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ABSTRACT 

In this paper we consider the problem of finding the smallest number   such that any graph G of order n admits a de-

composition into edge disjoint copies of C4 and single edges with at most   elements. We solve this problem for n 

sufficiently large. 
 
Keywords: Graph Decomposition; 4-Cycle Packing; Graph Packing 

1. Introduction 

All graphs in this paper are finite, undirected and simple. 
For notation and terminology not discussed here the 
reader is referred to [1]. 

Given two graphs  and G H , an H -decomposition 
of  is a partition of the edge set of  such that each 
part is either a single edge or forms an 

G G
H -subgraph, i.e., 

a graph isomorphic to H . We allow partitions only, that 
is, every edge of  appears in precisely one part. Let 

 be the smallest possible number of parts in an 
G

G H
H -decomposition of G . For non-empty H , let 

 be the maximum number of pairwise edge- 
disjoint 

p H G
H -subgraphs that can be packed into  and 

 the number of edges in . It is easy to see that  
G

 e G G

        1 .H HG e G p G e H         (1.1) 

Here we study the function  

      max ,H Hn G v G   n  

which is the smallest number, such that, any graph  
of order  admits an 

G
n H -decomposition with at most 

 elements.  H n
The function  H  was first studied by Erdös, 

Goodman and Pósa [2], who proved that 
n

   2n t n 
3K , 

where rK  denotes the complete graph (clique) of order 
 and  is the maximum size of an -partite 

graph on  vertices. A decade later, this result was 
extended by Bollobás [3], who proved that  

r  n
n

rt r

   1 , for all 3.K rr
n t n n r     

Recently, Pikhurko and Sousa [4] studied  H n  for 
arbitrary graphs H . 

 be 

any fixed graph of chromatic number 3r  . Then, 

    n t n o n   2 .  

Theorem 1.1. (See Theorem 1.1 from [4]) Let H

1H r

 ex ,n H  
aph of or

Let denote the maximu ber of edges 
in

m num
 a gr der n , that does not contain H  as a 

subgraph. Recall that    1ex , r rn K t n . Pikhur o and 
Sousa [4] also made th re. 

Conjecture 1. For any graph 

k
e following conjectu

H  with chromatic 
number at least 3, there is  0 0n n H  such that 

   ex ,H n n H  , for all 0n n
 of the function 

. 
The exact value  H n

few 
 is far from 

be

wing
) Let 

ing known. Sousa determined it for a special edge- 
critical graphs, namely for clique-extensions of order 

4r   ( n r ) [5] and the cycles of length 5 ( 6n  ) and 
10 ,7]. Later, Özkahya and Person eter- 

mined it for all edge-critical graphs with chromatic num- 
ber 3r   and n  sufficiently large. They proved the 
follo  result. 

Theorem 1.2. ([8]

7 ( n  ) [6  [8] d

H  
r 

be any edge-critical graph 
with chromatic number 3 . Then, there exists 0n  
such that     , 

g 
ex ,H n n H  or all 0n n . Moreove  

the only graph
f r,

 attainin  H n  is th urán graph e T
 1rT n . 

Recently, Alle proved t
err

e case when 

n, Böttcher and Person [9] im he 
or term obtained by Pikhurko and Sousa in Theorem 

1.1. 
Th H  

nd
is a bipartite g as been less 

st
raph h

udied. Pikhurko a  Sousa [4] determined  H n  for 
any fixed bipartite graph with an  1O  add rror. 
For a non-empty graph 

itive e
H , let gcd H  denote the 

greatest common divisor  the  of H. For 
example, 

of degrees
 6,4gcd 2K   while for any tree T  with at 

least 2 ve e  gcd 1T  . They p ed the 
following result. 

rtices we vha rov
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Theorem 1.3. (See Theorem 1.3 from [4]) Let H  be 
a bipartite graph with m  edges and let  gcd H . 
Then there is  0 0n n H  such that for all  
following statem

d

0n n  the
ents hold. 

(1) If  , then 1d    1

2H

n n
n

m


 
  
 

C , where 

.  
(2) If   

1C m   or 2C m 
2d  , then

    1
1 1

2 2H

nd 1d O
m d

  
      

. 

Moreover, there is a procedure running in polynomial 
in 

n
n n

  

log n  time which determines  H n  and describes 
a f    of n -sequences such a graph G  of 
order n  isfies    H HG n   if and only if the 
degree sequence of   . (It will be the 
case that 

amily  that 

to
sat  

 G  belongs 
 1O and each seq nce in   has 

 1n O  equal entries, so   can be described sing 
  bits.)  

e will det

 

rmine the exact val

ue

ue 

 u
logO
Here w

n
e of  n

4C  for 

 is such that for all 

(1) If  is even then 

n  sufficiently large. 
Theorem 1.4. There  0 0 4n n C  

ents hold. 0n  the following statem

n  

n

4

2n
n   1.

8 4C

n
  

(2) If  then  1 mod8n   
4

2 14
.

8 8 8C

n n
n     

(3) If  then  3 mod8n   
4

2 3
.

8 8 2C

n n
n     

(4) If  then  5 mod8n   
4

2 10
.

8 8 8C

n n
n     

(5) If  then  7 mod8n   
4

2

2.
8 8C

n n
n      

2. Proof of Theorem 1.4 

heorem 1.4, but first we In this section we will prove T
need to introduce the tools. We start with the following 
easy result about H -decompositions. 

Lemma 5. (Lem a 1.3) For any nonm -empty graph H  
with m  edges and any integer n , we have 

   1 1n m  
ex , .

2H n n H
m m

   
 

    (2.1) 

In particular, if H  
, th

is a fixed bipartite graph with 
ed

m  
ges and n  en  

   1 1 .
2H

n
n O

m


     
  

          (2.2) 

The following result is the well known Erdös-Gallai 
th
for a finite sequence to be the degree sequence of a 

eorem that gives a necessary and sufficient condition 

simple graph. 
Theorem 2.6. (Erdős-Gallai Theorem [10]) Let  

10 d dn    
gr

(1) d

be a sequence of integers. There is a 
f aph with degree sequence 1, , nd d  if and only i

1 nd   is even;  
(2) for each 1 k n    

k   
1 1

1 min ,
n n k

i i
i n k i

d k d k


   

    .    (2.3) 

The following results appearing in Alon, 
Yuster [11, Theorem 1.1, Corollary 3.4, Lemma 3.5] 
w

Caro and 

hich follow with some extra work from the powerful 
decomposition theorem of Gustavsson [12] are essential 
to the proof of Theorem 1.4. 

Lemma 2.7. For any non-empty graph H  with m  
edges, there are > 0  and 0

lds. Let 
N  such that llowi

ho
 the fo ng 

 gcdd H . Let G  be a gra of ord  

0n N  and of m  degre    1G n
ph er

inimum e    . 
If 1d  , 

   
then 

.H

e G
p G

m

 
  
 

             (2.4) 

If , let 2d 
 deg

u

u
d

d


 
  

 
 for  u V G  and 

let X  cons

 b

ist of e degr divi- 

sibl y d . If 

all vertices whos ee is not 

e
310

X
d

 , then 
n

 
 

1
.

2H u
u V G

p G
m




 
 
  

          (2.5) 

If 
3

<
10

n
X

d
, then 

    2

1
.

5H

n
p G e G

m d
   
 

       (2.6) 

                   
One can extract the following result from the proof of 

Theorem 1.2 from [

           

4]. 
Lemma 2.8. Let H be a bipartite graph with m  

edges and let  gcd H 2d  . Then, there is 
 0 0n H  such that if G  is a graph of order n n  

with 
n 0

     
d

H G   following holdsH

1, , nd  be the egree sequence of G  
n th e : en th

 d(1) Let , then 

   
1 1

1 1
1 .

2 2i i

G
 

 
  

(2) Let 

n n
i

H i

d
d m d

m d


          (2.7) 


n qd r 
ir

 with  and  0 1r d  
i id q d   with 0 1r di   . Then, for 1 i n   

exactly on owing h
1i d

e of the foll olds: 
d q(a)  ;  

(b)   1 1id qd1 andii C i n r d       ; 

(c)   2 1ii C i n d n      if  and  1n R 
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2  C  otherwise.  

hermore, Furt 1

2
1

m
C

d
   and 2 2 1C m . 

 following we 

 

briefly sketch the proof of Lemma 
e argument . We refr om 
ulations. 

In the
2.8 
do

by giving th form [4] ain fr
ing all the calc
Sketch of the proof of Lemma 2.8. Let  4C  and 

0N  be given by Lemma 2.7. Assume that   is 
sufficiently small and that is su e 0 0n N  fficiently larg

ounter.to satisfy all 
n

the inequalities we will enc  Let 

0n  and let G  be any graph of order n  with  

   
4 4C CG n  . 

Let nG G . Repeat the following at most logn n    
If the c rrent graph iG  has a ertex itimes: u v x  of 

degree at most 1 2 i ix  an de- , let 1i iG G   d 
cre iase . 

Suppose we stopped after 
 by 1

s  repetitions. Then, either  

  1 2n sG    or  n   s logs n n   . L

r cannot happen. Otherwise, we have  

 et us  

show th t the latea

 
2n

12 2
1 .

n n   (2.8
2

n s
i

              4logi n s n   
e G

Let t

 
) 

 satisfy 

 

,t tK H . Using the fact that  

   2 1 t
,ex ,n Kt t O n , (2.1), and (2.8) we obtain  

 

 

2
2 1 tn m

n
  


1 1

1
,

2

H

H n

n
G c

m

n
K

m





 
   


 

  
 

tradicts our assumption on . Therefore, 

2 4 log n m   

which con G
logs n n     and we have     1 2n sG n  . s  

Let 2  . We will have anothe ss over the 
si

incident

r pa
vertices 1, ,n n sx x   , each time decompo ng the edges 

i to x  by H -subg It raphs and single edges. 
will be the ca

o the c
se that each time we remove the edges 

incident t t vertex iurren x , the degree of any other 
vertex drops  at m  43h , where  h v H . Here is 
a formal description. Initially, let nG G   and i n

by ost
 . If 

in the current graph iG   we ha e  deg iGi
v x n


 , then 

we remove all iG  -edges incident to ix  as single edges 
and let 1i i iG G x   . 

Suppose that deg
i iG  x n


 . Then, the set  

    V ,i n s i iX y G x y E G     

has at least n 1s    The minimum degre vertices. e of 
 iG X  is 

   4 2
3 .

2 3i iG X s s h X      i

n
X


 

Let  y V H ,  HA y   and a A . Another 

result from [4] (Lemma 3.1) states that there is a constant 
, such that, all but at most  vertices ofC C   iG X  can 

ered by ed  disjointbe cov ge pies of co  H y  each of 
them having vertex disjoint sets 


A . Therefore, all but at 

most C  edges between ix  and iX  can be decom- 
posed into copies of H . All other edges inci nt to ide x  
are removed as single edges. Let 1iG   consist of the 
remaining edges of i iG x   (that is, those edges that do 
not belong to an H -subgraph of the above ix - 
decomposition). This finishes the description of the case  

 deg
i iG x n


 . 

Consider the sets  1, ,n n sS x x   ,  

 


 1 degi iS x S x nGi



   , and 2 1S S S . Let their  

sizes be s , 1s , and 2s  respectively, so 1 2s s s  . 
Le  t F  be the gr et aph wi

es co
t

m
h vert
i

ex s
 th

 V G 
m

2n s

ng from oved 
S , 

consisting of the edg e re H - 
subgraph n we processed the vertic  W
ha

s whe es in 2S . e 
ve 

     
1 2 .

2H H n s

e F s
G G s n s C

m
  

       
 

 (2 ) 

We

.9

 know that       1mH n s nG   s Hp n sG G e   ,  

fu    G n 1n srthe ore, rm s    . Thus,  H n sG p   
can 

gra

be estim

G

ated using Lemma 2.7. 
If (2.6) holds, some calculations show that there exits a 

 such that      

ol

H HG G
. 

 , which cont

t 

ra- ph 
dicts the optimality go 

Therefore, (2.5) must hold. It f lows tha
G

 GHp  
and thus  GH , depends only on the degree sequence 

1, ,d d  of G . Namely, the packing umber  n n

 Hp G  equals 
12 im 

1 n

ir
 
  

 , where i ir d d d      

There
is the largest multiple of d  not exceeding id . 

ore, f

   
1 1

n n

i i

o estim

 by 

1 1

2 2
id

G d
m d 

1 ,H d
 

i 

 

m 

need t
can attain. To 

H



that the degrees of 
e an

 
 
 

  (2

e  val
do that w

 upper bou estimati

   
   .10)

ues 

max

where , , nd d  is the degree sequence of . 1

To conclude
G

ate the th proof we 
G  
nd on

e need to 
ng prov  G  , 

the ma   ximum of

   1
=1 =1

1 1
, , = 1 ,

2 2

n n
i

n i
i i

d
d d d m d

m d


        
   (2.11) 

over all (not necessarily gra ) sequences ,d   
of integers with 0

phical
1

1 , nd

id n  
opti

. 
malLet  sequence atta1

 ma

, , nd d
x

 be an ining the 
value  . For 1, ,i n   let i id q d r   i with  

0 1ir d   . Then, 
 1 nq q d

2m

  
  
 


 . 
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Let r  with 0 1r d    and n qd  q n d    . 
Define qd  e maxi 1R

st 1n   an
 to be  integer which is 

at mo  c odulo 
Let 

 th mum
ongruent to dd is  m


1 d . 

 1 and <i id1 dC i 


n r  R  and  

 2 1n   if R  andi  C i n d  1n   2C    

otherwis
Since , nd d  is an optimal sequence, we have that 

if ir [ ]i n . 

e. 

 for all To con-  

clude the proof it rema o show th

1,
1d   then 1id n 

ins t at 1C
2

1
m

d
 

an

 

d 2 2 1m C . Suppose first that 1

2
=:

m
C t

d
 .  

hich contradicts 

Consider the new sequence of integers  

1

, if ,

, if .i

d d i C

d i C
1i

id   
   

Then, 1     and max 1     w
our assumption on max . 

Now suppose that 2 2C m  and consider the new se- 
quence of integers  obtained from 
by cing  

 1 , , nd d 
es of

m

1, , nd d  
 repla  valu 1  by R . Then, 

d    and ax

2m n 
max

 m d    , which contra- 
dic


 on max

 
ts our assumption   and the proof is con- 

cluded.                                 
We now have all the tools n eded to prove Theorem 1.4. 
Proof of Theor  1.4. Let n by Lemma 2.8. 

Let G  be a graph of order 0n  with 
   

4 4C CG n   and degree sequence 1, , nd d . For 
i     

       
e

em be give0n  
n 

1, ,n  let 2i i id q r  with 0 1ir . Let, 
 2 2 1 1n      and let the sets 1C  and 2C  be as 

in Lemma 2.8. 
Let 2 

R

n q  r  with 0 1r   and 2q From 
tain 

n   . 
(2.7) w


e ob

 

   

   

4

2

1

2

1

1
1 1

1 1 1
3 1 1

4 4 4

C

i
i

i
i C

n

n
n q C r q

n q C q q





     

 
      

  


 

In what follows let 

2 2 C

q


  (2.12) 

2C   and 

We consider first the case when  is even. Then 
and we have  

 
1

1 i
i C

q q


   . 

n

2C    

     

   
4

1
1 3C n n q n q 1

2 4 4

3
2 4

n

3 1
1

2

q qn
n q

 


       

 (2.13) 

   
     

   

Claim 1. Let be the degree sequence of a 
graph. Then, 

1, , nd d  

3 1
4

  
.     
 

Proof. Routine calculations show that for 1   we  

have 3 1.
  
4

    
 Suppose 


1 

nce

. Then  has 

lement, thus the seque  has  

exactly one element equal to and all the others 
equal to

1

exactly one e

C

1, ,i n  id


3n   
 1n  . But this is degree sequence of a 

gr
fo

not a 
aph since condition (2.3) of Theorem 2.6 does not hold 
r 2k n  .                                  

refore, using the  Clai .1
follows that 

The  estimate of m 1 in (2 3) it 

 
4

1.
8C n

2n n

4
    

To prove the lower bound consider the graph 5L  
obtai  nned from K  after the deletion of the edges of a 
C5 . Using (1.1) and (2.5) we show that  

 
4

2

5 1.
8 4C

n n
L     

We now consider the case when  odd number. n  is an
Case 1: Let 8 1n t   and 4q t . 
From (2.12) w  obtain  

 

e

   4 2 2
1 1

3

C t t

  

23 3 8
n n

n n

2 4

    

      

    (2.14) 

 the degree sequence of a 
gr

 

Claim 2. Let .n  be 1

aph. Then,  
, ,d d

1 1
3 .

2 4

      5

2
    

 

Proof. Routine calculations show that the result 
follows if  or 0  . If 0   and 0   then 0 

2nid    for all 1 i n  . This is not a degree se-  

quence of a gra
n

1 ii
d

  ph since is not even.        

Therefore, using the estimate of Claim 2 in (2.14) we 
prove that 

  

 
4

14
.

8 8C

n n
n     

the lower consider the graph L

2

8

As for bound   with 
all vertices of degree n 2  except one of degree n 3 . 
Using (1.1) and (2.5) we show that  

 4

2 14
.

8 8 8C

n n
L      

Case 2: Let 8 3n t 
 we obtain 

 and 
From (2.12)  

4 1q t  . 
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     4

23 3 8 3
2 2
1

C

n n

3 .
2 4

n n

       

    (2.15) 

Claim 3. Let be the degree sequence of a 
gr

t t



    



1, , .nd d  
aph. Then, 

1
3 .  

3

2 4 2

     
 

Proof. It follows from routine calculatio
values of 

ns for all 
  and   except when 0   and 1  . 

Suppose that 0   and 1  . Th   
ha element, 

en 2C    and 1C
s exactly one thus the sequence   1, ,i i n

d
    

has exactly one element equal to  and all the 
others equal to . But this is not ree sequence  
of a graph since is not even.                

Therefore, usi  estimate of Claim 3 in (2.15)
pr

2n 
 a deg1n 

id  
ng the

  
 we 

ove that 

 
4 8 8 2C

2 3
.

n n
n     

he gAs for the lower bound consider t raph L  with 
degree sequence 2 4d d n   , 3 1 2nd d n     

d
1

(the and 1nd n   existence of L  can be prove  
directly or by Erdös-Gallai theorem, Theorem 2.6). Using 
(1.1) and (2.5) we show that 

 
4

2 3
.

8 8 2C

n n
L     

Case 3: Let 8 5n t   and 4 2q t  . 
From (2.12) we o

 

btain 

   4

23 3 8 7
2 2
1

C

n n

5
3 .

2 4

n n

          

Claim 4. Let be the degree sequence of a 
gr

t t     
  (2.16) 

1, , .nd d  
aph. Then,  

1  5 5
3 .

2 4 2

    
     

 

Proof. Routine calculations show that 
5

2 3 5
4

          
 2 for all values of   and  

β except for 2  = 0 and   or = 0  and = 2 . 
Suppose first that 2   and = 0 . Then t  

quence has t o 
he se-

  1, ,i i n
d

   wo elements equal t 1n   and 
all the others equal to . Thi ee se- 
quence o since even.  

2n 
 

1

n

i
s is not a 

is not 
degr
      f a graph i  d   

Suppose now that = 0  and = 2 . If 1C 2  
then the sequence has m o  and 

all the others equal to 2n   
nce 

 two ele ents equal t 4n 

and this is not a degree 

id  is not even. Fin ly, if sequence of a graph si al

1 1C   then ave one element equal to n we h 6  and 
all the others equal to 2n  . Again, this is not a degree 
sequence f a graph since id o   is not even.          

Therefore, using the estimate of Claim 4 in (2.16) we 
prove that 

 
4

1
.

8 8 8C n     

As for the lower bound sider the graph n

2n n

 con

0

K I  
obtained from nK  by deleting the edges of a mum 
matching. Using (1.1) a .5) we show that  

maxi
nd (2

 
4

.
8 8 8C nK I      

Case 4: Let 

2 10nn

8 7n t   and 
tain 

4 3q t  . 
From (2.12) we ob

     4
3 3 8 11

2 2
1 14

3 .
2 4

C
2n n

n n

Claim 5.  Let be the degre seq  
graph. Then, 

t t

  

    

       

  (2.17) 

1, , .nd d  e uence of a

1 7  14

4
 

 

Proof. It follows directly from simple calculations. 
Therefore, using the estimate of Claim 5 in

prove that 

1

2

 (2

3
2
     

.

  
.17) we 

 
4

2

2.
8 8C

n n
n     

Furthermore, using (1.1) and (2.5) we have  

 
4

2

2,
8 8C n

n n
K I      

so
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