Open Journal of Discrete Mathematics, 2012, 2, 125-130

doi:10.4236/0jdm.2012.24024 Published Online October 2012 (http://www.SciRP.org/journal/ojdm)

o5 Scientific
(> )
+* Research

4-Cycle Decompositions of Graphs

Teresa Sousa
Departamento de Matematica and Centro de Matematica e Aplicagdes,
Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
Email: tmjs@fct.unl.pt

Received May 10, 2012; revised June 3, 2012; accepted August 6, 2012

ABSTRACT

In this paper we consider the problem of finding the smallest number ¢ such that any graph G of order n admits a de-

composition into edge disjoint copies of C, and single edges with at most ¢ elements. We solve this problem for n

sufficiently large.
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1. Introduction

All graphs in this paper are finite, undirected and simple.
For notation and terminology not discussed here the
reader is referred to [1].

Given two graphs G and H , an H -decomposition
of G is a partition of the edge set of G such that each
part is either a single edge or forms an H -subgraph, i.e.,
a graph isomorphic to H . We allow partitions only, that
is, every edge of G appears in precisely one part. Let
¢, (G) be the smallest possible number of parts in an
H -decomposition of G . For non-empty H , let
Py (G) be the maximum number of pairwise edge-
disjoint H -subgraphs that can be packed into G and
e(G) the number of edges in G . It is easy to see that

¢, (G)=e(G)-p, (G)(e(H)-1). (1.1)
Here we study the function
@y (n) = max{¢H (G)|V(G) = n} ,

which is the smallest number, such that, any graph G
of order n admits an H -decomposition with at most
¢, (n) elements.

The function ¢, (n) was first studied by Erdos,
Goodman and Posa [2], who proved that ¢ (n)=1,(n),
where K, denotes the complete graph (clique) of order
r and ¢ (n) is the maximum size of an r -partite
graph on n vertices. A decade later, this result was
extended by Bollobas [3], who proved that

¢ (n)=t_(n), forall n>r23.

Recently, Pikhurko and Sousa [4] studied ¢, (n) for
arbitrary graphs H .
Theorem 1.1. (See Theorem 1.1 from [4]) Let H be
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any fixed graph of chromatic number r >3 . Then,
¢y (n)=1t_(n)+ o(nz).

Let ex(n,H) denote the maximum number of edges
in a graph of order n, that does not contain H as a
subgraph. Recall that ex(n,K,)=1,_,(n). Pikhurko and
Sousa [4] also made the following conjecture.

Conjecture 1. For any graph H with chromatic
number at least 3, there is ny,=n,(H) such that
&y (n) = ex(n,H) SJorall n>ny.

The exact value of the function ¢, (n) is far from
being known. Sousa determined it for a few special edge-
critical graphs, namely for clique-extensions of order
r>4 (n>=r)[5]and the cycles of length 5 (n>6) and
7 (n>10) [6,7]. Later, Ozkahya and Person [8] deter-
mined it for all edge-critical graphs with chromatic num-
ber »>3 and n sufficiently large. They proved the
following result.

Theorem 1.2. ([8]) Let H be any edge-critical graph
with chromatic number r>3. Then, there exists n,
such that ¢, (n)=ex(n,H), for all n>n,. Moreover,
the only graph attaining ¢, (n) is the Turan graph
T, (”)

Recently, Allen, Béttcher and Person [9] improved the
error term obtained by Pikhurko and Sousa in Theorem
1.1.

The case when H is a bipartite graph has been less
studied. Pikhurko and Sousa [4] determined ¢, (n) for
any fixed bipartite graph with an O(1) additive error.
For a non-empty graph H , let gcd(H ) denote the
greatest common divisor of the degrees of H. For
example, gcd(K6,4):2 while for any tree T with at
least 2 vertices we have ged(7)=1. They proved the
following result.
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Theorem 1.3. (See Theorem 1.3 from [4]) Let H be
a bipartite graph with m edges and let d =gcd(H).
Then there is ny =n,(H) such that for all n>n, the
following statements hold.

2m

(1) If d=1, then ;M@:{MJ“?, where

C=m-1 or C=m-2.
2)If d =2, then

by (n)= :Z&dJ lj+%n(d—l)+0(1).

Moreover, there is a procedure running in polynomial
in logn time which determines ¢, (n) and describes
a family D of n-sequences such that a graph G of
order n satisfies ¢, (G)=¢,(n) if and only if the
degree sequence of G belongs to D . (It will be the
case that |D|=0O(1) and each sequence in D has
n—O(l) equal entries, so D can be described using
O(logn) bits.)

Here we will determine the exact value of ¢, (n) for
n sufficiently large.

Theorem 1.4. There is n, =n,(C,) such that for all
n2n, the following statements hold.

2
(DIf n iseventhen ¢ (n):%+§+1,

(2)If n=1(mod8) then ¢. (n):n +Z+E
¢ g8 8 8
2
(3)If n=3(mod8) then ¢, (n):n—+£+2
¢ 8 8 2
n” n 10
@If n= (m0d8) then ¢, (n):—+—+_.
¢ g8 8 8
2
(5)If n=7(mod8) then g, (n)=”_+g+2

2. Proof of Theorem 1.4

In this section we will prove Theorem 1.4, but first we
need to introduce the tools. We start with the following
easy result about H -decompositions.

Lemma 5. (Lemma 1.3) For any non-empty graph H
with m edges and any integer n,we have

#u (n) Sl(;} "L ex (n, H).

m m

Q.1

In particular, if H is a fixed bipartite graph with m
edges and n — o, then

. n)=(Lrow) 1]

The following result is the well known Erdds-Gallai
theorem that gives a necessary and sufficient condition
for a finite sequence to be the degree sequence of a

2.2)
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simple graph.

Theorem 2.6. (Erdés-Gallai Theorem [10]) Let
0<d, <---<d, be a sequence of integers. There is a
graph with degree sequence d,,---,d, if and only if

(1) d,+---+d, iseven;

(2)foreach 1<k<n

n n—k
> d <k(k-1)+Y min{d, k}. (23)
i=n—k+1 i=1

The following results appearing in Alon, Caro and
Yuster [11, Theorem 1.1, Corollary 3.4, Lemma 3.5]
which follow with some extra work from the powerful
decomposition theorem of Gustavsson [12] are essential
to the proof of Theorem 1.4.

Lemma 2.7. For any non-empty graph H with m
edges, there are y >0 and N, such that the following
holds. Let d:gcd(H). Let G be a graph of order
n>N, and of minimum degree 5(G)=(1-y)n.

If d=1,then
G
pA@ZF%W' 2.4)

deg (u)

If d>2, let au:d{ J for ueV(G) and

let X consist of all vertices whose degree is not divi-

sible by d . If |X|

py (G) [MVZ )aJ 2.5)

If |X| o , then
pH(G)Z%Ke(G)—#) (2.6)
]

One can extract the following result from the proof of
Theorem 1.2 from [4].

Lemma 2.8. Let H be a bipartite graph with m
edges and let gcd(H) =d >2. Then, there is
ny =1, (H) such that if G is a graph of order n=n,
with ¢, (G) =g, (n) then the following holds:

(1) Let d,,---,d, be the degree sequence of G, then

. (G) =%§jd,. —(m—l){ﬁéL%JdJ. 2.7)

(2)Let n=qd+r with 0<r<d-1 and
d,=qd+r, with 0<r,<d-1. Then, for 1<i<n
exactly one of the following holds:

(@) d,=qd—1;

(b) ieClz{ie[n”r,:d—l and d,.<qd—1};

(c) iesz{ie[n“di:n—l} if n-1#R and
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C, = otherwise.
2m
Furthermore, |C1|£7—1 and |C)|<2m-1.

In the following we briefly sketch the proof of Lemma
2.8 by giving the argument form [4]. We refrain from
doing all the calculations.

Sketch of the proof of Lemma 2.8. Let 7/(C4) and
N, be given by Lemma 2.7. Assume that y is
sufficiently small and that n, > N, is sufficiently large
to satisfy all the inequalities we will encounter. Let
n>n, andlet G be any graph of order n with
e, (G) =4, (”) ‘

Let G, =G . Repeat the following at most | n/logn |
times: If the current graph G, has a vertex x, of
degree at most (1-y/2)i, let G_, =G, —x, and de-
crease i by l.

Suppose we stopped after s repetitions. Then, either
5(G,,)2(1-y/2)(n—s) or s=|n/logn]|.Letus

show that the later cannot happen. Otherwise, we have

n—s _Z o n B ynz
e(G)S( . j+(1 21%1{2) e

Let ¢ satisfy K,, > H . Using the fact that
ex(n,K,)t ) = O(nz’]/’ ) , (2.1), and (2.8) we obtain

2 u—
¢H (G)Si n _Zn_ +m_lcn2_l/t
m{\2) 4logn m

1(n
< m(2j§¢1{ (Kn)’
which contradicts our assumption on G . Therefore,
s <|nflogn]| andwehave &(G, )=(1-7/2)(n-s).

Let =2y . We will have another pass over the
vertices x,,---,X,_,, , each time decomposing the edges
incident to x;, by H -subgraphs and single edges. It
will be the case that each time we remove the edges
incident to the current vertex x,, the degree of any other
vertex drops by at most 3A4*, where h=v(H). Here is
a formal description. Initially, let G, =G and i=n.If
in the current graph G, we have deg, (=, )<an, then
we remove all G, -edges incident to x; as single edges
andlet G/, =G, —x,.

Suppose that deg,, (x,)>an . Then, the set

X, ={er(G,H) xl.yeE(G,.,)},

has at least an—s+1 vertices. The minimum degree of
G[X,] is

5(GLX]) 2t 5= T 530 = 2] x |

Let yeV(H), A=T,(y) and a=|4|. Another
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result from [4] (Lemma 3.1) states that there is a constant
C, such that, all but at most C vertices of G[X ,-] can
be covered by edge disjoint copies of H —y each of
them having vertex disjoint sets A4 . Therefore, all but at
most C edges between x, and X, can be decom-
posed into copies of H . All other edges incident to x,

are removed as single edges. Let G/, consist of the
remaining edges of G, —x, (that is, those edges that do
not belong to an H -subgraph of the above x, -
decomposition). This finishes the description of the case
degg, (x;)>an.

Consider the sets S ={x,,"-,x, .},

>V n—s+1

S, = {x[ € S‘degG.,(x,.)S an} ,and S,=85/S,. Let their

sizesbe s, s,,and s, respectively,so s=s,+s,.
Let F be the graph with vertex set V' (G,_ )US,,

consisting of the edges coming from the removed H -

subgraphs when we processed the vertices in S,. We

have
e(F)

m

94 (G)< ¢y (G, )+

+s1an+szC+(;J. 2.9)

We know that ¢, (G,_ ) =e(G,_,)-p,(G,_ (m-1)),
furthermore, 5(G,_ )=(1-y)(n—s). Thus, p,(G,_,)

can be estimated using Lemma 2.7.

If (2.6) holds, some calculations show that there exits a
graph G such that ¢, (G)<g, (G*) , which contra-
dicts the optimality go G .

Therefore, (2.5) must hold. It follows that p, (G)
and thus ¢, (G), depends only on the degree sequence

d,,---,d, of G.Namely, the packing number
(=p,(G) equals {%Z:’ler, where r=d|d,/d |
m

is the largest multiple of 4 not exceeding d, .
Therefore,
4,(G)=23a _(m—1){iiLinJ, (2.10)
23 l 2miS d
where d,,---,d, is the degree sequence of G.
To conclude the proof we need to estimate the values
that the degrees of G can attain. To do that we need to

prove an upper bound on ¢, (G) by estimating ¢,
the maximum of

ax 2

1 n 1 n d
d,.d)==>d —-(m=-1)|—> |—|d|, (2.11
$ldd,) =13~ 5| a |,
over all (not necessarily graphical) sequences d,,---,d
of integers with 0<d, <n-1.
Let d,,---,d, be an optimal sequence attaining the

n

value ¢, .For i=1,---,n let d, =q,d+r, with
+--+q, )d
0<r <d-1.Then, K{MJ'
2m
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Let n=qd+r with 0<r<d-1 and g=|n/d|.
Define R=gd -1 to be the maximum integer which is
at most n—1 and is congruent to d—1 modulo d .
Let C ={ie[n]lr=d-1 and d, <R} and

C,={ie[n]ld,=n-1} if n-1%2R and C,=@
otherwise.
Since d,,---,d, is an optimal sequence, we have that

if #d-1 then d,=n-1 for all ie[n]. To con-

clude the proof it remains to show that |CJS%”—1

and |C2|S2m—1. Suppose first that |C1|2%=:t.

Consider the new sequence of integers
g d,+d, ifieC,
"4, ifigC,.

Then, (" =¢+1 and ¢" =g +1 which contradicts
our assumptionon ¢, ,. -

Now suppose that |C,|>2m and consider the new se-
quence of integers d|,---,d’ obtained from d,,---,d,
by replacing 2m values of n—1 by R . Then,
0"=(-d and ¢ >¢ +m—d>g,_ , which contra-
dicts our assumption on ¢, and the proof is con-
cluded. o

We now have all the tools needed to prove Theorem 1.4.

Proof of Theorem 1.4. Let n, be given by Lemma 2.8.
Let G beagraphoforder n>n, with
¢c, (G) =4, (n) and degree sequence d,,--,d,. For
i=l,--,n let d =2q,+r, with 0<r <1 . Let,
R=2(|n/2|-1)+1 and let the sets C, and C, be as
in Lemma 2.8.

Let n=2q+r with 0<r<1 and g=|n/2]|. From
(2.7) we obtain

¢, (n)
:n(q 1)+2+—|C|r— (q—l—ql.)

ieCy

(2.12)

1

—|cz|—1z<q—1—q,-)J

4 4 ieCy

—3\‘%n(q—l)+

In what follows let o =|C,| and B=) (g-1-¢,).

ieCy
We consider first the case when »n is even. Then
C, =< and we have

¢c4 (l’l):n(q—l)+§—ﬁ—3{%n(q_l)_§J

Claim 1. Let d,,--
graph. Then,

,d, be the degree sequence of a
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e e

Proof. Routine calculations show that for f#1 we

have _ﬁ_{_ngl' Suppose B =1. Then C, has

exactly one element, thus the sequence (d,.), has

i=l,n
exactly one element equal to n—3 and all the others
equal to n—1. But this is not a degree sequence of a
graph since condition (2.3) of Theorem 2.6 does not hold
for k=n-2. o

Therefore, using the estimate of Claim 1 in (2.13) it
follows that

2
n n

n)<—+—+1.
o, (m) <

To prove the lower bound consider the graph L
obtained from K, after the deletion of the edges of a

C; . Using (1.1) and (2.5) we show that

2
n n

¢C4 (L5)=?+Z+1

We now consider the case when 7 is an odd number.
Casel:Let n=8t+1 and g=4r.
From (2.12) we obtain

e, (n) =2 (n=3)+Z-3(81 ~1)

1 e pot 2.14)
+Ea—ﬁ—3LTJ

Claim 2. Let d,,---,d,. be the degree sequence of a
graph. Then,
-p- 1J
—a 3 <—
p- L 4 2

Proof. Routine calculations show that the result
follows if ¢ #0 or f#0.1f «a=0 and =0 then
d,=n-2 for all 1<i<n. This is not a degree se-

quence of a graph since Z:’Zldi is not even. o

Therefore, using the estimate of Claim 2 in (2.14) we
prove that

n n 14
. < —+ +—.
ve, () 8§ 8 8
As for the lower bound consider the graph L° with
all vertices of degree n—2 except one of degree n—3.
Using (1.1) and (2.5) we show that

2
¢, (L*)=%+§+%.

Case2:Let n=8t+3 and g=4r+1.
From (2.12) we obtain
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¢, (n) =%(n—3)+g—3(8t2 +3t)

L po3l@=h
+2aﬁ3L4J.

(2.15)

Claim 3. Let d,,---,d
graph. Then,

be the degree sequence of a

ne

1 a-p|_3

Proof. 1t follows from routine calculations for all
values of @ and £ except when =0 and fF=1.
Suppose that =0 and F=1.Then C,=C and C

has exactly one element, thus the sequence (d,)

i=1,n
has exactly one element equal to n—2 and all the
others equal to n—1. But this is not a degree sequence
of a graph since Zd,. is not even. o
Therefore, using the estimate of Claim 3 in (2.15) we
prove that
n o on 3
¢, (n) < RFREY
As for the lower bound consider the graph L with
degree sequence d,=d,=n-4, d;=---=d, _,=n-2
and d,=n-1 (the existence of L can be proved
directly or by Erdos-Gallai theorem, Theorem 2.6). Using
(1.1) and (2.5) we show that

n” n 3

¢C4 (L)=§+§+E

Case3:Let n=8t+5 and g=4t+2.
From (2.12) we obtain

¢q(n)=g(n—3)+§—3(&2+7ﬁ

L, _p 3 @=pB+5

(2.16)

Claim 4. Let d,,---,d
graph. Then,

be the degree sequence of a

ne

L ps|@=BES |5
20:,83{4JS2.

Proof. Routine calculations show that

(x/z—ﬁ'—{—o‘_ﬂJr5
4

Pexceptfor ¢=2 and =0 or a=0 and f=2.

Suppose first that ¢ =2 and F=0. Then the se-
quence (d,)_  has two elements equal to n—1 and
all the others equal to n—2. This is not a degree se-
quence of a graph since )" d, is not even. u!

Suppose now that «=0 and =2 . If |Cl| =2
then the sequence has two elements equal to n—4 and

J <-5/2 forall values of « and
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all the others equal to n—2 and this is not a degree
sequence of a graph since Zdl. is not even. Finally, if
|C1| =1 then we have one element equal to n—6 and
all the others equal to n—2. Again, this is not a degree
sequence of a graph since Zd,. is not even. i
Therefore, using the estimate of Claim 4 in (2.16) we
prove that
2
n~ n 10
n)<—+—+—.
te, () 8 8 8
As for the lower bound consider the graph K, —7
obtained from K, by deleting the edges of a maximum
matching. Using (1.1) and (2.5) we show that
2
n~ n 10
K —-I)=—+—+—.
te, (K, =) 8§ 8 8
Case4:Let n=8¢t+7 and g=4r+3.
From (2.12) we obtain

¢, (n) =g(n—3)+§—3(8t2 +11)

a—,B+14J @17)

1
+—a-p-3
2 p { 4
Claim5. Let d,,---,d,. be the degree sequence of a
graph. Then,
Ly pos|ezpris| 17,
2 4 2
Proof. 1t follows directly from simple calculations. o
Therefore, using the estimate of Claim 5 in (2.17) we
prove that

2
¢, (n)s%+g+2.

Furthermore, using (1.1) and (2.5) we have

2
n n

K, -I)=—+—+42,
¢C4 ( n ) 8 8
so the equality follows and the proof is now complete. o
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