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Abstract

Given graphs G and H , an H-decomposition of G is a partition
of the edge set of G such that each part is either a single edge or
forms a graph isomorphic to H . Let φH(n) be the smallest number
φ such that any graph G of order n admits an H-decomposition with
at most φ parts. Here we study the case when H = C7, that is, the
cycle of length 7 and prove that φC7(n) = �n2/4� for all n ≥ 10.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The
number of vertices of a graph is its order and is denoted by v(G). The
number of edges is denoted by e(G). The degree of a vertex v is the number
of edges incident with v and will be denoted by degG v or simply by deg v
if it is clear which graph is being considered. The set of neighbors of v
is denoted by NG(v) or briefly by N(v). For A ⊆ V (G) we denote by
deg(v,A) the number of neighbors that v has in the set A. For U ⊆ V (G),
the induced subgraph G[U ] is the subgraph of G with vertex set U and the
edges of G with both endpoints in U . The complement G of G is the graph
with vertex set V (G) defined by {u, v} ∈ E(G) if and only if {u, v} /∈ E(G).

Given two graphs G and H , an H-decomposition of G is a partition
of the edge set of G such that each part is either a single edge or forms
an H-subgraph, i.e., a graph isomorphic to H . We allow partitions only,
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that is, every edge of G appears in precisely one part. Let φH(G) be the
smallest possible number of parts in an H-decomposition of G.

It is easy to see that, for non-empty H , φH(G) = e(G)−pH(G)(e(H)−
1), where pH(G) is the maximum number of pairwise edge-disjoint H-
subgraphs that can be packed into G. Building upon a body of previous
research, Dor and Tarsi [3] showed that if H has a component with at least
3 edges then the problem of checking whether an input graph G is perfectly
decomposable into H-subgraphs is NP-complete. Hence, it is NP-hard to
compute the function φH(G) for such H .

Here we study the function

φH(n) = max{φH(G) | v(G) = n},
which is the smallest number such that any graph G of order n admits an
H-decomposition with at most φH(n) parts. Motivated by the problem
of representing graphs by set intersections, Erdös, Goodman and Pósa [4]
proved that φK3(n) = t2(n), where Kr denotes the complete graph (clique)
of order r, and tr(n) is the maximum number of edges in an r-partite graph
on n vertices. This result was extended by Bollobás [1], who proved that

φKr (n) = tr−1(n), for all n ≥ r ≥ 4.

In general, for any fixed graphH the exact value of the function φH(n) is
still unknown. However, Pikhurko and Sousa [5] determined the asymptotic
of φH(n) for any fixed graph H as n tends to infinity. In particular, for a
non-bipartite graph H they proved the following.

Theorem 1.1. Let H be any fixed graph with chromatic number r ≥ 3.
Then,

φH(n) = tr−1(n) + o(n2).

Therefore,

φC2t+1(n) =

⌊
n2

4

⌋
+ o(n2),

where C2t+1 denotes the odd cycle on 2t+ 1 vertices, for t ≥ 1.
Unfortunately, for t ≥ 4 the exact value of the function φC2t+1(n) is still

unknown. The author [6] proved that

φC5(n) =

⌊
n2

4

⌋
, for all n ≥ 6.

Using the same ideas as in [6] we can determine the exact value of the
function φC7(n) for all n ≥ 10. Unfortunately, it seems difficult to extend
this method to give us the exact value of the function φC2t+1(n) for all
t ≥ 4. We prove the following theorem.
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Theorem 1.2.

φC7(n) =

⌊
n2

4

⌋
, for all n ≥ 10.

The upper bound will be proved in Section 2 and the lower bound
follows from the trivial inequality

φC7(n) ≥ φC7(K�n
2 �,�n

2 �) =
⌊
n2

4

⌋
,

where Kt,s denotes the complete bipartite graph with parts of size t and s.

2 Proof of Theorem 1.2

In this section we prove the upper bound of Theorem 1.2. Before presenting
the proof we need to state and prove some results that will be needed later.
The first observation is that the complete graph on 7 vertices contains 3
edge disjoint C7’s (see Figure 1).

Figure 1: K7 and the 3 edge disjoint C7’s.

Recall that the Turán function, denoted by ex(n,H), is the maximum
number of edges that a graph on n vertices can have without containing H
as a subgraph.

The following result was obtained by Yang Yuansheng using the same
computer algorithm as in [7].

Lemma 2.3. ex(10, C7) = 25 and the only graphs with 10 vertices, 25
edges and no copy of C7 are the complete bipartite graph K5,5 and a K5

plus a K6 sharing a vertex, denoted by K5 •K6.
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Lemma 2.4. φC7(10) = 25.

Proof. The lower bound follows from φC7(10) ≥ ex(10, C7) = 25. We will
now prove the upper bound. Let G be a graph with 10 vertices. Our aim
is to prove that φC7(G) ≤ 25. We have to consider a few cases.

If e(G) ≤ 25 then it suffices to decompose G into single edges.
Assume 26 ≤ e(G) ≤ 43. Suppose first that e(G) �= 32, 38, 39. The

upper bound follows since we can greedily remove copies of C7 and then
remove the remaining edges. Suppose e(G) = 32 (resp. e(G) = 39) and
suppose that G contains exactly one C7 (resp. two C7’s). Let G∗ be
the graph obtained from G after deleting the edges of the C7(’s). Then,
e(G∗) = 25 and G∗ contains no C7. By Lemma 2.3 G∗ is either K5,5 or
K5 •K6. Therefore, the complement of G∗ must contain a C7, which is a
contradiction since the complement of G∗ is either K4,5 or 2 vertex disjoint
K5’s. Therefore, G contains at least two (resp. three) edge-disjoint C7’s
and the result follows.

Consider the case e(G) = 38. It suffices to find 3 edge disjoint C7’s in
G. This is true if G contains a K7 (see Figure 1). Since e(G) ≥ t4(10) = 37
it follows that G contains a K5. We now have to consider two cases.

Case 1: G contains a K6 and no K7.
Let V (K6) = {1, 2, 3, 4, 5, 6} and A = V (G) − V (K6). Observe that

deg(y, V (K6)) ≤ 5 for all y ∈ A, since G contains no K7. Then, e(G[A]) ≥
3. Suppose first that e(G[A]) = 3, then deg(y, V (K6)) = 5 for all y ∈ A.
Let y1 and y2 be adjacent vertices in G[A] and suppose that y1 is adjacent
to 1, 2, 3, 4, 5. Then,

y1, 2, 1, 6, 5, 4, 3, y1 and y1, 1, 3, 5, 2, 6, 4, y1

form two edge disjoint C7’s. If the vertex y2 is adjacent to 3 we have
y1, 5, 1, 4, 2, 3, y2, y1, otherwise we have y2, 5, 1, 4, 2, 3, 6, y2. We have found
3 edge disjoint C7’s as wanted.

Assume that e(G[A]) = 4. Then, there are y1, y2, y3 ∈ A such that
deg(yi, V (K6)) = 5 for all i = 1, 2, 3. Without loss of generality assume y1
and y2 are adjacent in G[A] and the result holds as before.

Finally, suppose e(G[A]) ≥ 5. Then, there are y1, y2 ∈ A such that y1
is adjacent to y2, deg(y1, V (K6)) = 5 and deg(y2, V (K6)) ≥ 4. In this case
G[A] is either a K4 or a K4 minus one edge and since y1 is adjacent to y2,
it follows that the edge y1y2 belongs to a C4 in G[A]. Let y1 be adjacent to
1, 2, 3, 4, 5. Since y1 and y2 must have at least 3 common neighbors in K6,
we can assume, without loss of generality, that y2 is adjacent to vertices
1, 2, 3 of K6. Then, Figure 2 shows that G contains 3 edge disjoint C7’s as
required.

Case 2: G contains a K5 and no K6.
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Figure 2: e(G[A]) ≥ 5.

Let V (K5) = {1, 2, 3, 4, 5} and let A = V (G) − V (K5). Observe that
deg(y, V (K5)) ≤ 4 for all y ∈ A, since G contains no K6. Therefore,
e(G[A]) ≥ 8. Suppose first that e(G[A]) = 8, then deg(y, V (K5)) = 4 for
all y ∈ A and there are only two possible graphs G[A]. Let y1 and y2 be
adjacent vertices in G[A] such that degG[A](y1) = 4 and degG[A](y2) = 3.
Without loss of generality let y1 be adjacent to 1, 2, 3, 4. If y1 and y2 have
at least 3 common neighbors in V (K5), say 1,2,3, then Figure 3 shows that
G contains 3 edge disjoint C7’s for the two possible graphsG[A]. Otherwise,
y2 is adjacent to 1, 2, 4, 5 or to 1, 3, 4, 5. Suppose the first case holds, the
second follows by symmetry. Then, Figure 3 holds with y1, 2, 1, 4, 5, 3, y2, y1
replaced by y1, 2, 1, 4, 3, 5, y2, y1.

If e(G[A]) = 9, then there are vertices y1, y2, y3, y4 ∈ A such that
deg(yi, V (K5)) = 4 for i = 1, 2, 3, 4. A similar case analysis shows that
the results obtained in Figure 3 also hold. Let e(G[A]) = 10. Thus, there
exist y1, y2 ∈ A such that deg(yi, V (K5)) = 4 for i = 1, 2 and we are done
as before.

To finish the proof suppose e(G) = 44 or e(G) = 45. Then, we can easily
find 4 edge disjoint C7’s in G. Let V (G) = {v, y, v1, v2, v3, v4, x1, x2, x3, x4}
and without loss of generality we can suppose that the edge {v, y} is not
present if G �= K10. Then, for i = 1, 2, 3, 4 with indices taken cyclically,

v, vi, xi, y, vi+1, xi+2, xi+3, v

are 4 edges edge disjoint C7’s in G.

We are now able to prove the upper bound in Theorem 1.2.
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Figure 3: e(G[A]) = 8.

Proof of the upper bound in Theorem 1.2. By induction on the number of
vertices. Lemma 2.4 proves the result for n = 10. Assume that it is true
for all graphs of order n− 1 and note that for any positive integer n

⌊
n2

4

⌋
=

⌊
(n− 1)2

4

⌋
+
⌊n
2

⌋
.

Let G be a graph of order n ≥ 11. Let v be a vertex of minimum
degree, say deg v = d + m where d =

⌊
n
2

⌋
and m is an integer. If m ≤ 0

then going from G− v to G we only need to use the edges joining v to the
other vertices of G and there are at most

⌊
n
2

⌋
of these, so the induction

hypothesis implies the result.
Let m ≥ 1. If there arem edge disjoint C7’s containing v, then the d+m

edges incident with v can be decomposed into at most m+(d+m−2m) = d
edge disjoint C7’s and single edges and the result follows by induction. To
complete the proof, it remains to show that we can always find m edge
disjoint C7’s containing v.

Assume first that G is not the complete graph. Recall that deg(y,X)
denotes the number of neighbors that y has in the set X . Let x ∈ N(v)
and y ∈ N(v), where N(v) := V (G)− (N(v) ∪ {v}). We have

deg(x,N(v)) ≥ 2m− 1, (2.1)

deg(y,N(v)) ≥ 2m+ 1. (2.2)

Let x1, . . . xm ∈ N(y) ∩ N(v), X = {x1, . . . xm} and Y = N(v) − X.
Consider the bipartite graph G[X,Y ] with bipartition (X,Y ) and all the
edges of G between X and Y . Using (2.1) it is easy to see that G[X,Y ]
has an X-perfect matching, say M = {xi, vi}i=1,...,m.
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We first consider the case when N(v) contains another element different
from y, call it y′. Observe that δ(G) ≥ d +m easily implies the following
claim.

Claim 1. Let y, y′ ∈ N(v). Then, y and y′ have at least 2m common
neighbors if they are adjacent and at least 2m+ 2 otherwise.

Without loss of generality we assume that xj1 , . . . , xjt and v1, . . . , v� are
common neighbors of y and y′, where t and � integers between 0 and m.

Let a�+1, . . . , am be elements in (N(y)∩N(y′))−{xj1 , . . . , xjt , v1, . . . , v�},
which exist in view of Claim 1 and the fact thatm ≥ t. Let wjt+1 , . . . , wjm ∈
(N(y′)∩N(v))−{xj1 , . . . , xjt , v1, . . . , v�, a�+1, . . . , am}, which exist in view
of (2.2). For i ∈ {1, . . . ,m}, we define wi = xi whenever y

′ is adjacent to
xi, and for the sake of simplicity we relabel the vertices wjt+1 , . . . , wjm so
that we have a set of vertices w1, . . . wm. For 1 ≤ j ≤ � we set aj := vj .

Finally, for 1 ≤ i ≤ m, with indices taken cyclically,

v, vi, xi, y, ai+1, y
′, wi+1, v

are m edge disjoint C7’s, if m ≥ 2.
Let m = 1. Then |N(v)| ≥ 3. Assume first that y and y′ are non-

adjacent vertices. By Claim 1 there are a1, a2 ∈ N(y′) ∩N(y) − {v1, x1}.
If there is w ∈ N(y′) ∩ N(v) − {x1, v1, a1} then v, v1, x1, y, a1, y

′, w, v is
a C7. Otherwise, N(y′) ∩ N(v) = {x1, v1, a1}, a1 ∈ N(v) and we have
v, v1, x1, y, a2, y

′, a1, v. Now assume that all vertices in N(v) are pairwise
adjacent. Let y, y′, y′′ ∈ N(v) and w ∈ N(y′′) ∩ N(v) − {x1, v1}, then
v, v1, x1, y, y

′, y′′, w, v is a C7.
Suppose that y is the only element in N(v). Then, y is adjacent

to all vertices in N(v) and m ≥ 4. Let z be an element in N(v) −
{x1, . . . , xm, v1, . . . , vm}. Since δ(G) = n− 2 it follows that z must have at
least 2m−1 neighbors in {x1, . . . , xm, v1, . . . , vm}, so without loss of gener-
ality we assume that z is adjacent to every vertex in {x1, . . . , xm, v1, . . . , vm}
except perhaps xm. Again because of the minimum degree constraint there
is a ∈ (N(xm) ∩N(vm))− {v, v1, z, y}. Therefore, for 1 ≤ i ≤ m− 2,

v, vi, xi, y, vi+1, z, xi+1, v

are m− 2 edge disjoint C7’s, that together with

v, vm−1, xm−1, y, vm, z, x1, v

v, vm, a, xm, y, v1, z, v

form m edge disjoint C7’s.
To conclude the proof of the theorem it remains to consider the case

G = Kn. Recall that our goal it to find m edge disjoint C7’s incident with
v.
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Let n be even and v, y, x1, . . . , xm, v1, . . . , vm be the vertices ofG. Then,
for i = 1, . . . ,m, with indices taken cyclically,

v, vi, xi, y, vi+1, xi+2, xi+3, v,

are m edges disjoint C7’s since m ≥ 5.
Let n be odd and v, y, x1, . . . , xm, v1, . . . , vm−1 be the vertices of G.

Consider first the case m ≥ 6, that is n ≥ 13. Then, for i = 1, . . . ,m − 2,
with indices taken cyclically,

v, vi, xi, y, vi+1, xi+2, xi+3, v,

together with

v, vm−1, vm−2, vm−3, xm−1, y, xm, v

v, xm−1, xm−4, vm−3, vm−4, vm−1, y, v

are m edge disjoint C7’s.
If n = 11 then m = 5 and

v, v1, x1, y, v2, x3, x4, v

v, v2, x2, y, v3, x4, x5, v

v, v3, x3, y, v4, x5, x1, v

v, v4, x4, y, v1, v3, x2, v

v, x3, v4, v3, v2, x5, y, v

are 5 edge disjoint C7’s.

Remark: Let Kp • Kt denote a Kp plus a Kp sharing a vertex. For
n = 7, 8, 9 the graphs K6 •K2, K6 •K3 and K6 •K4 show that n = 2, 10
are the smallest values of n for which Theorem 1.2 holds.

Acknowledgement. The author thanks Oleg Pikhurko for helpful discus-
sions and comments and Yang Yuansheng for proving the results stated in
Lemma 2.3.
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