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Abstract

We investigate the maximum number of elements in an optimal t-friendship

decomposition of graphs of order n. Asymptotic results will be obtained for all

fixed t ≥ 4 and for t = 2, 3 exact results will be derived.

1 Introduction and Terminology

For notation and terminology not discussed here the reader is referred to [?]. All graphs

considered here are finite and simple, i.e., they have no loops or multiple edges. Let

G be a simple graph with vertex set V = V (G) and edge set E = E(G). The set of

neighbors of v is denoted by NG(v) or briefly by N(v) if it is clear which graph is being

considered. We always have v /∈ N(v). Let NG(v) = V − (NG(v) ∪ {v}). A clique is

a complete graph and the complete bipartite graph with parts of size m and n will be

denoted by Km,n. A graph of the form K1,m with possible some isolated vertices will

be called a star. The center of a star is its vertex of maximum degree.
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Let t ≥ 1 be fixed. A graph that consists of t edge disjoint cliques sharing a

vertex v is said to be a t-friendship graph (t-fs graph) with center v. A t-friendship

decomposition of a graph G is a set, F , of edge disjoint t-friendship subgraphs of G,

such that any edge of G is an edge of exactly one element of F . For t ≥ 1 let φt(G)

denote the minimum number of t-friendship graphs in a t-friendship decomposition of

the graph G and φt(n) = max φt(G) where G runs over all graphs of order n. In [2]

Erdös, Goodman and Pósa proved that φ1(n) = �n2/4�. In our paper we will study

the function φt(n) for every fixed t ≥ 2. For t ≥ 4 asymptotic results will be obtained

and for t = 2, 3 the exact value will be derived.

2 t-Friendship Decompositions

We start by studying the decomposition problem of any graph of order n into t-friendship

graphs, for all fixed t ≥ 2. This problem will be asymptotically solved. However, for

t = 2, 3 we will be able to improve our proof in order to obtain exact results.

Theorem 2.1. Any graph of order n admits a t-friendship decomposition with at most
n2

4t
+ n

4t
+ n elements, for all fixed t ≥ 2.

To prove the theorem we will need the following trivial lemma:

Lemma 2.2. [3] Let G be an arbitrary graph of order n such that deg v ≥ d for every

vertex v of G. Then there exists a partition of V (G) such that the number of the classes

of the partition is n− d and such that every class of the partition spans a clique. �

Proof of Theorem 2.1. By induction on the number of vertices in a graph. The theorem

is obviously true for n = 2. Let v be a vertex of minimum degree and let δ := δ(G).

If δ ≤ n/2 we consider the edges incident with v as
⌈
deg v
t

⌉
elements of a t-fs

decomposition and consider an optimal decomposition of G− v. Then

φt(G) ≤ φt(G− v) +

⌈
δ

t

⌉
. (2.1)

If δ > n/2 then degG[N(v)](u) ≥ δ − 1− (n− δ − 1) = 2δ − n > 0, for all u ∈ N(v).

Lemma 2.2 implies that there exists a partition {R1, . . . , Rn−δ} of N(v) such that G[Ri]
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is a clique, for i = 1, . . . , n− δ. Then G[Ri ∪ {v}] is also a clique for i = 1, . . . , n− δ.

Therefore by grouping all these cliques into t-tuples we obtain �n−δ
t
	 t-fs graphs and

combining them with an optimal t-fs decomposition of the remaining graph H , where

V (H) = V − {v} and E(H) = E(G)− ∪n−δ
i=1 E(G[Ri ∪ {v}]), we obtain

φt(G) ≤ φt(H) +

⌈
n− δ

t

⌉
. (2.2)

Let n = 2tk + r, with 0 ≤ r < 2t. If δ ≤ n/2 then from (2.1) we obtain

φt(G) ≤ φt(G− v) + k + 1.

If δ > n/2 then (2.2) implies that

φt(G) ≤ φt(H) + k + 1.

Therefore,

φt(G) ≤ (n− 1)2

4t
+

n− 1

4t
+ n− 1 + k + 1

≤ (n− 1)2

4t
+

n− 1

4t
+ n− 1 +

n− r

2t
+ 1

≤ n2

4t
+

n

4t
+ n.

By considering the graph K�n
2
�,�n

2
� we trivially have that φt(n) ≥ φt(K�n

2
�,�n

2
�) ≥

�n
2
��n

2
	/t ≥ n2−1

4t
. Therefore, for fixed t ≥ 2 the decomposition problem into t-

friendship graphs is asymptotically solved and we have the following theorem.

Theorem 2.3.

φt(n) =

(
1

4t
+ o(1)

)
n2, for all fixed t ≥ 2.

3 2-Friendship Decompositions

For the special case of t = 2 the proof of Theorem 2.1 can be improved to give us the

exact value of φ2(n), for all n ≥ 1.
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Theorem 3.1. Any graph of order n can be decomposed into at most �n2/8	 2-friendship
graphs if n is even and at most (n2 − 1)/8 2-friendship graphs if n is odd. Moreover,

this bound is sharp for the bipartite graph K�n
2
�,�n

2
�.

Proof. By induction on the number of vertices in a graph. Clearly the result holds

for all graphs with at most three vertices. Let G be a graph having n vertices where

n ≥ 4. Let v be a vertex of minimum degree and let δ := δ(G). Let n = 4k + r,

with 0 ≤ r ≤ 3 and k ≥ 1. The theorem follows directly from (2.1) or (2.2) and the

induction hypothesis for all values of n except for n = 4k+3 and δ ∈ {2k+1, 2k+2}.
Let n = 4k + 3 and δ = 2k + 1. If G[N(v)] has an edge, say e, then the edge e and

the edges incident with v form at most k 2-fs graphs. Hence

φ2(G) ≤ φ2(G− v − e) + k ≤
⌈
(n− 1)2

8

⌉
+ k =

n2 − 1

8
.

Assume that G[N(v)] has no edges and let u ∈ N(v). Then deg u ≤ 2k + 2 and we

have

φ2(G) ≤ φ2(G− {v, u}) +
⌈
deg v − 1

2

⌉
+

⌈
deg u

2

⌉
=

n2 − 1

8
.

Finally, let n = 4k + 3 and δ = 2k + 2. In this case degG[N(v)](u) ≥ 1, for all

u ∈ N(v). If degG[N(v)](u) ≥ 2, for all u ∈ N(v), then by Lemma 2.2 the edges incident

with v can be decomposed into at most k 2-fs graphs and the result follows by the

induction hypothesis. Suppose that degG[N(v)](u) = 1 for some u ∈ N(v). In this

case observe that deg u = 2k + 2 and let w ∈ N(v) be adjacent to u. Consider the

2-fs graph, F , with edges vu, vw, uw and uw′ for some w′ ∈ N(u) − {v, w}. Observe

that such w′ exists since we assumed that k ≥ 1. Let G1 be the graph obtained after

deleting the edges of F . Then degG1
(v) = 2k and degG1

(u) = 2k − 1. Therefore,

φ2(G) ≤ φ2(G1 − {v, u}) +
⌈
degG1

(v)

2

⌉
+

⌈
degG1

(u)

2

⌉
+ 1

≤ (n− 2)2 − 1

8
+ 2k + 1 =

n2 − 1

8
.

To complete the proof it remains to see that the bound is sharp for K�n
2
�,�n

2
�. We

trivially have φ2(K�n
2
�,�n

2
�) ≥ �|E(K�n

2
�,�n

2
�)|/2	, therefore φ2(K�n

2
�,�n

2
�) ≥ �n2/8	 if n is

even and φ2(K�n
2
�,�n

2
�) ≥ (n2 − 1)/8 if n is odd, hence the equality.
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4 3-Friendship Decompositions

As we did for 2-friendship decompositions of graphs we can also obtain exact results

for 3-friendship decompositions of graphs. However, in this case, the calculations will

not be so straightforward as they were for the case t = 2. Next theorem is our main

result of this section.

Theorem 4.1. Any graph of order n, except the 5-cycle, can be decomposed into at

most �n2/12	 3-friendship graphs if n is even and at most �(n2 − 1)/12	 3-friendship

graphs if n is odd. Moreover, this bound is sharp for the bipartite graph K�n
2
�,�n

2
�.

Before proving the general case, and for the sake of simplicity, we will see that

Theorem 4.1 holds for some special types of graphs needed later.

Lemma 4.2. Theorem 4.1 holds for bipartite graphs.

Proof. Let G be a bipartite graph of order n with parts A and B of size s and t

respectively. We will see that φ3(G) ≤ �st/3	.
Let s = 3k1 + r1 and t = 3k2 + r2 with 0 ≤ r1 ≤ 2 and 0 ≤ r2 ≤ 2. Assume r1 ≤ r2.

Let A = A1 ∪ A2 where |A1| = 3k1 and |A2| = r1 and B = B1 ∪ B2 where |B1| = 3k2

and |B2| = r2. Consider the subgraph induced by A ∪ B1. Clearly its edges can be

decomposed into at most sk2 3-fs graphs. Now consider the subgraph induced by A1∪B2

and remove all 3-fs graphs with centers in B2, at most r2k1 of them. Finally, observe

that the edges left have endpoints in A2∪B2, hence it suffices to remove all 3-fs graphs

with centers in A2, at most r1 of them. Therefore, φ3(G) ≤ sk2 + r2k1 + r1 ≤ ⌈
st
3

⌉
,

where the last inequality follows from the fact that 0 ≤ r1 ≤ r2 ≤ 2. Moreover, �st/3	
is at most �(s+ t)2/12	 if s+ t is even and at most

⌈
(s+t)2−1

12

⌉
if s+ t is odd.

To complete the proof it remains to observe that for s = �n/2� and t = �n/2	
�st/3	equals �n2/12	 if n is even and �(n2 − 1)/12	 if n is odd.

Given a graph G and two disjoint sets A,B ⊆ V (G) we denote by G[A,B] the

bipartite graph with all the edges of G with one endpoint in A and the other in B.

Recall that a star with center y is a graph of the form K1,m with possible some isolated

vertices where y is its vertex of maximum degree.
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Lemma 4.3. Let G be a graph with n = 6k + 5 vertices and minimum degree 3k + 2.

Let v be a vertex of minimum degree and assume that G[N(v)] has no edges, G[N(v)]

is a star or an empty graph and G[N(v), N(v)] is a complete bipartite graph. Then G

admits a 3-friendship decomposition with at most �(n2−1)/12	 = 3k2+5k+2 elements.

Proof. Let N(v) = {u1, . . . , u3k+1, u} and N(v) = {y1, . . . , y3k+1, y} and let y be the

center of the star (in case G[N(v)] is an empty graph, y is any vertex in N(v)). For

i = 1 . . . 3k+1 remove the 3-fs graph induced by the vertices ui, y, yi, v. In this step we

removed 3k+1 3-fs graphs. Now G[N(v)] has no edges and we are left with a bipartite

graph. Hence it suffices to remove all 3-fs graphs with centers in N(v). Observe that

in the remaining graph deg ui = 3k for i = 1, . . . 3k + 1 and deg u = 3k + 3 so all these

edges can be decomposed into at most k(3k + 1) + k + 1 3-fs graphs. Therefore,

φ3(G) ≤ 3k + 1 + k(3k + 1) + k + 1 = 3k2 + 5k + 2.

Lemma 4.4. Let G be a graph with n = 6k+5 vertices and minimum degree 3k+3. Let

v be a vertex of minimum degree and assume that G[N(v)] = K1,3k+2, G[N(v)] has no

edges, and G[N(v), N(v)] is a complete bipartite graph. Then G admits a 3-friendship

decomposition with at most 3k2 + 4k + 2 < �(n2 − 1)/12	 elements.

Proof. Let N(v) = {u1, . . . , u3k+2, u}, let u be adjacent to all vertices of N(v) and let

N(v) = {y1, . . . , y3k+1}. The edges incident with u and the edges vu3k+2, u1y1, u2y2,

· · · , u3k+1y3k+1 can be decomposed using k + 1 3-fs graphs as described by Figure 1.

Remove all edges incident with yi except the edge yiu3k+2 for i = 1, . . . , 3k and all

edges incident with y3k+1 except the edge y3k+1u1. In total we removed k(3k + 1) 3-fs

graphs. The edges left can be decomposed using 2k + 1 3-fs graphs. Therefore,

φ3(G) ≤ k + 1 + k(3k + 1) + 2k + 1 = 3k2 + 4k + 2.

Lemma 4.5. Let G be a graph with n = 6k+5 vertices and minimum degree 3k + 3. Let

v be a vertex of minimum degree. Assume that G[N(v)] has no edges, G[N(v), N(v)] is

a complete bipartite graph and G[N(v)] looks like the graph described in Figure 2 with

the edge {w1, w2} being present or not. Then G admits a 3-friendship decomposition

with at most �(n2 − 1)/12	 = 3k2 + 5k + 2 elements.
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u

ui yi ui+1 yi+1 ui+2 yi+2

u

y3k+1 u3k+1 vu3k+2

Figure 1: i ≡ 1 (mod 3) and i ≤ 3k − 2

· · ·

w1

w2

u1

u2 u3
u3k+1

Figure 2: An illustration of the graph G[N(v)] as in Lemma 4.5

Proof. LetN(v) = {u1, . . . , u3k+1, w1, w2}, N(v) = {y1, . . . , y3k+1} and degG[N(v)] ui = 2

for all i = 1, . . . , 3k + 1.

We first consider the case 3k+1 even. We start our 3-fs decomposition by removing

the 3-fs graphs with edge sets yiui, yiw1, uiw1, yiw2, yiui+1, ui+1w2, and yi+1ui, yi+1w2,

uiw2, yi+1w1, yi+1ui+1, ui+1w1, where 1 ≤ i ≤ 3k + 1 and i is odd (See Figure 3).

We remove 3k + 1 3-fs graphs. After this first step the edges left are incident with

the vertices v, y1, . . . , y3k+1 and we might also have the edge w1w2. Furthermore, in

the graph left v has degree 3k + 3 and the vertices y1, . . . , y3k+1 have degree 3k − 1.

Therefore, the edges incident with v and the edge w1w2 if it exists, can be decomposed

using at most k + 1 3-fs graphs and for 1 ≤ i ≤ 3k + 1 the edges incident with yi can

be decomposed using at most k 3-fs graphs.

Therefore,

φ3(G) ≤ 3k + 1 + k + 1 + (3k + 1)k = 3k2 + 5k + 2.

Suppose that 3k+1 is odd. We repeat the procedure described before to decompose

all the edges incident y1, . . . , y3k. In total we remove 3k + 3k2 3-fs graphs. If the edge

w1w2 exists then the vertices w1, w2 and u3k+1 induce a triangle, so the edges incident

with v plus the above triangle can be decomposed into k + 1 3-fs graphs. The edges

left are incident with y3k+1 and can be decomposed using k+1 3-fs graphs. If the edge
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w1w2 is not in the graph then the edge w1u3k+1 and the edges incident with v can be

decomposed into k + 1 3-fs graphs and the edge w2u3k+1 and the edges incident with

y3k+1 can be decomposed into k + 1 3-fs graphs and this completes the proof.

w1

w2

ui

ui+1

yi yi+1

Figure 3: Decomposition used in the proof of Lemma 4.5

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. By induction on the number of vertices in a graph. By inspec-

tion, and using Harary’s [4] atlas of all graphs of order at most 5, we can see that the

result holds for all graphs with at most 5 vertices. Let G be a graph having n vertices,

where n ≥ 6. Let v be a vertex of minimum degree and let δ := δ(G).

Let n = 6k + r, with 0 ≤ r ≤ 5 and k ≥ 1. The result follows directly from (2.1)

or (2.2) and the induction hypothesis for all values of n except for n = 6k + 3 and

δ ∈ {3k + 1, 3k + 2} and for n = 6k + 5 and δ ∈ {3k + 1, 3k + 2, 3k + 3, 3k + 4}.
Consider the case n = 6k + 3 and δ = 3k + 1. If G[N(v)] has an edge, say e, then

the edges incident with v and the edge e form at most k 3-fs graphs, hence

φ3(G) ≤ φ3(G− v − e) + k ≤
⌈
(n− 1)2

12

⌉
+ k =

⌈
n2 − 1

12

⌉
.

Assume that G[N(v)] has no edges and let u ∈ N(v). Then deg u ≤ 3k + 2 and we

have

φ3(G) ≤ φ3(G− {v, u}) +
⌈
deg v − 1

3

⌉
+

⌈
deg u

3

⌉
=

⌈
n2 − 1

12

⌉
.
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Let n = 6k + 3 and δ = 3k + 2. Then degG[N(v)](u) ≥ 1 for all u ∈ N(v). If

degG[N(v)](u) ≥ 2, for all u ∈ N(v), then using Lemma 2.2 we can decompose the edges

incident with v and some edges in G[N(v)] into at most k 3-fs graphs and the result

follows by induction. Suppose that degG[N(v)](u) = 1 for some u ∈ N(v). In this case

observe that deg u = 3k + 2 and let w ∈ N(v) be adjacent to u. Consider the 3-fs

graph, F , with edges vu, vw, uw, vx and vy for some x, y ∈ N(v) − {u, w}. Observe

that such x, y exist since we assumed that k ≥ 1. Let G1 be the graph obtained after

deleting the edges of F . Then degG1
(v) = 3k − 2 and degG1

(u) = 3k. Therefore,

φ3(G) ≤ φ3(G1 − {v, u}) +
⌈
degG1

(v)

3

⌉
+

⌈
degG1

(u)

3

⌉
+ 1 =

⌈
n2 − 1

12

⌉
.

From now and until the end of the proof let n = 6k + 5. Observe that

⌈
n2 − 1

12

⌉
=

⌈
(n− 1)2

12

⌉
+ k =

⌈
(n− 2)2 − 1

12

⌉
+ 2k + 1.

Let δ = 3k + 1. If G[N(v)] has an edge e then the e and the edges incident with

v form at most k 3-fs graphs and we are done. Assume that G[N(v)] has no edges

and let u ∈ N(v). Then deg u ≤ 3k + 4. By Lemma 4.2 we can assume that G is not

bipartite, so G[N(v)] must have at least one edge. Therefore the edges incident with v

and u form at most 2k + 1 3-fs graphs and the result holds.

Let δ = 3k + 2. If degG[N(v)](u) ≥ 2, for all u ∈ N(v), then using Lemma 2.2 we

can decompose the edges incident with v into at most k 3-fs graphs. Suppose first that

exists u ∈ N(v) such that degG[N(v)](u) = 1, then deg u ≤ 3k+ 4. Therefore, the edges

incident with v and u can be decomposed into at most 2k + 1 3-fs graphs.

Now suppose that for all u ∈ N(v) we have either degG[N(v)](u) = 0 or degG[N(v)](u) ≥
2. If the latter condition happens then it is not hard to see that N(v) must contain

at least 2 independent edges or a triangle. Thus, the edges incident with v can be

decomposed into at most k 3-fs graphs and the result follows by induction. Therefore

it remains to consider the case when degG[N(v)](u) = 0 for all u ∈ N(v).

(a) If deg u = 3k + 3 for all u ∈ N(v) then G[N(v), N(v)] is a complete bipartite

graph. Let u ∈ N(v). By Lemma 4.2 we can assume that G is not bipartite, that is,
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G[N(v)] must have at least one edge. If G[N(v)] has 2 independent edges or a triangle

then the edges incident with v and u can be decomposed into at most k + 1 and k

3-fs graphs respectively and the result follows by induction. If G[N(v)] has at most

one independent edge and no triangles, then G[N(v)] is a star and our graph is as in

Lemma 4.3 so the result holds.

(b) Suppose now that exists u ∈ N(v) such that deg u = 3k + 2. Then ∃ y ∈ N(v)

such that u is not adjacent to y. If G[N(u)] has an edge then the edges incident with

v and u can be decomposed into at most 2k + 1 3-fs graphs. If G[N(u)] has no edges

then all edges in G[N(v)] are incident with y, i.e., G[N(v)] is a star with center y.

Assume first that G[N(v)] has exactly one edge, say yy′. Then y and y′ must have

at least one common neighbor in N(v), say u′. Remove the 3-fs graph with edges

u′y, u′y′, yy′, u′y1, u′y2, for some y1, y2 ∈ N(v) − {y, y′}. The graph left is bipartite,

hence it suffices to remove all 3-fs graphs with centers in N(v). Let u1, . . . , u3k be the

remaining vertices of N(v). Observe that deg ui = 3k + 3, for i = 1, . . . , 3k. Then,

φ3(G) ≤ 1 +

⌈
deg u

3

⌉
+

⌈
deg u′ − 4

3

⌉
+ 3k

⌈
deg u1

3

⌉

≤ 1 + k + 1 + k + 3k(k + 1) =

⌈
n2 − 1

12

⌉
.

Now, assume that G[N(v)] has at least 2 edges. If G[N(u′)] has an edge for some

u′ ∈ N(v), say yy1, we remove the 3-fs graph with edges u′y, u′y1, yy1, y1u, y1u′′, for

some u′′ ∈ N(v)− {u, u′}. Then,

φ3(G) ≤ φ3(G− {v, u, u′, y1})+

+

⌈
deg v

3

⌉
+

⌈
deg u− 2

3

⌉
+

⌈
deg u′ − 3

3

⌉
+

⌈
deg y1 − 4

3

⌉
+ 1

≤
⌈
(n− 4)2 − 1

12

⌉
+

⌈
3k + 2

3

⌉
+

⌈
3k

3

⌉
+

⌈
3k

3

⌉
+

⌈
3k − 1

3

⌉
+ 1

≤ 3k2 + k + 4k + 2 =

⌈
n2 − 1

12

⌉
.

If N(u′) has no edge for all u′ ∈ N(v) then G ⊆ K3k+3,3k+2 and the result follows from

Lemma 4.2.

Let δ = 3k + 3. Then degG[N(v)](u) ≥ 1, for all u ∈ N(v). If degG[N(v)](u) ≥ 3, for
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all u ∈ N(v), then by Lemma 2.2 we can decompose the edges incident with v and

some other edges in G[N(v)] into at most k 3-fs.

(a) Assume first that exists u ∈ N(v) such that degG[N(v)] u = 1, then deg u = 3k+3.

If G[N(v)] has an edge, say e, then the edge e and the edges incident with v and u can

be decomposed into at most 2k+1 3-fs graphs (see Figure 4(i)). If G[N(v)] has no edges

then G[N(v), N(v)] is a complete bipartite graph. So, if G[N(v)] has 2 independent

edges then the edges incident with u and y, for some y ∈ N(v) can be decomposed

into at most 2k+1 3-fs graphs and the result follows (see Figure 4(ii)). If G[N(v)] has

only one independent edge then G[N(v)] = K1,3k+2 and Lemma 4.4 applies.

(i)

u

v

(ii)

u

y

Figure 4: δ = 3k + 3 case (a)

(b) Assume that for all u ∈ N(v), degG[N(v)] u ≥ 2 and that exists u ∈ N(v) such

that degG[N(v)] u = 2. Let u be adjacent to w1 and w2. Observe that G[N(v)] has

at least 2 independent edges since degG[N(v)] u ≥ 2 for all u ∈ N(v). If there exist 3

independent edges in G[N(v)] then the 3 independent edges and the edges incident

with v can be decomposed into k 3-fs graphs. So assume that G[N(v)] has exactly 2

independent edges. In this case G[N(v)] looks like Figure 2, unless k = 1 and N(v)

consists of 2 vertex disjoint triangles and in this case the result holds. Assume first

that w1 and w2 are adjacent. If exists u′ ∈ N(v)− {w1, w2} such that deg u′ = 3k + 3

then the edges incident with v and u′ form at most 2k+1 3-fs graphs and we are done.

Assume that deg u′ = 3k+4 for all u′ ∈ N(v)−{w1, w2}. If G[N(v)] has no edges then

Lemma 4.5 applies. If G[N(v)] has an edge then we are able to decompose the edges

incident with v and u′ into at most 2k + 1 3-fs graphs.
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u′

v

w1

w2

u′

v

w1

w2

Figure 5: δ = 3k + 3 case (b) and w1 adjacent to w2

Now suppose that w1 and w2 are not adjacent. Then w2 must have at least one

neighbor in N(v). If w2 has exactly one neighbor in N(v), say y then degw2 =

3k + 3. Furthermore, y must be adjacent to some u1 ∈ N(v) − {w1, w2}. Thus we

can decompose the edges incident with v and w2 using at most 2k+1 3-fs graphs. (see

Figure 6(i))

Suppose w2 has at least two neighbors in N(v) and let y and y′ be two of them.

If exists u1 ∈ N(v) such that deg u1 = 3k + 3 then u1 is adjacent to at least one of

y or y′, say y and we apply induction to G − {v, u1}. (see Figure 6(ii)) Assume that

deg x = 3k + 4 for all x ∈ N(v) − {w1, w2} and let u1 ∈ N(v). If N(v) has no edges

then the result follows from Lemma 4.5. Let N(v) have at least one edge, say e. If

e = {y, y′} then there exits a K4 incident with u1, otherwise there exist two triangles

incident with u1. In both cases we can decompose the edges incident with v and u1,

using at most 2k + 1 3-fs graphs.

Let δ = 3k + 4. Then degG[N(v)](u) ≥ 3, for all u ∈ N(v).

(a) If degG[N(v)](u) ≥ 4 for all u ∈ N(v) the result follows by Lemma 2.2 and the

induction hypothesis.

(b) Suppose that exists u ∈ N(v) such that degG[N(v)](u) = 3. Then degG(u) =

3k + 4. Observe that u is adjacent to all elements of N(v). Let u be adjacent to

u1, u2, u3 in N(v). Because of degree constraints, u3 is adjacent to both u1 and u2 or

has a neighbor in N(v), say w. We have to consider three distinct cases.

(i) G[N(v)] has an edge, say xy and u3 is adjacent to u1 or u2, say u2;
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(i)

u1

v

w1

w2

y

(ii)

u1

v

w1

w2

y

Figure 6: δ = 3k + 3 case (b) and w1 not adjacent to w2

(ii) G[N(v)] has an edge, say xy and u3 is not adjacent to u1 and u2. In this case u3

has a neighbor in N(v)− {x, y}, say w;

(iii) G[N(v)] has no edges. In this case observe that all vertices in N(v) are adjacent

to all vertices in N(v).

In all these cases Figure 7 shows that we can always decompose the edges incident with

v and u using at most 2k + 1 3-fs graphs. This completes the proof.

(i)

u

v

u1

u2

u3

x y

(ii)

u

v

u1

u2

u3

x y w

(iii)

u

v

u1

u2

u3

Figure 7: case δ = 3k + 4

Open questions: It remains an interesting problem to better estimate the function

φt(n) for a fixed t ≥ 4, now known to satisfy n2

4t
≤ φt(n) ≤ n2

4t
+ n

4t
+ n. The first open

13



instance of this problem is the case t = 4 and in this case we conjecture that φ4(n)

equals
⌈
n2

16

⌉
if n is even and

⌈
n2−1
16

⌉
if n is odd.
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