4-Cycle Decompositions of Graphs

Teresa Sousa
Departamento de Matemática and Centro de Matemática e Aplicações,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
Email: tmjs@fct.unl.pt

Received May 10, 2012; revised June 3, 2012; accepted August 6, 2012

ABSTRACT

In this paper we consider the problem of finding the smallest number ϕ such that any graph G of order n admits a decomposition into edge disjoint copies of C_4 and single edges with at most ϕ elements. We solve this problem for n sufficiently large.

Keywords: Graph Decomposition; 4-Cycle Packing; Graph Packing

1. Introduction

All graphs in this paper are finite, undirected and simple. For notation and terminology not discussed here the reader is referred to [1].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms an H-subgraph, i.e., a graph isomorphic to H. We allow partitions only, that is, every edge of G appears in precisely one part. Let $\phi(G)$ be the smallest possible number of parts in an H-decomposition of G. For non-empty H, let $p_H(G)$ be the maximum number of pairwise edge-disjoint H-subgraphs that can be packed into G and $e(G)$ the number of edges in G. It is easy to see that

$$\phi(G) = e(G) - p_H(G)(e(H) - 1).$$

(1.1)

Here we study the function

$$\phi_H(n) = \max \left\{ \phi(G) \mid \nu(G) = n \right\},$$

which is the smallest number, such that, any graph G of order n admits an H-decomposition with at most $\phi_H(n)$ elements.

The function $\phi_H(n)$ was first studied by Erdős, Goodman and Pósa [2], who proved that $\phi_K_r(n) = t_r(n)$, where K_r denotes the complete graph (clique) of order r and $t_r(n)$ is the maximum size of an r-partite graph on n vertices. A decade later, this result was extended by Bollobás [3], who proved that

$$\phi_{K_2}(n) = t_{r-1}(n), \quad \text{for all } n \geq r \geq 3.$$

Recently, Pikhurko and Sousa [4] studied $\phi_H(n)$ for arbitrary graphs H.

Theorem 1.1. (See Theorem 1.1 from [4]) Let H be any fixed graph of chromatic number $r \geq 3$. Then,

$$\phi_H(n) = t_{r-1}(n) + o(n^2).$$

Let $ex(n,H)$ denote the maximum number of edges in a graph of order n, that does not contain H as a subgraph. Recall that $ex(n,K_2) = t_{r-1}(n)$. Pikhurko and Sousa [4] also made the following conjecture.

Conjecture 1. For any graph H with chromatic number at least 3, there is $n_0 = n_0(H)$ such that $\phi_H(n) = ex(n,H)$, for all $n \geq n_0$.

The exact value of the function $\phi_H(n)$ is far from being known. Sousa determined it for a few special edge-critical graphs, namely for clique-extensions of order $r \geq 4 \ (n \geq r)$ [5] and the cycles of length 5 ($n \geq 6$) and 7 ($n \geq 10$) [6,7]. Later, Özkahya and Person [8] determined it for all edge-critical graphs with chromatic number $r \geq 3$ and n sufficiently large. They proved the following result.

Theorem 1.2. ([8]) Let H be any edge-critical graph with chromatic number $r \geq 3$. Then, there exists n_0 such that $\phi_H(n) = ex(n,H)$, for all $n \geq n_0$. Moreover, the only graph attaining $\phi_H(n)$ is the Turán graph $T_{r-1}(n)$.

Recently, Allen, Böttcher and Person [9] improved the error term obtained by Pikhurko and Sousa in Theorem 1.1.

The case when H is a bipartite graph has been less studied. Pikhurko and Sousa [4] determined $\phi_H(n)$ for any fixed bipartite graph with an $O(1)$ additive error. For a non-empty graph H, let $gcd(H)$ denote the greatest common divisor of the degrees of H. For example, $gcd(K_{6,6}) = 2$ while for any tree T with at least 2 vertices we have $gcd(T) = 1$. They proved the following result.
Theorem 1.3. (See Theorem 1.3 from [4]) Let H be a bipartite graph with m edges and let $d = \gcd(H)$. Then there is $n_0 = n_0(H)$ such that for all $n \geq n_0$ the following statements hold:

1. If $d = 1$, then $\phi_t(n) = \lfloor n(n-1) / 2m \rfloor + C$, where $C = m-1$ or $C = m-2$.
2. If $d \geq 2$, then

$$\phi_t(n) = \frac{nd}{2m} \left[n + \frac{n}{d} - 1 \right] + \frac{1}{2} n(n-1) + O(1).$$

Moreover, there is a procedure running in polynomial in $\log n$ time which determines $\phi_t(n)$ and describes a family \mathcal{D} of n-sequences such that a graph G of order n satisfies $\phi_t(G) = \phi_t(n)$ if and only if the degree sequence of G belongs to \mathcal{D}. (It will be the case that $|\mathcal{D}| = O(1)$ and each sequence in \mathcal{D} has $n - O(1)$ equal entries, so \mathcal{D} can be described using $O(\log n)$ bits.)

Here we will determine the exact value of $\phi_t(n)$ for n sufficiently large.

Theorem 1.4. There is $n_0 = n_0(C_t)$ such that for all $n \geq n_0$ the following statements hold:

1. If n is even then $\phi_t(n) = \frac{n^2}{8} + \frac{n}{4} + 1$.
2. If $n = 1 \mod 8$ then $\phi_t(n) = \frac{n^2}{8} + \frac{n}{8} + \frac{14}{2}$.
3. If $n = 3 \mod 8$ then $\phi_t(n) = \frac{n^2}{8} + \frac{n}{8} + \frac{3}{2}$.
4. If $n = 5 \mod 8$ then $\phi_t(n) = \frac{n^2}{8} + \frac{n}{8} + \frac{10}{8}$.
5. If $n = 7 \mod 8$ then $\phi_t(n) = \frac{n^2}{8} + \frac{n}{8} + 2$.

2. Proof of Theorem 1.4

In this section we will prove Theorem 1.4, but first we need to introduce the tools. We start with the following easy result about H-decompositions.

Lemma 5. (Lemma 1.3) For any non-empty graph H with m edges and any integer n, we have

$$\phi_t(n) \leq \frac{1}{m} \left[\left(\frac{n}{2} \right) \right] + \frac{m-1}{m} \text{ex}(n,H).$$

In particular, if H is a fixed bipartite graph with m edges and $n \to \infty$, then

$$\phi_t(n) = \left(\frac{1}{m} + O(1) \right) \left[\frac{n}{2} \right].$$

The following result is the well known Erdős-Gallai theorem that gives a necessary and sufficient condition for a finite sequence to be the degree sequence of a simple graph.

Theorem 2.6. (Erdős-Gallai Theorem [10]) Let $0 \leq d_1 \leq \cdots \leq d_n$ be a sequence of integers. There is a graph with degree sequence d_1, \cdots, d_n if and only if

1. $d_1 + \cdots + d_n$ is even;
2. For each $1 \leq k \leq n$

$$\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=1}^{n} \min\{d_i, k\}.$$ (2.3)

The following results appearing in Alon, Caro and Yuster [11, Theorem 1.1, Corollary 3.4, Lemma 3.5] which follow with some extra work from the powerful decomposition theorem of Gustavsson [12] are essential to the proof of Theorem 1.4.

Lemma 2.7. For any non-empty graph H with m edges, there are $\gamma > 0$ and N_0 such that the following holds. Let $d = \gcd(H)$, G be a graph of order $n \geq N_0$ and of minimum degree $\delta(G) \geq (1 - \gamma)n$. If $d = 1$, then

$$p_H(G) = \left[\frac{e(G)}{m} \right].$$

If $d \geq 2$, let $\alpha_u = d \left[\deg(u) / d \right]$ for $u \in V(G)$ and let X consist of all vertices whose degree is not divisible by d. If $|X| \geq n / 10d^2$, then

$$p_H(G) = \left[\frac{1}{2m} \sum_{u \in V(G)} \alpha_u \right].$$

If $|X| < n / 10d^2$, then

$$p_H(G) \geq \frac{1}{m} \left(e(G) - \frac{n}{5d^2} \right).$$

One can extract the following result from the proof of Theorem 1.2 from [4].

Lemma 2.8. Let H be a bipartite graph with m edges and let $\gcd(H) = d \geq 2$. Then, there is $n_0 = n_0(H)$ such that if G is a graph of order $n \geq n_0$ with $\phi_t(G) = \phi_t(n)$ then the following holds:

1. Let d_1, \cdots, d_n be the degree sequence of G, then

$$\phi_t(G) = \left[\frac{1}{2m} \sum_{i=1}^{n} (d_i - (m-1)) \right] + \frac{1}{m} \sum_{i=1}^{n} \frac{\alpha_i}{d_i}.$$ (2.7)

2. Let $n = dq + r$ with $0 \leq r \leq d - 1$ and $d_i = qd_i + r_i$ with $0 \leq r_i \leq d - 1$. Then, for $1 \leq i \leq n$ exactly one of the following holds:

(a) $d_i = qd_i - 1$;
(b) $i \in C_i = \{i \in [n] \mid r_i = d - 1 \}$ and $d_i < qd - 1$;
(c) $i \in C_i = \{i \in [n] \mid d_i = n - 1 \}$ if $n - 1 \neq R$ and
result from [4] (Lemma 3.1) states that there is a constant \(C \), such that all but at most \(C \) vertices of \(G[X_i] \) can be covered by edge disjoint copies of \(H - y \) each of them having vertex disjoint sets \(A \). Therefore, all but at most \(C \) edges between \(x_i \) and \(x_i \) can be decomposed into copies of \(H \). All other edges incident to \(x_i \) are removed as single edges. Let \(G_{i}^{r} \) consist of the remaining edges of \(G_r - x_i \) (that is, those edges that do not belong to an \(H \)-subgraph of the above \(x_i \)-decomposition). This finishes the description of the case \(\deg_{G_i}(x_i) > an \).

Consider the sets \(S = \{ x_{n}, \ldots, x_{n+1} \} \), \(S_1 = \{ x_i \in S | \deg_{G_i}(x_i) \leq an \} \), and \(S_2 = S/S_1 \). Let their sizes be \(s \), \(s_1 \), and \(s_2 \) respectively, so \(s = s_1 + s_2 \).

For \(F \) be the graph with vertex set \(V(G_{n+1}) \cup S_2 \), consisting of the edges coming from the removed \(H \)-subgraphs when we processed the vertices in \(S_2 \). We have

\[
\phi_H(G) \leq \phi_H(G_{n+1}) + \frac{e(F)}{m} + \frac{s_1 an + s_2C}{2}.
\]

We know that \(\phi_H(G_{n+1}) = p_H(G_{n+1}(m-1)) \), furthermore, \(\delta(G_{n+1}) \geq (1-\gamma)(n-s) \). Thus, \(p_H(G_{n+1}) \) can be estimated using Lemma 2.7.

If (2.6) holds, some calculations show that there exits a graph \(G^* \) such that \(\phi_H(G) < \phi_H(G^*) \), which contradicts the optimality of \(G \).

Therefore, (2.5) must hold. It follows that \(p_H(G) \) and thus \(\phi_H(G) \), depends only on the degree sequence \(d_1, \ldots, d_n \) of \(G \). Namely, the packing number

\[
e = p_H(G) \text{ equals } \left[\frac{1}{2m} \sum_{i=1}^{n} r_i \right], \text{ where } r_i = d_i/d
\]

is the largest multiple of \(d \) not exceeding \(d_i \).

Therefore,

\[
\phi_H(G) = 1 + \frac{1}{2m} \sum_{i=1}^{n} d_i \left(m - 1 \right) \left[\frac{1}{2m} \sum_{i=1}^{n} \frac{d_i}{d} \right],
\]

where \(d_1, \ldots, d_n \) is the degree sequence of \(G \).

To conclude the proof we need to estimate the values that the degrees of \(G \) can attain. To do that we need to prove an upper bound on \(\phi_H(G) \) by estimating \(\phi_{\max} \), the maximum of

\[
\phi(d_1, \ldots, d_n) = \frac{1}{2} \sum_{i=1}^{n} d_i \left(m - 1 \right) \left[\frac{1}{2m} \sum_{i=1}^{n} \frac{d_i}{d} \right],
\]

over all (not necessarily graphical) sequences \(d_1, \ldots, d_n \) of integers with \(0 \leq d_i \leq n - 1 \).

Let \(d_1, \ldots, d_n \) be an optimal sequence attaining the value \(\phi_{\max} \). For \(i = 1, \ldots, n \) let \(d_i = q_id + r_i \) with

\[
0 \leq r_i \leq d_i - 1. \text{ Then, } e = \left(\frac{q_1 \pm \cdots \pm q_n}{2m} \right).
\]
Let \(n = qd + r \) with \(0 \leq r \leq d - 1 \) and \(q = \lfloor n/d \rfloor \). Define \(R = qd - 1 \) to be the maximum integer which is at most \(n - 1 \) and is congruent to \(d - 1 \) modulo \(d \). Let \(C_1 = \{ i \in [n] | r_i = d - 1 \text{ and } d_i \neq R \} \) and \(C_2 = \{ i \in [n] | d_i = n - 1 \} \) if \(n - 1 \neq R \) and \(C_2 = \emptyset \) otherwise.

Since \(d_1, \ldots, d_n \) is an optimal sequence, we have that if \(r_i \neq d - 1 \) then \(d_i = n - 1 \) for all \(i \in [n] \). To conclude the proof it remains to show that \(|C_1| \leq \frac{2m}{d} - 1 \) and \(|C_2| \leq 2m - 1 \). Suppose first that \(|C_1| \geq \frac{2m}{d} - 1 \).

Consider the new sequence of integers

\[
d'_i = \begin{cases}
d_i + d, & \text{if } i \in C_1, \\
d_i, & \text{if } i \notin C_1.
\end{cases}
\]

Then, \(\ell' = \ell + 1 \) and \(\phi' = \phi_{\max} + 1 \) which contradicts our assumption on \(\phi_{\max} \).

Now suppose that \(|C_2| \geq 2m \) and consider the new sequence of integers \(d'_1, \ldots, d'_n \) obtained from \(d_1, \ldots, d_n \) by replacing \(2m \) values of \(n - 1 \) by \(R \). Then, \(\ell' = \ell - d \) and \(\phi' \geq \phi_{\max} + m - d > \phi_{\max} \), which contradicts our assumption on \(\phi_{\max} \) and the proof is concluded.

We now have all the tools needed to prove Theorem 1.4.

Proof of Theorem 1.4. Let \(n \) be given by Lemma 2.8.

Let \(G \) be a graph of order \(n \geq n_0 \) with \(\phi_{\max}(G) = \phi_{\max}(n) \) and degree sequence \(d_1, \ldots, d_n \). For \(i = 1, \ldots, n \) let \(d_i = 2q_i + r_i \) with \(0 \leq r_i \leq 1 \). Let \(R = 2\lfloor n/2 \rfloor - 1 + 1 \) and let the sets \(C_1 \) and \(C_2 \) be as in Lemma 2.8.

Let \(n = 2q + r \) with \(0 \leq r \leq 1 \) and \(q = \lfloor n/2 \rfloor \). From (2.7) we obtain

\[
\phi_{\max}(n) = n(q - 1) + \frac{n}{2} \left[C_2 \right] r - \sum_{i \in C_1} (q - 1 - q_i) \tag{2.12}
\]

\[
- \beta - 3 \left[\frac{\beta}{4} \right] \leq 1.
\]

Proof. Routine calculations show that for \(\beta = 1 \) we have \(- \beta - 3 \left[\frac{\beta}{4} \right] \leq 1 \). Suppose \(\beta = 1 \). Then \(C_1 \) has exactly one element, thus the sequence \((d_i)_{i=1, \ldots, n} \) has exactly one element equal to \(n - 3 \) and all the others equal to \(n - 1 \). But this is not a degree sequence of a graph since condition (2.3) of Theorem 2.6 does not hold for \(k = n - 2 \).

Therefore, using the estimate of Claim 1 in (2.13) it follows that

\[
\phi_{\max}(n) \leq n^2 + n + 1.
\]

To prove the lower bound consider the graph \(L \) obtained from \(K_n \) after the deletion of the edges of a \(C_4 \). Using (1.1) and (2.5) we show that

\[
\phi_{\max}(L_n) = n^2 + n + 1.
\]

We now consider the case when \(n \) is an odd number.

Case 1: Let \(n = 8t + 1 \) and \(q = 4t \).

From (2.12) we obtain

\[
\phi_{\max}(n) = n \left(n - 3 \right) + \frac{n}{2} \left(8t^2 - t \right) + \frac{1}{2} \left[\alpha - \beta - 3 \left[\frac{\alpha - \beta - 1}{4} \right] \right].
\]

Claim 2. Let \(d_1, \ldots, d_n \) be the degree sequence of a graph. Then,

\[
\frac{1}{2} \left[\alpha - \beta - 3 \left[\frac{\alpha - \beta - 1}{4} \right] \right] \leq \frac{5}{2}.
\]

Proof. Routine calculations show that the result follows if \(\alpha \neq 0 \) or \(\beta \neq 0 \). If \(\alpha = 0 \) and \(\beta = 0 \) then \(d_i = n - 2 \) for all \(i \leq n \). This is not a degree sequence of a graph since \(\sum_{i \leq n} d_i \) is not even.

Therefore, using the estimate of Claim 2 in (2.14) we prove that

\[
\phi_{\max}(n) \leq n^2 + n + 14.
\]

As for the lower bound consider the graph \(L' \) with all vertices of degree \(n - 2 \) except one of degree \(n - 3 \). Using (1.1) and (2.5) we show that

\[
\phi_{\max}(L') = n^2 + n + 14.
\]

Case 2: Let \(n = 8t + 3 \) and \(q = 4t + 1 \).

From (2.12) we obtain...
\[\phi_{C_4}(n) = \frac{n}{2} (n-3) + \frac{n}{2} (8t^2 + 3t) + \frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta}{4} \right\rfloor. \] (2.15)

Claim 3. Let \(d_1, \cdots, d_n \) be the degree sequence of a graph. Then,
\[
\frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta}{4} \right\rfloor \leq \frac{3}{2}.
\]

Proof. It follows from routine calculations for all values of \(\alpha \) and \(\beta \) except when \(\alpha = 0 \) and \(\beta = 1 \). Suppose that \(\alpha = 0 \) and \(\beta = 1 \). Then \(C_2 = \emptyset \) and \(C_1 \) has exactly one element, thus the sequence \((d_i)_{i=1,\cdots,n} \) has exactly one element equal to \(n-2 \) and all the others equal to \(n-1 \). But this is not a degree sequence of a graph since \(\sum d_i \) is not even. \(\square \)

Therefore, using the estimate of Claim 3 in (2.15) we prove that
\[
\phi_{C_4}(n) \leq \frac{n^2}{8} + \frac{n}{8} + \frac{3}{2}.
\]

As for the lower bound consider the graph \(L \) with degree sequence \(d_1 = d_2 = n-4, \ d_3 = \cdots = d_{n-1} = n-2 \) and \(d_n = n-1 \) (the existence of \(L \) can be proved directly or by Erdös-Gallai theorem, Theorem 2.6). Using (1.1) and (2.5) we have
\[
(\phi_{C_4}(L) = \frac{n^2}{8} + \frac{n}{8} + \frac{3}{2}.
\]

Case 3: Let \(n = 8t + 5 \) and \(q = 4t + 2 \).

From (2.12) we obtain
\[
\phi_{C_4}(n) = \frac{n}{2} (n-3) + \frac{n}{2} (8t^2 + 7t) + \frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta + 5}{4} \right\rfloor. \] (2.16)

Claim 4. Let \(d_1, \cdots, d_n \) be the degree sequence of a graph. Then,
\[
\frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta + 5}{4} \right\rfloor \leq \frac{5}{2}.
\]

Proof. Routine calculations show that
\[
\alpha/2 - \beta - 3 \left\lfloor \frac{\alpha - \beta + 5}{4} \right\rfloor \leq -5/2 \quad \text{for all values of } \alpha \text{ and } \beta \text{ except for } \alpha = 2 \text{ and } \beta = 0 \text{ or } \alpha = 0 \text{ and } \beta = 2 \.
\]

Suppose first that \(\alpha = 2 \) and \(\beta = 0 \). Then the sequence \((d_i)_{i=1,\cdots,n} \) has two elements equal to \(n-1 \) and all the others equal to \(n-2 \). This is not a degree sequence of a graph since \(\sum d_i \) is not even. \(\square \)

Suppose now that \(\alpha = 0 \) and \(\beta = 2 \). If \(|C_1| = 2 \) then the sequence has two elements equal to \(n-4 \) and all the others equal to \(n-2 \) and this is not a degree sequence of a graph since \(\sum d_i \) is not even. Finally, if \(|C_1| = 1 \) then we have one element equal to \(n-6 \) and all the others equal to \(n-2 \). Again, this is not a degree sequence of a graph since \(\sum d_i \) is not even. \(\square \)

Therefore, using the estimate of Claim 4 in (2.16) we prove that
\[
\phi_{C_4}(n) \leq \frac{n^2}{8} + \frac{n}{8} + \frac{10}{8}.
\]

As for the lower bound consider the graph \(K_n-I \) obtained from \(K_n \) by deleting the edges of a maximum matching. Using (1.1) and (2.5) we show that
\[
\phi_{C_4}(K_n-I) = \frac{n^2}{8} + \frac{n}{8} + \frac{10}{8}.
\]

Case 4: Let \(n = 8t + 7 \) and \(q = 4t + 3 \).

From (2.12) we obtain
\[
\phi_{C_4}(n) = \frac{n}{2} (n-3) + \frac{n}{2} (8t^2 + 7t) + \frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta + 14}{4} \right\rfloor. \] (2.17)

Claim 5. Let \(d_1, \cdots, d_n \) be the degree sequence of a graph. Then,
\[
\frac{1}{2} \alpha - \beta - 3 \left\lfloor \frac{\alpha - \beta + 14}{4} \right\rfloor \leq -\frac{17}{2}.
\]

Proof. It follows directly from simple calculations. \(\square \)

Therefore, using the estimate of Claim 5 in (2.17) we prove that
\[
\phi_{C_4}(n) \leq \frac{n^2}{8} + \frac{n}{8} + 2.
\]

Furthermore, using (1.1) and (2.5) we have
\[
\phi_{C_4}(K_n-I) = \frac{n^2}{8} + \frac{n}{8} + 2,
\]
so the equality follows and the proof is now complete. \(\square \)

3. Acknowledgments

The author would like to thank Oleg Pikhurko for helpful comments and discussions. The author acknowledges the support from FCT—Fundação para a Ciência e a Tecnologia (Portugal), through Projects PTDC/M 2 10/07 and PEst-OE/MAT/UI0297/2011 (CMA).

REFERENCES

