline{N}(v)]$ has at least 2 edges. If G[N(u')] has an edge for some $u' \in N(v)$, say yy_1 , we remove the 3-fs graph with edges $u'y, u'y_1, yy_1, y_1u, y_1u''$, for some $u'' \in N(v) - \{u, u'\}$. Then,

$$\phi_{3}(G) \leq \phi_{3}(G - \{v, u, u', y_{1}\}) + \left[\frac{\deg v}{3}\right] + \left[\frac{\deg u - 2}{3}\right] + \left[\frac{\deg u' - 3}{3}\right] + \left[\frac{\deg y_{1} - 4}{3}\right] + 1$$

$$\leq \left[\frac{(n - 4)^{2} - 1}{12}\right] + \left[\frac{3k + 2}{3}\right] + \left[\frac{3k}{3}\right] + \left[\frac{3k}{3}\right] + \left[\frac{3k - 1}{3}\right] + 1$$

$$\leq 3k^{2} + k + 4k + 2 = \left[\frac{n^{2} - 1}{12}\right].$$

If N(u') has no edge for all $u' \in N(v)$ then $G \subseteq K_{3k+3,3k+2}$ and the result follows from Lemma 4.2.

Let $\delta = 3k + 3$. Then $\deg_{G[N(v)]}(u) \geq 1$, for all $u \in N(v)$. If $\deg_{G[N(v)]}(u) \geq 3$, for

all $u \in N(v)$, then by Lemma 2.2 we can decompose the edges incident with v and some other edges in G[N(v)] into at most k 3-fs.

(a) Assume first that exists $u \in N(v)$ such that $\deg_{G[N(v)]} u = 1$, then $\deg u = 3k+3$. If $G[\overline{N}(v)]$ has an edge, say e, then the edge e and the edges incident with v and u can be decomposed into at most 2k+1 3-fs graphs (see Figure 4(i)). If $G[\overline{N}(v)]$ has no edges then $G[N(v), \overline{N}(v)]$ is a complete bipartite graph. So, if G[N(v)] has 2 independent edges then the edges incident with u and v, for some $v \in \overline{N}(v)$ can be decomposed into at most $v \in A$ 3-fs graphs and the result follows (see Figure 4(ii)). If G[N(v)] has only one independent edge then $G[N(v)] = K_{1,3k+2}$ and Lemma 4.4 applies.

Figure 4: $\delta = 3k + 3$ case (a)

(b) Assume that for all $u \in N(v)$, $\deg_{G[N(v)]} u \geq 2$ and that exists $u \in N(v)$ such that $\deg_{G[N(v)]} u = 2$. Let u be adjacent to w_1 and w_2 . Observe that G[N(v)] has at least 2 independent edges since $\deg_{G[N(v)]} u \geq 2$ for all $u \in N(v)$. If there exist 3 independent edges in G[N(v)] then the 3 independent edges and the edges incident with v can be decomposed into k 3-fs graphs. So assume that G[N(v)] has exactly 2 independent edges. In this case G[N(v)] looks like Figure 2, unless k=1 and N(v) consists of 2 vertex disjoint triangles and in this case the result holds. Assume first that w_1 and w_2 are adjacent. If exists $u' \in N(v) - \{w_1, w_2\}$ such that $\deg u' = 3k + 3$ then the edges incident with v and v' form at most 2k+1 3-fs graphs and we are done. Assume that $\deg u' = 3k+4$ for all $u' \in N(v) - \{w_1, w_2\}$. If $G[\overline{N}(v)]$ has no edges then Lemma 4.5 applies. If $G[\overline{N}(v)]$ has an edge then we are able to decompose the edges incident with v and u' into at most 2k+1 3-fs graphs.

Figure 5: $\delta = 3k + 3$ case (b) and w_1 adjacent to w_2

Now suppose that w_1 and w_2 are not adjacent. Then w_2 must have at least one neighbor in $\overline{N}(v)$. If w_2 has exactly one neighbor in $\overline{N}(v)$, say y then $\deg w_2 = 3k + 3$. Furthermore, y must be adjacent to some $u_1 \in N(v) - \{w_1, w_2\}$. Thus we can decompose the edges incident with v and w_2 using at most 2k + 1 3-fs graphs. (see Figure 6(i))

Suppose w_2 has at least two neighbors in $\overline{N}(v)$ and let y and y' be two of them. If exists $u_1 \in N(v)$ such that $\deg u_1 = 3k + 3$ then u_1 is adjacent to at least one of y or y', say y and we apply induction to $G - \{v, u_1\}$. (see Figure 6(ii)) Assume that $\deg x = 3k + 4$ for all $x \in N(v) - \{w_1, w_2\}$ and let $u_1 \in N(v)$. If $\overline{N}(v)$ has no edges then the result follows from Lemma 4.5. Let $\overline{N}(v)$ have at least one edge, say e. If $e = \{y, y'\}$ then there exits a K_4 incident with u_1 , otherwise there exist two triangles incident with u_1 . In both cases we can decompose the edges incident with v and v, using at most v and v are v and v are v and v are v and v are v and v and v and v and v and v are v and v are v and v are v and v are v and v and

Let $\delta = 3k + 4$. Then $\deg_{G[N(v)]}(u) \geq 3$, for all $u \in N(v)$.

- (a) If $\deg_{G[N(v)]}(u) \geq 4$ for all $u \in N(v)$ the result follows by Lemma 2.2 and the induction hypothesis.
- (b) Suppose that exists $u \in N(v)$ such that $\deg_{G[N(v)]}(u) = 3$. Then $\deg_G(u) = 3k + 4$. Observe that u is adjacent to all elements of $\overline{N}(v)$. Let u be adjacent to u_1, u_2, u_3 in N(v). Because of degree constraints, u_3 is adjacent to both u_1 and u_2 or has a neighbor in $\overline{N}(v)$, say w. We have to consider three distinct cases.
 - (i) $G[\overline{N}(v)]$ has an edge, say xy and u_3 is adjacent to u_1 or u_2 , say u_2 ;

Figure 6: $\delta = 3k + 3$ case (b) and w_1 not adjacent to w_2

- (ii) $G[\overline{N}(v)]$ has an edge, say xy and u_3 is not adjacent to u_1 and u_2 . In this case u_3 has a neighbor in $\overline{N}(v) \{x, y\}$, say w;
- (iii) $G[\overline{N}(v)]$ has no edges. In this case observe that all vertices in $\overline{N}(v)$ are adjacent to all vertices in N(v).

In all these cases Figure 7 shows that we can always decompose the edges incident with v and u using at most 2k + 1 3-fs graphs. This completes the proof.

Figure 7: case $\delta = 3k + 4$

Open questions: It remains an interesting problem to better estimate the function $\phi_t(n)$ for a fixed $t \geq 4$, now known to satisfy $\frac{n^2}{4t} \leq \phi_t(n) \leq \frac{n^2}{4t} + \frac{n}{4t} + n$. The first open

instance of this problem is the case t=4 and in this case we conjecture that $\phi_4(n)$ equals $\left\lceil \frac{n^2}{16} \right\rceil$ if n is even and $\left\lceil \frac{n^2-1}{16} \right\rceil$ if n is odd.

Acknowledgement. The author would like to thank Oleg Pikhurko for helpful discussions and comments and the anonymous referee for the careful reading of this paper.

References

- [1] R. Diestel, Graph Theory, Springer-Verlag, 2nd edition, 2000.
- [2] P. Erdős, A. W. Goodman, and L. Pósa, The representation of a graph by set intersections, Canad. J. Math., 18, (1966), 106–112.
- [3] E. Györi, and A. V.Kostochka, On a problem of G. O. H. Katona and T. Tarján, Acta Math. Acad. Sci. Hungar., 34, (1979), 321–327.
- [4] F. Harary, Graph theory, Addison-Wesley, 1972.