The \mathbf{H}-Decomposition Problem for Graphs

Teresa Sousa
Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal
Email: tmjs@fct.unl.pt

Received September 10, 2012; revised October 10, 2012; accepted October 17, 2012

Abstract

The concept of H-decompositions of graphs was first introduced by Erdös, Goodman and Pósa in 1966, who were motivated by the problem of representing graphs by set intersections. Given graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H. Let $\phi(n, H)$ be the smallest number ϕ, such that, any graph of order n admits an H-decomposition with at most ϕ parts. The exact computation of $\phi(n, H)$ for an arbitrary H is still an open problem. Recently, a few papers have been published about this problem. In this survey we will bring together all the results about H-decompositions. We will also introduce two new related problems, namely Weighted H-Decompositions of graphs and Monochromatic H-Decompositions of graphs.

Keywords: Graph Decompositions; Weighted Graph Decompositions; Monochromatic Graph Decompositions; Turán Graph; Ramsey Numbers

1. Introduction

1.1. Terminology and Notations

For notation and terminology not discussed here the reader is referred to [1]. A graph is a (finite) set $V=V(G)$, called the vertices of G together with a set $E=E(G)$ of (unordered) pairs of vertices of G, called the edges. We do not allow loops and multiple edges. The number of vertices of a graph is its order and is denoted by $v(G)$. The number of edges in a graph is its size and is denoted by $e(G)$. A vertex v is incident with an edge e if $v \in e$ and the two vertices incident with an edge are called its endpoints. Two vertices x, y of G are said to be adjacent or neighbors if $\{x, y\}$ is an edge of G. The degree of a vertex v is the number of edges incident with v and will be denoted by $\operatorname{deg}_{G} v$ or simply by $\operatorname{deg} v$ if it is clear which graph is being considered. The complete graph (clique) of order n will be denoted by K_{n}, the complete bipartite graph with parts of size m and n will be denoted by $K_{m, n}$ and the cycle of length n will be denoted by C_{n}.

The Turán graph of order n, denoted by $T_{r-1}(n)$, is the unique complete $(r-1)$-partite graph on n vertices where every partite class has either $\left\lfloor\frac{n}{r-1}\right\rfloor$ or $\left\lceil\frac{n}{r-1}\right\rceil$ vertices. The well-known Turán's Theorem [2] states that $T_{r-1}(n)$ is the unique graph on n vertices that has the
maximum number of edges and contains no complete subgraph of order r. We let $t_{r-1}(n)$ denote the number of edges in $T_{r-1}(n)$.

Finally, a proper colouring or simply a colouring of the vertices of G is an assignment of colours to the vertices in such a way that adjacent vertices have distinct colours; $\chi(G)$ is then the minimum number of colours in a (vertex) colouring of G. For example, $\chi\left(K_{r}\right)=r$, $\chi\left(C_{2 r}\right)=2$ and $\chi\left(C_{2 r+1}\right)=3$.

1.2. Motivation and Definitions

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms an H-subgraph, i.e., a graph isomorphic to H. We allow partitions only, that is, every edge of G appears in precisely one part. Let $\phi(G, H)$ be the smallest possible number of parts in an H-decomposition of G. It is easy to see that
$\phi(G, H)=e(G)-p_{H}(G)(e(H)-1)$, where $p_{H}(G)$ is the maximum number of pairwise edge-disjoint H-subgraphs that can be packed into G. Building upon a body of previous research, Dor and Tarsi [3] showed that if H has a component with at least 3 edges, then the problem of checking whether an input graph G is perfectly decomposable into H-subgraphs is NP-complete. Hence, it is NP-hard to compute the function $\phi(G, H)$ for such H. Therefore, the aim is to study the function

$$
\phi(n, H)=\max \{\phi(G, H) \mid v(G)=n\},
$$

which is the smallest number such that any graph G of order n admits an H-decomposition with at most $\phi(n, H)$ parts.

This function was first studied, in 1966, by Erdös, Goodman and Pósa [4], who were motivated by the problem of representing graphs by set intersections. They proved that $\phi\left(n, K_{3}\right)=t_{2}(n)$. A decade later, this result was extended by Bollobás [5], who proved that $\phi\left(n, K_{r}\right)=t_{r-1}(n)$, for all $n \geq r \geq 3$.
General graphs H were only considered recently by Pikhurko and Sousa [6]. In Section 2 we will present known results about the exact value of the function $\phi(n, H)$ for some special graphs H and its asymptotic value for arbitrary H. In Sections 3 and 4 two new H-decomposition problems will be introduced, namely the weighted version and the monochromatic version respectively.

2. \boldsymbol{H}-Decompositions of Graphs

In 1966, Erdös, Goodman and Pósa [4], who were motivated by the problem of representing graphs by set intersections, proved that $\phi\left(n, K_{3}\right)=t_{2}(n)$ and a decade later Bollobás [5] proved that $\phi\left(n, K_{r}\right)=t_{r-1}(n)$, for all $n \geq r \geq 3$. Recently, Pikhurko and Sousa [6] studied the function $\phi(n, H)$ for arbitrary graphs H. They proved the following result.

Theorem 2.1. [6] Let H be any fixed graph with chromatic number $r \geq 3$. Then,

$$
\phi(n, H)=t_{r-1}(n)+o\left(n^{2}\right) .
$$

Let ex (n, H) denote the maximum number of edges in a graph of order n, that does not contain H as a subgraph. Recall that ex $\left(n, K_{r}\right)=t_{r-1}(n)$. The same authors also made the following conjecture.

Conjecture 2.2. For any graph H with chromatic number at least 3, there is $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$ for all $n \geq n_{0}$.
The exact value of the function $\phi(n, H)$ is far from being known, however, this conjecture has been verified for some special graphs. The following results have been proved by Sousa.

Theorem 2.3. [7] For all $n \geq 6$ we have

$$
\phi\left(n, C_{5}\right)=t_{2}(n)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Theorem 2.4. [8] For all $n \geq 10$ we have

$$
\phi\left(n, C_{7}\right)=t_{2}(n)=\left\lfloor n^{2} / 4\right\rfloor .
$$

For $r \geq 3$, a clique-extension of order $r+1$ is a connected graph that consists of a K_{r} plus another vertex, say x, adjacent to at most $r-1$ vertices of K_{r}.

For $i=1, \cdots, r-1$ the $H_{r, i}$ be the clique-extension of order $r+1$ that has $\operatorname{deg} x=i$.

Theorem 2.5. [9] For all $n \geq 4$ and $i=1,2$ we have

$$
\phi\left(n, H_{3, i}\right)=t_{2}(n)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Theorem 2.6. [9] Let $r \geq 4$ and let H be any cliqueextension of order $r+1$. For all $n \geq r+1$ we have

$$
\phi(n, H)=t_{r-1}(n) .
$$

A graph H is said to be edge-critical if there exists an edge $e \in E(H)$ whose deletion decreases the chromatic number, that is, $\chi(H)>\chi(H-e)$. Cliques and oddcycles are examples of edge-critical graphs. Özkahya and Person [10] were able to prove that Pikhurko and Sousa's conjecture is true for all edge-critical graphs. Their result is the following.

Theorem 2.7. [10] Let H be any edge-critical graph with chromatic number $r \geq 3$. Then, there exists n_{0} such that $\phi(n, H)=e x(n, H)$, for all $n \geq n_{0}$. Moreover, the only graph attaining $\phi(n, H)$ is the Turán graph $T_{r-1}(n)$.

The case when H is a bipartite graph has been less studied. Pikhurko and Sousa [6] determined $\phi(n, H)$ for any fixed bipartite graph with an $O(1)$ additive error. For a non-empty graph H, let $\operatorname{gcd}(H)$ denote the greatest common divisor of the degrees of H. For example, $\operatorname{gcd}\left(K_{6,4}\right)=2$, while for any tree T with at least 2 vertices we have $\operatorname{gcd}(T)=1$. They proved the following result.

Theorem 2.8. [6] Let H be a bipartite graph with m edges and let $d=\operatorname{gcd}(H)$. Then there is $n_{0}=n_{0} H$ such that for all $n \geq n_{0}$ the following statements hold.

$$
\begin{aligned}
& \text { If } d=1 \text {, then if }\binom{n}{2}=m-1(\bmod m), \\
& \qquad \phi(n, H)=\phi\left(n, K_{n}\right)=\left\lfloor\frac{n(n-1)}{2 m}\right\rfloor+m-1,
\end{aligned}
$$

otherwise,

$$
\phi(n, H)=\phi\left(n, K_{n}^{*}\right)=\left\lfloor\frac{n(n-1)}{2 m}\right\rfloor+m-2
$$

where K_{n}^{*} denotes any graph obtained from K_{n} after deleting at most $m-1$ edges in order to have
$e\left(K_{n}^{*}\right) \equiv m-1(\bmod m)$. Furthermore, if G is extremal then G is either K_{n} or K_{n}^{*}.

If $d \geq 2$, then

$$
\phi(n, H)=\frac{n d}{2 m}\left(\left\lfloor\frac{n}{d}\right\rfloor-1\right)+\frac{1}{2} n(d-1)+O(1) .
$$

Moreover, there is a procedure with running time polynomial in $\log n$ which determines $\phi(n, H)$ and
describes a family \mathcal{D} of n-sequences such that a graph G of order n satisfies $\phi(G, H)=\phi(n, H)$ if and only if the degree sequence of G belongs to \mathcal{D}. (It will be the case that $|\mathcal{D}|=O(1)$ and each sequence in \mathcal{D} has $n-O(1)$ equal entries, so \mathcal{D} can be described using $O(\log n)$ bits.)

3. Weighted \boldsymbol{H}-Decompositions of Graphs

In 2011, Sousa [11] introduced a weighted version of the H-decomposition problem for graphs. More precisely, let G and H be two graphs and b a positive number. A weighted (H, b)-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms an H-subgraph, i.e., a graph isomorphic to H. We assign a weight of b to each H-subgraph in the decomposition and a weight of 1 to single edges. The total weight of the decomposition is the sum of the weights of all elements in the decomposition. Let $\phi(G, H, b)$ be the smallest possible weight in an (H, b)-decomposition of G.

As before, the goal is to study the function

$$
\phi(n, H, b)=\max \{\phi(G, H, b) \mid v(G)=n\},
$$

which is the smallest number such that any graph G with n vertices admits an (H, b)-decomposition with weight at most $\phi(G, H, b)$.

Note that when we take $b=1$ the original H-decomposition problem is recovered, hence, it suffices to consider the case when $b \neq 1$. Furthermore, when $b \geq e(H)$ we easily have $\phi(n, H, b)=\binom{n}{2}$. Therefore, one only has to consider the case when $0 \leq b \leq e(H)$ and $b \neq 1$. Sousa [11] obtained the asymptotic value of the function $\phi(n, H, b)$ for any fixed bipartite graph H when $0 \leq b \leq e(H)$ and $b \neq 1$.
Recall that for a non-empty graph $H, \operatorname{gcd}(H)$ denotes the greatest common divisor of the degrees of H. Sousa proved the following result.

Theorem 3.1. [11] Let H be a bipartite graph with m edges, let $d=\operatorname{gcd}(H)$ and $0<b<m$ with $b \neq 1 \quad a$ constant. Then there is $n_{0}=n_{0}(H)$ such that for all $n \geq n_{0}$ the following statements hold.

If $d=1$, then

$$
\phi(n, H, b)=b \frac{n(n-1)}{2 m}+O(1) .
$$

If $d \geq 2$, let $n-1=q d+r$ where $0 \leq r \leq d-1$ is an integer.
If $r \neq 0$ and $d-1 \leq \frac{b d}{m}+r$, then

$$
\phi(n, H, b)=\frac{b}{m}\binom{n}{2}+\frac{1}{2} n\left(r-\frac{b r}{m}\right)+O(1) .
$$

If $r \neq 0$ and $d-1 \geq \frac{b d}{m}+r$, then

$$
\phi(n, H, b)=\frac{b}{m}\binom{n}{2}+\frac{1}{2} n\left(d-1-\frac{b r-b d}{m}\right)+O(1) .
$$

If $r=0$ and $\frac{b}{m}<1-\frac{5 d^{2}}{5 d^{3}-2}$, then

$$
\phi(n, H, b)=\frac{b}{m}\binom{n}{2}+\frac{1}{2} n\left(d-1-\frac{b d}{m}\right)+O(1) .
$$

If $r=0$ and $1-\frac{5 d^{2}}{5 d^{3}-2} \leq \frac{b}{m} \leq 1-\frac{1}{d}$, then

$$
\frac{b}{m}\binom{n}{2}+\frac{1}{2} n\left(d-1-\frac{b d}{m}\right)-\frac{1}{2} \leq \phi(n, H, b)
$$

and

$$
\phi(n, H, b) \leq \frac{b}{m}\binom{n}{2}+\frac{m-b}{5 m d^{2}} n .
$$

If $r=0$ and $\frac{b}{m} \geq 1-\frac{1}{d}$, then

$$
\frac{b}{m}\binom{n}{2} \leq \phi(n, H, b) \leq \frac{b}{m}\binom{n}{2}+\frac{m-b}{5 m d^{2}} n .
$$

The case when H is not a bipartite graph is still an open problem.

4. Monochromatic \boldsymbol{H}-Decompositions of Graphs

In this section the H-decomposition problem is extended to coloured versions of the graph G and monochromatic copies of H. We define the problem more precisely.

A k-edge-colouring of a graph G is a function $c: E(G) \rightarrow\{1, \cdots, k\}$. We think of c as a colouring of the edges of G, where each edge is given one of k possible colours. Given a fixed graph H, a graph G of order n and a k-edge-colouring of the edges of G, a monochromatic H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or a monochromatic copy of H. Let $\phi_{k}(G, H)$ be the smallest number such that, for any k-edge-colouring of G, there exists a monochromatic H-decomposition of G with at most $\phi_{k}(G, H)$ elements. The objective is to study the function

$$
\phi_{k}(n, H)=\max \left\{\phi_{k}(G, H) \mid v(G)=n\right\},
$$

which is the smallest number such that, any k-edgecoloured graph of order n admits a monochromatic H-decomposition with at most $\phi_{k}(G, H)$ elements.

This function was introduced recently by Liu and Sousa [12] and they studied the function $\phi_{k}\left(n, K_{r}\right)$ for
all $k \geq 2$ and $r \geq 3$. Their results involve the Ramsey numbers and the Turán numbers. Recall that for $r \geq 3$ and $k \geq 2$, the Ramsey number for K_{r}, denoted by $R_{k}(r)$, is the smallest value of s, for which every k-edge-colouring of K_{s} contains a monochromatic K_{r}. The Ramsey numbers are notoriously difficult to calculate, even though, it is known that their values are finite for all $r \geq 3$ and $k \geq 2$. In fact, for the Ramsey numbers $R_{k}(r)$, only three of them are currently known. In 1955, Greenwood and Gleason [13] were the first to determine $\quad R_{2}(3)=6, \quad R_{2}(3)=17 \quad$ and $\quad R_{2}(4)=18$. Liu and Sousa [12] proved the following results about monochromatic K_{r}-decompositions.

Theorem 4.1. [12] Let $k=2,3$. There is an n_{0} such that, for all $n \geq n_{0}$, we have

$$
\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)
$$

That is, $\phi_{2}\left(n, K_{3}\right)=t_{5}(n)$ and $\phi_{3}\left(n, K_{3}\right)=t_{16}(n)$. Moreover, the only k-edge-coloured graph G attaining $\phi_{k}\left(n, K_{3}\right)$ is the Turán graph $t_{R_{k}(3)-1}(n)$.
Theorem 4.2. [12] For all $k \geq 4$ we have

$$
\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)+o\left(n^{2}\right) .
$$

The same authors also made the following conjecture.
Conjecture 4.3. Let $k \geq 4$. Then
$\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)$ for $n \geq R_{k}(3)$.
Larger cliques were also studied by Liu and Sousa and they obtained the exact value of the function $\phi_{k}\left(n, K_{r}\right)$ for all $k \geq 2$ and $r \geq 4$. Recall that the Ramsey number $R_{2}(4)=18$ is also well-known.

Theorem 4.4. [12] Let $r \geq 4, k \geq 2$. There is an $n_{0}=n_{0}(r, k)$ such that, for all $n \geq n_{0}$, we have

$$
\phi_{k}\left(n, K_{r}\right)=t_{R_{k}(r)-1}(n)
$$

In particular, $\phi_{2}\left(n, K_{4}\right)=t_{17}(n)$. Moreover, the only graph attaining $\phi_{k}\left(n, K_{r}\right)$ is the Turán graph $T_{R_{k}(r)-1}(n)$.

5. Acknowledgements

The author acknowledges the support from FCT-Fundação para a Ciência e a Tecnologia (Portugal), through the Projects PTDC/MAT/113207/2009 and PEst-OE/ MAT/UI0297/2011 (CMA).

REFERENCES

[1] B. Bollobás, "Modern Graph Theory," Springer-Verlag, New York, 1998. doi:10.1007/978-1-4612-0619-4
[2] P. Turán, "On an Extremal Problem in Graph Theory," Matematikai és Fisikai Lapok, Vol. 48, 1941, pp. 436-452.
[3] D. Dor and M. Tarsi, "Graph Decomposition Is NPComplete: A Complete Proof of Holyer's Conjecture," SIAM Journal on Computing, Vol. 26, No. 4, 1997, pp. 1166-1187. doi:10.1137/S0097539792229507
[4] P. Erdös, A. W. Goodman and L. Pósa, "The Representation of a Graph by Set Intersections," Canadian Journal of Mathematics, Vol. 18, 1966, pp. 106-112. doi:10.4153/CJM-1966-014-3
[5] B. Bollobás, "On Complete Subgraphs of Different Orders," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 79, No. 1, 1976, pp. 19-24. doi:10.1017/S0305004100052063
[6] O. Pikhurko and T. Sousa, "Minimum H-Decompositions of Graphs," Journal of Combinatorial Theory, Series B, Vol. 97, No. 6, 2007, pp. 1041-1055. doi:10.1016/j.jctb.2007.03.002
[7] T. Sousa, "Decompositions of Graphs into 5-Cycles and Other Small Graphs," Electronic Journal of Combinatorics, Vol. 12, No. R49, 2005, 7 pp.
[8] T. Sousa, "Decompositions of Graphs into Cycles of Length Seven and Single Edges," ARS Combinatoria, In Press.
[9] T. Sousa, "Decompositions of Graphs into a Given Cli-que-Extension," ARS Combinatoria, Vol. 100, 2011, pp. 465-472.
[10] L. Özkahya and Y. Person, "Minimum H-Decompositions of Graphs: Edge-Critical Case," Journal of Combinatorial Theory, Series B, Vol. 102, No. 3, 2012, pp. 715-725. doi:10.1016/j.jctb.2011.10.004
[11] T. Sousa. "Minimum Weight H-Decompositions of Graphs: The Bipartite Case," Electronic Journal of Combinatorics, Vol. 18, No. 1, 2011, pp. 126-135.
[12] H. Liu and T. Sousa, "Monochromatic K_{r}-Decompositions of Graphs," Unpublished.
[13] R. E. Greenwood and A. M. Gleason, "Combinatorial Relations and Chromatic Graphs," Canadian Journal of Mathematics, Vol. 7, 1955, pp. 1-7.
doi:10.4153/CJM-1955-001-4

