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ABSTRACT 

In this paper we consider the problem of finding the smallest number   such that any graph G of order n admits a de-

composition into edge disjoint copies of C4 and single edges with at most   elements. We solve this problem for n 

sufficiently large. 
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1. Introduction 

All graphs in this paper are finite, undirected and simple. 
For notation and terminology not discussed here the 
reader is referred to [1]. 

Given two graphs  and G H , an H -decomposition 
of  is a partition of the edge set of  such that each 
part is either a single edge or forms an 

G G
H -subgraph, i.e., 

a graph isomorphic to H . We allow partitions only, that 
is, every edge of  appears in precisely one part. Let 

 be the smallest possible number of parts in an 
G

G H
H -decomposition of G . For non-empty H , let 

 be the maximum number of pairwise edge- 
disjoint 

p H G
H -subgraphs that can be packed into  and 

 the number of edges in . It is easy to see that  
G

 e G G

        1 .H HG e G p G e H         (1.1) 

Here we study the function  

      max ,H Hn G v G   n  

which is the smallest number, such that, any graph  
of order  admits an 

G
n H -decomposition with at most 

 elements.  H n
The function  H  was first studied by Erdös, 

Goodman and Pósa [2], who proved that 
n

   2n t n 
3K , 

where rK  denotes the complete graph (clique) of order 
 and  is the maximum size of an -partite 

graph on  vertices. A decade later, this result was 
extended by Bollobás [3], who proved that  

r  n
n

rt r

   1 , for all 3.K rr
n t n n r     

Recently, Pikhurko and Sousa [4] studied  H n  for 
arbitrary graphs H . 

 be 

any fixed graph of chromatic number 3r  . Then, 

    n t n o n   2 .  

Theorem 1.1. (See Theorem 1.1 from [4]) Let H

1H r

 ex ,n H  
aph of or

Let denote the maximu ber of edges 
in

m num
 a gr der n , that does not contain H  as a 

subgraph. Recall that    1ex , r rn K t n . Pikhur o and 
Sousa [4] also made th re. 

Conjecture 1. For any graph 

k
e following conjectu

H  with chromatic 
number at least 3, there is  0 0n n H  such that 

   ex ,H n n H  , for all 0n n
 of the function 

. 
The exact value  H n

few 
 is far from 

be

wing
) Let 

ing known. Sousa determined it for a special edge- 
critical graphs, namely for clique-extensions of order 

4r   ( n r ) [5] and the cycles of length 5 ( 6n  ) and 
10 ,7]. Later, Özkahya and Person eter- 

mined it for all edge-critical graphs with chromatic num- 
ber 3r   and n  sufficiently large. They proved the 
follo  result. 

Theorem 1.2. ([8]

7 ( n  ) [6  [8] d

H  
r 

be any edge-critical graph 
with chromatic number 3 . Then, there exists 0n  
such that     , 

g 
ex ,H n n H  or all 0n n . Moreove  

the only graph
f r,

 attainin  H n  is th urán graph e T
 1rT n . 

Recently, Alle proved t
err

e case when 

n, Böttcher and Person [9] im he 
or term obtained by Pikhurko and Sousa in Theorem 

1.1. 
Th H  

nd
is a bipartite g as been less 

st
raph h

udied. Pikhurko a  Sousa [4] determined  H n  for 
any fixed bipartite graph with an  1O  add rror. 
For a non-empty graph 

itive e
H , let gcd H  denote the 

greatest common divisor  the  of H. For 
example, 

of degrees
 6,4gcd 2K   while for any tree T  with at 

least 2 ve e  gcd 1T  . They p ed the 
following result. 

rtices we vha rov
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Theorem 1.3. (See Theorem 1.3 from [4]) Let H  be 
a bipartite graph with m  edges and let  gcd H . 
Then there is  0 0n n H  such that for all  
following statem

d

0n n  the
ents hold. 

(1) If  , then 1d    1

2H

n n
n

m


 
  
 

C , where 

.  
(2) If   

1C m   or 2C m 
2d  , then

    1
1 1

2 2H

nd 1d O
m d

  
      

. 

Moreover, there is a procedure running in polynomial 
in 

n
n n

  

log n  time which determines  H n  and describes 
a f    of n -sequences such a graph G  of 
order n  isfies    H HG n   if and only if the 
degree sequence of   . (It will be the 
case that 

amily  that 

to
sat  

 G  belongs 
 1O and each seq nce in   has 

 1n O  equal entries, so   can be described sing 
  bits.)  

e will det

 

rmine the exact val

ue

ue 

 u
logO
Here w

n
e of  n

4C  for 

 is such that for all 

(1) If  is even then 

n  sufficiently large. 
Theorem 1.4. There  0 0 4n n C  

ents hold. 0n  the following statem

n  

n

4

2n
n   1.

8 4C

n
  

(2) If  then  1 mod8n   
4

2 14
.

8 8 8C

n n
n     

(3) If  then  3 mod8n   
4

2 3
.

8 8 2C

n n
n     

(4) If  then  5 mod8n   
4

2 10
.

8 8 8C

n n
n     

(5) If  then  7 mod8n   
4

2

2.
8 8C

n n
n      

2. Proof of Theorem 1.4 

heorem 1.4, but first we In this section we will prove T
need to introduce the tools. We start with the following 
easy result about H -decompositions. 

Lemma 5. (Lem a 1.3) For any nonm -empty graph H  
with m  edges and any integer n , we have 

   1 1n m  
ex , .

2H n n H
m m

   
 

    (2.1) 

In particular, if H  
, th

is a fixed bipartite graph with 
ed

m  
ges and n  en  

   1 1 .
2H

n
n O

m


     
  

          (2.2) 

The following result is the well known Erdös-Gallai 
th
for a finite sequence to be the degree sequence of a 

eorem that gives a necessary and sufficient condition 

simple graph. 
Theorem 2.6. (Erdős-Gallai Theorem [10]) Let  

10 d dn    
gr

(1) d

be a sequence of integers. There is a 
f aph with degree sequence 1, , nd d  if and only i

1 nd   is even;  
(2) for each 1 k n    

k   
1 1

1 min ,
n n k

i i
i n k i

d k d k


   

    .    (2.3) 

The following results appearing in Alon, 
Yuster [11, Theorem 1.1, Corollary 3.4, Lemma 3.5] 
w

Caro and 

hich follow with some extra work from the powerful 
decomposition theorem of Gustavsson [12] are essential 
to the proof of Theorem 1.4. 

Lemma 2.7. For any non-empty graph H  with m  
edges, there are > 0  and 0

lds. Let 
N  such that llowi

ho
 the fo ng 

 gcdd H . Let G  be a gra of ord  

0n N  and of m  degre    1G n
ph er

inimum e    . 
If 1d  , 

   
then 

.H

e G
p G

m

 
  
 

             (2.4) 

If , let 2d 
 deg

u

u
d

d


 
  

 
 for  u V G  and 

let X  cons

 b

ist of e degr divi- 

sibl y d . If 

all vertices whos ee is not 

e
310

X
d

 , then 
n

 
 

1
.

2H u
u V G

p G
m




 
 
  

          (2.5) 

If 
3

<
10

n
X

d
, then 

    2

1
.

5H

n
p G e G

m d
   
 

       (2.6) 

                   
One can extract the following result from the proof of 

Theorem 1.2 from [

           

4]. 
Lemma 2.8. Let H be a bipartite graph with m  

edges and let  gcd H 2d  . Then, there is 
 0 0n H  such that if G  is a graph of order n n  

with 
n 0

     
d

H G   following holdsH

1, , nd  be the egree sequence of G  
n th e : en th

 d(1) Let , then 

   
1 1

1 1
1 .

2 2i i

G
 

 
  

(2) Let 

n n
i

H i

d
d m d

m d


          (2.7) 


n qd r 
ir

 with  and  0 1r d  
i id q d   with 0 1r di   . Then, for 1 i n   

exactly on owing h
1i d

e of the foll olds: 
d q(a)  ;  

(b)   1 1id qd1 andii C i n r d       ; 

(c)   2 1ii C i n d n      if  and  1n R 
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2  C  otherwise.  

hermore, Furt 1

2
1

m
C

d
   and 2 2 1C m . 

 following we 

 

briefly sketch the proof of Lemma 
e argument . We refr om 
ulations. 

In the
2.8 
do

by giving th form [4] ain fr
ing all the calc
Sketch of the proof of Lemma 2.8. Let  4C  and 

0N  be given by Lemma 2.7. Assume that   is 
sufficiently small and that is su e 0 0n N  fficiently larg

ounter.to satisfy all 
n

the inequalities we will enc  Let 

0n  and let G  be any graph of order n  with  

   
4 4C CG n  . 

Let nG G . Repeat the following at most logn n    
If the c rrent graph iG  has a ertex itimes: u v x  of 

degree at most 1 2 i ix  an de- , let 1i iG G   d 
cre iase . 

Suppose we stopped after 
 by 1

s  repetitions. Then, either  

  1 2n sG    or  n   s logs n n   . L

r cannot happen. Otherwise, we have  

 et us  

show th t the latea

 
2n

12 2
1 .

n n   (2.8
2

n s
i

              4logi n s n   
e G

Let t

 
) 

 satisfy 

 

,t tK H . Using the fact that  

   2 1 t
,ex ,n Kt t O n , (2.1), and (2.8) we obtain  

 

 

2
2 1 tn m

n
  


1 1

1
,

2

H

H n

n
G c

m

n
K

m





 
   


 

  
 

tradicts our assumption on . Therefore, 

2 4 log n m   

which con G
logs n n     and we have     1 2n sG n  . s  

Let 2  . We will have anothe ss over the 
si

incident

r pa
vertices 1, ,n n sx x   , each time decompo ng the edges 

i to x  by H -subg It raphs and single edges. 
will be the ca

o the c
se that each time we remove the edges 

incident t t vertex iurren x , the degree of any other 
vertex drops  at m  43h , where  h v H . Here is 
a formal description. Initially, let nG G   and i n

by ost
 . If 

in the current graph iG   we ha e  deg iGi
v x n


 , then 

we remove all iG  -edges incident to ix  as single edges 
and let 1i i iG G x   . 

Suppose that deg
i iG  x n


 . Then, the set  

    V ,i n s i iX y G x y E G     

has at least n 1s    The minimum degre vertices. e of 
 iG X  is 

   4 2
3 .

2 3i iG X s s h X      i

n
X


 

Let  y V H ,  HA y   and a A . Another 

result from [4] (Lemma 3.1) states that there is a constant 
, such that, all but at most  vertices ofC C   iG X  can 

ered by ed  disjointbe cov ge pies of co  H y  each of 
them having vertex disjoint sets 


A . Therefore, all but at 

most C  edges between ix  and iX  can be decom- 
posed into copies of H . All other edges inci nt to ide x  
are removed as single edges. Let 1iG   consist of the 
remaining edges of i iG x   (that is, those edges that do 
not belong to an H -subgraph of the above ix - 
decomposition). This finishes the description of the case  

 deg
i iG x n


 . 

Consider the sets  1, ,n n sS x x   ,  

 


 1 degi iS x S x nGi



   , and 2 1S S S . Let their  

sizes be s , 1s , and 2s  respectively, so 1 2s s s  . 
Le  t F  be the gr et aph wi

es co
t

m
h vert
i

ex s
 th

 V G 
m

2n s

ng from oved 
S , 

consisting of the edg e re H - 
subgraph n we processed the vertic  W
ha

s whe es in 2S . e 
ve 

     
1 2 .

2H H n s

e F s
G G s n s C

m
  

       
 

 (2 ) 

We

.9

 know that       1mH n s nG   s Hp n sG G e   ,  

fu    G n 1n srthe ore, rm s    . Thus,  H n sG p   
can 

gra

be estim

G

ated using Lemma 2.7. 
If (2.6) holds, some calculations show that there exits a 

 such that      

ol

H HG G
. 

 , which cont

t 

ra- ph 
dicts the optimality go 

Therefore, (2.5) must hold. It f lows tha
G

 GHp  
and thus  GH , depends only on the degree sequence 

1, ,d d  of G . Namely, the packing umber  n n

 Hp G  equals 
12 im 

1 n

ir
 
  

 , where i ir d d d      

There
is the largest multiple of d  not exceeding id . 

ore, f

   
1 1

n n

i i

o estim

 by 

1 1

2 2
id

G d
m d 

1 ,H d
 

i 

 

m 

need t
can attain. To 

H



that the degrees of 
e an

 
 
 

  (2

e  val
do that w

 upper bou estimati

   
   .10)

ues 

max

where , , nd d  is the degree sequence of . 1

To conclude
G

ate the th proof we 
G  
nd on

e need to 
ng prov  G  , 

the ma   ximum of

   1
=1 =1

1 1
, , = 1 ,

2 2

n n
i

n i
i i

d
d d d m d

m d


        
   (2.11) 

over all (not necessarily gra ) sequences ,d   
of integers with 0

phical
1

1 , nd

id n  
opti

. 
malLet  sequence atta1

 ma

, , nd d
x

 be an ining the 
value  . For 1, ,i n   let i id q d r   i with  

0 1ir d   . Then, 
 1 nq q d

2m

  
  
 


 . 

Copyright © 2012 SciRes.                                                                                OJDM 



T. SOUSA 128 

Let r  with 0 1r d    and n qd  q n d    . 
Define qd  e maxi 1R

st 1n   an
 to be  integer which is 

at mo  c odulo 
Let 

 th mum
ongruent to dd is  m


1 d . 

 1 and <i id1 dC i 


n r  R  and  

 2 1n   if R  andi  C i n d  1n   2C    

otherwis
Since , nd d  is an optimal sequence, we have that 

if ir [ ]i n . 

e. 

 for all To con-  

clude the proof it rema o show th

1,
1d   then 1id n 

ins t at 1C
2

1
m

d
 

an

 

d 2 2 1m C . Suppose first that 1

2
=:

m
C t

d
 .  

hich contradicts 

Consider the new sequence of integers  

1

, if ,

, if .i

d d i C

d i C
1i

id   
   

Then, 1     and max 1     w
our assumption on max . 

Now suppose that 2 2C m  and consider the new se- 
quence of integers  obtained from 
by cing  

 1 , , nd d 
es of

m

1, , nd d  
 repla  valu 1  by R . Then, 

d    and ax

2m n 
max

 m d    , which contra- 
dic


 on max

 
ts our assumption   and the proof is con- 

cluded.                                 
We now have all the tools n eded to prove Theorem 1.4. 
Proof of Theor  1.4. Let n by Lemma 2.8. 

Let G  be a graph of order 0n  with 
   

4 4C CG n   and degree sequence 1, , nd d . For 
i     

       
e

em be give0n  
n 

1, ,n  let 2i i id q r  with 0 1ir . Let, 
 2 2 1 1n      and let the sets 1C  and 2C  be as 

in Lemma 2.8. 
Let 2 

R

n q  r  with 0 1r   and 2q From 
tain 

n   . 
(2.7) w


e ob

 

   

   

4

2

1

2

1

1
1 1

1 1 1
3 1 1

4 4 4

C

i
i

i
i C

n

n
n q C r q

n q C q q





     

 
      

  


 

In what follows let 

2 2 C

q


  (2.12) 

2C   and 

We consider first the case when  is even. Then 
and we have  

 
1

1 i
i C

q q


   . 

n

2C    

     

   
4

1
1 3C n n q n q 1

2 4 4

3
2 4

n

3 1
1

2

q qn
n q

 


       

 (2.13) 

   
     

   

Claim 1. Let be the degree sequence of a 
graph. Then, 

1, , nd d  

3 1
4

  
.     
 

Proof. Routine calculations show that for 1   we  

have 3 1.
  
4

    
 Suppose 


1 

nce

. Then  has 

lement, thus the seque  has  

exactly one element equal to and all the others 
equal to

1

exactly one e

C

1, ,i n  id


3n   
 1n  . But this is degree sequence of a 

gr
fo

not a 
aph since condition (2.3) of Theorem 2.6 does not hold 
r 2k n  .                                  

refore, using the  Clai .1
follows that 

The  estimate of m 1 in (2 3) it 

 
4

1.
8C n

2n n

4
    

To prove the lower bound consider the graph 5L  
obtai  nned from K  after the deletion of the edges of a 
C5 . Using (1.1) and (2.5) we show that  

 
4

2

5 1.
8 4C

n n
L     

We now consider the case when  odd number. n  is an
Case 1: Let 8 1n t   and 4q t . 
From (2.12) w  obtain  

 

e

   4 2 2
1 1

3

C t t

  

23 3 8
n n

n n

2 4

    

      

    (2.14) 

 the degree sequence of a 
gr

 

Claim 2. Let .n  be 1

aph. Then,  
, ,d d

1 1
3 .

2 4

      5

2
    

 

Proof. Routine calculations show that the result 
follows if  or 0  . If 0   and 0   then 0 

2nid    for all 1 i n  . This is not a degree se-  

quence of a gra
n

1 ii
d

  ph since is not even.        

Therefore, using the estimate of Claim 2 in (2.14) we 
prove that 

  

 
4

14
.

8 8C

n n
n     

the lower consider the graph L

2

8

As for bound   with 
all vertices of degree n 2  except one of degree n 3 . 
Using (1.1) and (2.5) we show that  

 4

2 14
.

8 8 8C

n n
L      

Case 2: Let 8 3n t 
 we obtain 

 and 
From (2.12)  

4 1q t  . 
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     4

23 3 8 3
2 2
1

C

n n

3 .
2 4

n n

       

    (2.15) 

Claim 3. Let be the degree sequence of a 
gr

t t



    



1, , .nd d  
aph. Then, 

1
3 .  

3

2 4 2

     
 

Proof. It follows from routine calculatio
values of 

ns for all 
  and   except when 0   and 1  . 

Suppose that 0   and 1  . Th   
ha element, 

en 2C    and 1C
s exactly one thus the sequence   1, ,i i n

d
    

has exactly one element equal to  and all the 
others equal to . But this is not ree sequence  
of a graph since is not even.                

Therefore, usi  estimate of Claim 3 in (2.15)
pr

2n 
 a deg1n 

id  
ng the

  
 we 

ove that 

 
4 8 8 2C

2 3
.

n n
n     

he gAs for the lower bound consider t raph L  with 
degree sequence 2 4d d n   , 3 1 2nd d n     

d
1

(the and 1nd n   existence of L  can be prove  
directly or by Erdös-Gallai theorem, Theorem 2.6). Using 
(1.1) and (2.5) we show that 

 
4

2 3
.

8 8 2C

n n
L     

Case 3: Let 8 5n t   and 4 2q t  . 
From (2.12) we o

 

btain 

   4

23 3 8 7
2 2
1

C

n n

5
3 .

2 4

n n

          

Claim 4. Let be the degree sequence of a 
gr

t t     
  (2.16) 

1, , .nd d  
aph. Then,  

1  5 5
3 .

2 4 2

    
     

 

Proof. Routine calculations show that 
5

2 3 5
4

          
 2 for all values of   and  

β except for 2  = 0 and   or = 0  and = 2 . 
Suppose first that 2   and = 0 . Then t  

quence has t o 
he se-

  1, ,i i n
d

   wo elements equal t 1n   and 
all the others equal to . Thi ee se- 
quence o since even.  

2n 
 

1

n

i
s is not a 

is not 
degr
      f a graph i  d   

Suppose now that = 0  and = 2 . If 1C 2  
then the sequence has m o  and 

all the others equal to 2n   
nce 

 two ele ents equal t 4n 

and this is not a degree 

id  is not even. Fin ly, if sequence of a graph si al

1 1C   then ave one element equal to n we h 6  and 
all the others equal to 2n  . Again, this is not a degree 
sequence f a graph since id o   is not even.          

Therefore, using the estimate of Claim 4 in (2.16) we 
prove that 

 
4

1
.

8 8 8C n     

As for the lower bound sider the graph n

2n n

 con

0

K I  
obtained from nK  by deleting the edges of a mum 
matching. Using (1.1) a .5) we show that  

maxi
nd (2

 
4

.
8 8 8C nK I      

Case 4: Let 

2 10nn

8 7n t   and 
tain 

4 3q t  . 
From (2.12) we ob

     4
3 3 8 11

2 2
1 14

3 .
2 4

C
2n n

n n

Claim 5.  Let be the degre seq  
graph. Then, 

t t

  

    

       

  (2.17) 

1, , .nd d  e uence of a

1 7  14

4
 

 

Proof. It follows directly from simple calculations. 
Therefore, using the estimate of Claim 5 in

prove that 

1

2

 (2

3
2
     

.

  
.17) we 

 
4

2

2.
8 8C

n n
n     

Furthermore, using (1.1) and (2.5) we have  

 
4

2

2,
8 8C n

n n
K I      

so
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