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Abstract

For r ≥ 3, a clique-extension of order r + 1 is a connected graph
that consists of a Kr plus another vertex adjacent to at most r − 1
vertices of Kr. In this paper we consider the problem of finding
the smallest number t such that any graph G of order n admits
a decomposition into edge disjoint copies of a fixed graph H and
single edges with at most t elements. Here we solve the case when
H is a fixed clique-extension of order r + 1, for all r ≥ 3 and will
also obtain all extremal graphs. This work extends results proved
by Bollobás [Math. Proc. Cambridge Philosophical Soc. 79 (1976)
19–24] for cliques.

1 Introduction

Given graphs G and H , an H-decomposition of G is a set of subgraphs
G1, . . . , Gt such that any edge of G is an edge of exactly one of G1, . . . , Gt

and each G1, . . . , Gt is either a single edge or forms a graph isomorphic to
H .

We denote by Kr the complete graph of order r, and by tr−1(n) the
number of edges in the Turán graph of order n, Tr−1(n), which is the unique
complete (r− 1)-partite graph on n vertices that has maximum number of
edges and contains no complete graph of order r.

Erdös, Goodman and Pósa [4] showed that the edges of any graph on n
vertices can be decomposed into at most �n2/4� edge disjoint K3’s and sin-
gle edges and that K�n

2 �,�n
2 � is the only extremal graph. Later Bollobás [1]

generalized this result for r ≥ 4 by showing that a graph of order n can be
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decomposed into at most tr−1(n) edge disjoint Kr’s and single edges and
that Tr−1(n) is the unique extremal graph.

For r ≥ 3, a clique-extension of order r + 1 is a connected graph that
consists of aKr plus another vertex, say x, adjacent to at most r−1 vertices
of Kr. For i = 1, · · · , r − 1 the Hr,i be the clique-extension of order r + 1
that has deg x = i.

Let r ≥ 3 and let H be a fixed clique-extension of order r + 1. In
Section 2 we prove that any graph of order n admits a decomposition into
edge disjoint copies of H and single edges with at most tr−1(n) elements.
Furthermore, a complete characterization of all extremal graphs is also
obtained.

2 Clique-extension decompositions of graphs

In this section we will prove our results about decompositions of graphs
into single edges and clique-extensions of order r + 1, for all r ≥ 3. The-
orem 2.3 solves the case when r = 3 while Theorem 2.4 deals with the
case r ≥ 4. The reason for having two different theorems is that the proofs
require different approaches and techniques. The case r = 3, stated in The-
orem 2.3, was first obtained by the author in [6]. However, at that time
the extremal graphs were not obtained. Here we conclude that work by
giving the characterization of all extremal graphs. Therefore, for the sake
of completeness, the proof of Theorem 2.3 will be entirely reproduced here
with the necessary modifications and additions to fulfil our needs.

Before stating our main results we need to define three graphs and state
some auxiliary Lemmas.

Let F , G and H be the graphs on five and six vertices shown if Figure 2.

F G H

Figure 1: The graphs F , G and H.
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Lemma 2.1. [3, Proposition 1.3.1] Let G be a graph of order n with min-
imum degree k. Then G contains a path of length k.

Lemma 2.2. Given a graph H, denote by ex(n,H) the maximum number
of edges in a graph of order n without containing a copy of H.

(i) Let r ≥ 4 and let K−
r denote the complete graph on r vertices minus

one edge. Then for all n ≥ r + 1, ex(n;K−
r ) = ex(n;Kr−1);

(ii) r−2
r−1

(
n
2

) ≤ ex(n;Kr) = tr−1(n) ≤ 1
2n

2 r−2
r−1 , for all r ≥ 3.

Proof. Part (i) follows easily from the definition of ex(n,H) and exercise
19 in [2, section IV.7]. The upper bound in part (ii) can be found in [3,
Section 7.1] and the lower bound follows from simple calculations and can
be found in [2, Section IV.2].

We are now able to state and prove our results.

Theorem 2.3. Let H be a fixed clique-extension of order 4. Then every

graph of order n ≥ 4 can be decomposed into at most �n2

4 � edge disjoint
copies of H and single edges. Furthermore, K�n

2 �,�n
2 � is the only graph that

cannot be decomposed with fewer edge disjoint copies of H and single edges,
except for H = H3,2 where the graphs H3,1,F ,G,K5,H are also extremal.

Proof. By induction on the number of vertices in a graph.
We will see first that the result holds for all graphs of order n with

4 ≤ n ≤ 6. To help us with this task we will use Harary’s [5] atlas of all
graphs of order at most 6. Observe first that the graphs stated as extremal
are in fact extremal. Therefore, it remains to see that all other graphs
admit a decomposition into edge disjoint copies of H and single edges with

less than �n2

4 � elements. Clearly, we only need to consider graphs with at

least �n2

4 � edges.
For n = 4 there are exactly 4 graphs that need to be studied. In this

case we can easily check that the theorem holds. Let n = 5 and let G be
a graph of order 5. If e(G) = 6 then, by inspection, we can see that the
theorem holds. Let e(G) = 7, 8. Lemma 2.2 implies that G contains a copy
of K−

4 . Since H ⊆ K−
4 the result clearly holds. If e(G) = 9 or e(G) = 10

then the theorem easily holds.
Finally, let n = 6 and let G be a graph with 6 vertices and at least

9 edges. If e(G) = 9 then, by inspection, we can see that the theorem
holds. So, suppose that e(G) ≥ 10. We consider first the case H = H3,1.
If 10 ≤ e(G) ≤ 11 then G must contain a copy of H3,1. Therefore, we can
decompose G into one copy of H3,1 and the remaining edges as single edges
and we are done. If 12 ≤ e(G) ≤ 14 then, we can easily see that G contains
2 edge disjoint copies of H3,1 and we are done. Finally, for G = K6 the
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result also holds. To conclude consider the case H = H3,2. Observe that
H3,2 = K−

4 and that e(G) > ex(6,K−
4 ) = 9. So if 10 ≤ e(G) ≤ 12 we

can decompose G into one copy of H3,2 and the remaining edges as single
edges and we are done. If 13 ≤ e(G) ≤ 15 we can see by inspection that
the theorem holds.

Assume that it is true for all graphs of order less than n and note that
for any positive integer n

⌊
n2

4

⌋
=

⌊
(n− 1)2

4

⌋
+
⌊n
2

⌋
.

Let G be a graph of order n, where n ≥ 7, and let v be a vertex of
minimum degree, say degG(v) = d+m where d := �n

2 � and m is an integer.
If m < 0 or if m = 0 and there exists a copy of H in G containing at

least two edges incident with v, then the edges incident with v and some
other edges of G can be decomposed with at most d−1 edge disjoint copies
of H and single edges, so the induction hypothesis implies the result.

Let m = 0 and suppose that there is no copy of H containing at least
two edges incident with v. By induction either G − v = K�n−1

2 �,�n−1
2 �

or we have n = 6, H = H3,2 and G = H. Suppose the latter happens.
Since deg v = 3 it follows that at least 2 edges incident with v will also
be adjacent with 2 vertices of G − v that form a triangle in G − v. This
creates in G a copy of H that has at least 2 edges incident with v, which
contradicts our assumption. Hence G − v = K�n−1

2 �,�n−1
2 �. Suppose v is

adjacent to vertices in both parts of K�n−1
2 �,�n−1

2 �. Then, we can easily

find a copy of H containing at least two edges incident with v. Therefore,
v can only have neighbors in one part of K�n−1

2 �,�n−1
2 � and since deg v = d

it follows that G = K�n
2 �,�n

2 � as required.

To complete the proof we shall show that if m ≥ 1 then the edges
incident with v and some other edges of G can be decomposed with at
most d − 1 edge disjoint copies of H and single edges. In this case such
graph G cannot be extremal.

Let Gv be the subgraph spanned by the vertices adjacent to v. Then Gv

has d+m vertices and each vertex has degree at least d+m−(n−d−m) =
2d+ 2m− n ≥ 2m− 1, since v was chosen to have minimum degree.

Then by Lemma 2.1Gv contains a path of length 2m−1, say P . Observe
that every three vertices of P give rise to one copy of H containing three
edges incident with v. Therefore, it suffices to show that

⌊
2m

3

⌋
+

(
d+m− 3

⌊
2m

3

⌋)
≤ d− 1, (2.1)

which holds for all values of m, except for m = 1, 2, 4.
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In what follows let N(v) := V (G)− (N(v) ∪ {v}), where N(v) is the set
of vertices adjacent to v and let Pk denote the path of length k.

Let m = 1. If Gv contains a path of length two then we can always find
a copy of H containing three edges incident with v and we are done. If not,
then Gv contains only independent edges. To prove our result it suffices to
find two copies of H each having two edges incident with v. Observe that
all vertices of Gv must be adjacent to all vertices in N(v) and since n ≥ 7
the result follows easily.

Let m = 2. If n = 7 then Gv contains P4 and y ∈ N(v) is adjacent
to all vertices of Gv. Therefore, we can find two copies of H that contain
all edges incident with v and we are done. Assume n ≥ 8. In this case it
suffices to find two copies of H each containing three edges incident with
v. If Gv contains a path of length five we are done. Assume first that
the longest path in Gv is P4 and let y ∈ Gv be a vertex not in P4. Since
degGv

y ≥ 3 and Gv contains no P5 it follows that y must have at least
two neighbors not in P4. But then Gv contains a P4 and a P2 with disjoint
vertex sets and we are done. Finally, assume that the longest path in Gv

has length three. Then its vertices induce a K4. Since Gv has at least six
vertices then it must have at least two K4’s and we are done.

To complete the proof let m = 4. It suffices to find three copies of H
containing at least eight edges incident with v. If d = 4 then n = 9 and
thus G = K9 and we are done. Assume d ≥ 5 then Gv has order at least
nine. If Gv contains a path of length eight we are done. Suppose that
the longest path in Gv has length seven, but then its endpoints have to be
adjacent to all vertices of the path. In this situation it is not hard too see
that we can always find three copies of H containing at least eight edges
incident with v and the proof is complete.

Theorem 2.4. Let r ≥ 4 and let H be a fixed clique-extension of order
r+1. Then, every graph of order n ≥ r+1 can be decomposed into at most
tr−1(n) edge disjoint copies of H and single edges. Moreover, Tr−1(n) is
the only graph that cannot be decomposed with fewer edge disjoint copies of
H and single edges, except for n = r + 1 and H = Hr,r−1 when the graph
Hr,r−2 is also extremal.

Proof. First observe that H must have a vertex of degree r, say v. Fur-
thermore, since H �= Kr+1 we must have H − v ⊆ K−

r . Recall that K−
r

denotes the complete graph on r vertices minus one edge.
We now proceed by induction on n.
Let G be a graph of order r + 1. If e(G) < tr−1(r + 1) then it suffices

to decompose G into single edges. Assume that e(G) ≥ tr−1(r + 1) + 1.
Then G is either K−

r+1 or Kr+1. Therefore, G contains a copy of H and
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thus it can be decomposed into at most tr−1(r + 1) − 1 parts. Finally, if
e(G) = tr−1(r + 1) then G has two edges. If the edges of G are adjacent
then G = Hr,r−2, otherwise G = Tr−1(r + 1). So the theorem holds for
n = r + 1.

Let G be a graph of order n ≥ r + 2 and let v be a vertex of minimum

degree, say degG(v) = d +m where d := tr−1(n) − tr−1(n − 1) =
⌊
r−2
r−1n

⌋
is the minimum degree in Tr−1(n) and m is an integer.

If m < 0 or if m = 0 and there exists a copy of H in G containing at
least two edges incident with v, then the edges incident with v and some
other edges of G can be decomposed with at most d−1 edge disjoint copies
of H and single edges, so the induction hypothesis shows that the result
holds and that G cannot be extremal.

Let m = 0 and suppose that v is not contained in any copy of H that
has at least two edges incident with v.

By induction eitherG−v = Tr−1(n−1) or we have n = r+2, H = Hr,r−1

and G − v = Hr,r−2. If the latter happens then we can find a copy of H
in G containing at least two edges incident with v, which contradicts our
assumption. Thus G − v = Tr−1(n − 1). Suppose that G �= Tr−1(n),
then G must contain a Kr. Furthermore, v must be a vertex of Kr since
G− v = Tr−1(n− 1) does not contain any copy of Kr. Moreover, deg v =
�(r− 2)n/(r− 1)� ≥ r. Then v must have a neighbor not in Kr, say x. But
then, by definition of Tr−1(n − 1), the vertex x must be adjacent to r − 2
vertices of Kr − v. So v belongs to a copy of H , which is a contradiction.
Therefore G = Tr−1(n).

To complete the proof we shall show that if m ≥ 1 then the edges
incident with v and some other edges of G can be decomposed with at
most d− 1 edge disjoint copies of H and single edges.

Let Gv be the subgraph spanned by the vertices adjacent to v. Then
Gv has d +m vertices and each vertex of Gv has degree at least d +m −
(n − d − m) = 2d + 2m − n =: f , since v was chosen to have minimum
degree.

Let h denote the maximum number of independent (i.e. vertex disjoint)
K−

r ’s in Gv. Thus we can find h edge disjoint copies of H containing vertex
v. Furthermore, we can ensure that each copy ofH contains r edges incident
with v. Therefore, the edges incident with v can be decomposed into at
most

h+ d+m− rh = h(1− r) + d+m ≤ d− 1

copies of H and single edges, provided that h ≥ m+1
r−1 . So, to complete the

proof it suffices to show that

h ≥ m+ 1

r − 1
. (2.2)
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Let F be the subgraph obtained from Gv by omitting h independent
K−

r ’s (vertices and edges) and all incident edges. Then F � K−
r , F has

d+m− rh vertices and each vertex has degree at least f − rh = 2d+2m−
n− rh. Consequently,

1

2
δ(F )v(F ) ≤ e(F ) ≤ ex(v(F );K−

r ).

We now need to prove the following claim.

Claim 1. Let d, m and Gv be as before. Then Gv contains a copy of H−v
for all m ≥ 1.

Proof of Claim 1. It suffices to prove that Gv contains a copy of K−
r . We

have,

e(Gv) ≥ 1

2
(d+m)(2d+ 2m− n).

Since d+m ≥ r + 1, Lemma 2.2 implies that

ex(d+m;K−
r ) = ex(d+m;Kr−1) ≤ 1

2

r − 3

r − 2
(d+m)2.

Easy calculations and (2.3) imply that

1

2
(d+m)(2d+ 2m− n) >

1

2

r − 3

r − 2
(d+m)2

and thus e(Gv) > ex(d+m;K−
r ), so G contains a copy of K−

r as required.

We are now able to complete the proof of the theorem.

Case 1: v(F ) ≥ r + 1.
Using Lemma 2.2 we have

1

2
δ(F )v(F ) ≤ e(F ) ≤ ex(v(F );Kr−1) ≤ 1

2
[v(F )]2

r − 3

r − 2

that is
rh ≥ (r − 1)d+ (r − 1)m− (r − 2)n.

As
(r − 1)d ≥ (r − 2)n− (r − 2), (2.3)

this implies
rh ≥ (r − 1)m− (r − 2).

For m ≥ 2 we have (r−1)m− (r−2) ≥ r(m+1)
r−1 , thus inequality (2.2) holds.

Let m = 1. Then, Claim 1 implies that Gv contains a copy of H − v and
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we are done.

Case 2: v(F ) ≤ r.
By definition of F , we know that v(F ) = v(Gv) − rh = d + m − rh,

hence rh ≥ d+m− r. Recall that it suffices to show that

d+m− r ≥ r(m+ 1)

r − 1

that is
(r − 1)d− r2 ≥ m. (2.4)

Let q(r − 1) + 1 ≤ n ≤ (q + 1)(r − 1) where q ≥ 1 is an integer. Then
d = n − q − 1 and m ≤ q, hence to prove (2.4) it suffices to show that
(r − 1)(n− q − 1)− r2 ≥ q. Since n ≥ q(r − 1) + 1 it follows that to prove
the latter inequality it is enough to show that q(r2−3r+1)− r2 ≥ 0 which
holds for q ≥ 4 and r ≥ 4.

Let q ∈ {1, 2, 3}. By Claim 1 we know that Gv contains a copy of H−v,
so the edges incident with v can be decomposed into at most 1+ d+m− r
edge disjoint copies ofH and single edges. Ifm ≤ 2 then 1+d+m−r ≤ d−1
and we are done. Suppose m = 3 then q = 3 and then G = Kn. Since
n ≥ 3r− 2 we can easily find two copies of H containing v and the proof is
complete.
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