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Abstract

Given two r-graphs G and H, an H-decomposition of G is a partition of the
edge set of G such that each part is either a single edge or forms a graph isomorphic
to H. The minimum number of parts in an H-decomposition of G is denoted by
φr

H(G). By a 2-edge-decomposition of an r-graph we mean an H-decomposition for
any fixed r-graph H with exactly 2 edges. In the special case where the two edges
of H intersect in exactly 1, 2 or r − 1 vertices these 2-edge-decompositions will be
called bowtie, domino and kite respectively. The value of the function φr

H(n) will
be obtained for bowtie, domino and kite decompositons of r-graphs.

1 Introduction

An hypergraph is a (finite) set V = V (G), called the vertices of G together with a set
E = E(G) of non-empty subsets (of any cardinality) of V , called the hyperedges or edges.
When all the edges of an hypergraph are distinct we say that the hypergraph is simple.
If in addition all the edges have the same cardinality r > 2 then G is said to be a
uniform hypergraph or an r-graph. Thus, graphs are special hypergraphs. The number of
vertices of an hypergraph is its order and is denoted by v(G). The number of edges in an
hypergraph is its size and is denoted by e(G). The complete r-graph on n vertices is the
hypergraph that consists of all r-subsets of V and it will be denoted by Kr

n. We denote
by [n] the set of the first n integers.

Given two r-graphs G and H , with r > 2, an H-decomposition of G is a partition of
the edge set of G such that each part is either a single edge or forms a graph isomorphic
to H . The minimum number of parts in an H-decomposition of G is denoted by φr

H(G).
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For r > 2, we are interested in the value of the function

φr
H(n) = max{φr

H(G) | v(G) = n},

which is the smallest number such that any r-graph G of order n admits an H-decom-
position with at most φr

H(n) parts.
In the special case of r = 2, i.e., when we have graphs, the asymptotic value of the

function φ2
H(n), simply denoted by φH(n), was obtained by Pikhurko and Sousa [3] for

all graphs H . However, the value of the function φr
H(n) is still open for r > 3. We will

present some results about the value of the function φr
H(n) for some special cases of H .

By a 2-edge-decomposition of an r-graph we mean an H-decomposition for any fixed
r-graph H with exactly 2 edges. In the special case where the two edges of H inter-
sect in exactly 1, 2 or r − 1 vertices these 2-edge-decompositions will be called bowtie,
domino and kite respectively. In this paper the 2-edge-decomposition problem is solved
asymptotically and we will also obtain the exact value φr

H(n) for some special cases of
2-edge-decompositions.

2 2-Edge-Decompositions of r-Graphs

We start this section with the following simple result.

Lemma 2.1. For any non-empty r-graph H with m edges and any integer n, we have

φr
H(n) 6

1

m

(

n

r

)

+
m − 1

m
ex(n, r, H), (2.1)

where ex(n, r, H) denotes the maximum number of edges that an r-graph with n vertices
can have without containing a copy of H.

Proof. To prove (2.1) remove greedily one by one the edge-sets of H-subgraphs of a given
r-graph G and then remove the remaining edges. The bound (2.1) follows as at most
ex(n, r, H) parts are single edges.

Let G be an r-graph with vertex set V (G) and edge set E(G). We say that G is
t-colorable if there is a map

c : V (G) → {1, . . . , t}
such that no edge X ∈ E(G) in monochromatic.

Let H be a fixed r-colorable r-graph with m edges. Erdős [2] proved that

ex(n, r, H) = o(nr).

We have,

φr
H(n) =

(

1

m
+ o(1)

) (

n

r

)

. (2.2)

the electronic journal of combinatorics 17 (2010), #R40 2



The upper bound in (2.2) follows directly from (2.1) and the result of Erdős [2] and the
lower bound follows from φr

H(n) > φr
H(Kr

n) >
1

m

(

n

r

)

.

Observe that the 2-edge-decomposition problem is asymptotically solved in (2.2) for
r-colorable r-graphs.

In this section we will find the exact value φr
H(n) for some special cases of 2-edge-

decompositions. Let H be a fixed r-graph with exactly 2 edges. We will start by proving
that φr

H(n) 6 φr
H(Kr

n). Thus, it suffices to study 2-edge-decompositions of complete r-
graphs. Then, we will also prove that the trivial lower bound

φr
H(Kr

n) >

⌈

1

2

(

n

r

)⌉

is in fact optimal for bowtie, domino and kite decompositions of r-graphs, for some values
of r.

Definition 2.2. Let H be a fixed r-graph with 2 edges and F an H-decomposition of an
r-graph G. We say that F is optimal if it contains exactly φr

H(G) elements.

Theorem 2.3. Let H be a fixed r-graph with 2 edges and G an r-graph with n vertices.
Then,

φr
H(G) 6 φr

H(Kr
n).

Proof. Let F be an optimal H-decomposition of Kr
n. We will extract from F an H-

decomposition of G, C, having at most |F| elements.
Let F be an element of F . If F has two edges and both are edges of G then we add F

to C. If exactly on edge of F is an edge of G then add that single edge to C. If the edges
of F are not edges of G we discard F . After every element of F has been considered, the
set C is clearly an H-decomposition of G and we have

φr
H(G) 6 |C| 6 |F| = φr

H(Kr
n),

as required.

Theorem 2.3 implies that, when H has exactly 2 edges, it suffices to study H-decom-
positions of complete r-graphs . In the sequel, and for the sake of simplicity, the edges of
an r-graph will be written as x1 · · ·xr instead of {x1, . . . , xr}.

2.1 Bowtie Decomposition of the Complete r-Graph

Theorem 2.4. Let r = 3 and n > 5 or 4 6 r 6
1

6

√
n. Then any optimal bowtie

decomposition of the complete r-graph of order n has
⌈

1

2

(

n

r

)⌉

elements.

Before proving the theorem we will need to introduce the tools.
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Theorem 2.5 (Dirac 1952, [1]). Every graph with n > 3 vertices and minimum degree at
least n/2 has a hamiltonian cycle.

Theorem 2.6 (Tutte 1947, [1]). A graph G has a 1-factor (perfect matching) if and
only if odd(G − S) 6 |S| for all S ⊆ V (G), where odd(G− S) denotes the number of odd
components of the graph G − S.

Theorem 2.7 (Ray-Chaudhuri,Wilson 1975, [4]). Let L be a set consisting of s non-
negative integers and let G be an r-graph with n vertices. If |A ∩ B| ∈ L for any distinct
edges A, B ∈ E(G), then e(G) 6

(

n

s

)

.

Proof of Theorem 2.4. The lower bound follows immediately, thus it suffices to find a
bowtie decomposition of Kr

n with
⌈

1

2

(

n

r

)⌉

elements. Let [n] be the vertex set of Kr
n. Let

Gr be the graph with V (Gr) = E(Kr
n) and E(Gr) = {uv | u, v ∈ E(Kr

n) and |u∩ v| = 1}.
Then, the theorem follows if we prove that Gr has a Hamiltonian cycle or a matching that
saturates at least v(Gr) − 1 vertices.

Note that Gr is a connected r
(

n−r

r−1

)

-regular graph. For r = 3 and n = 5, 6 we can see
by inspection that G3 contains a perfect matching. If r = 3 and n ∈ {7, . . . , 11} then
Theorem 2.5 holds so G3 has a Hamiltonian cycle. Suppose that r = 3 and n > 12 or
4 6 r 6

1

6

√
n. In this case we will see that Tutte’s Theorem holds. If necessary remove

one vertex from V (Gr) so that we have v(Gr) even.

Definition 2.8. Let G be an r-graph. The independence number of G, denoted by α(G),
is the maximum number of pairwise non adjacent vertices of G.

Claim 1. α(Gr) 6
(

n

r−1

)

.

Proof. Let A ⊆ V (Gr) be an independent set. Then, |A ∩ B| ∈ {0, 2, . . . , r − 1} for all
distinct A, B ∈ A. Considering the r-graph ([n],A), we have |A| 6

(

n

r−1

)

by Theorem 2.7.

Claim 1 implies that for every S ⊆ V (Gr) we have odd(Gr−S) 6
(

n

r−1

)

. The following
claim completes the proof of the theorem.

Claim 2. |S| > odd(Gr − S), for all S ⊆ V (Gr).

Proof. Let S ⊆ V (Gr). If S = ∅ then there is nothing to prove since Gr is connected.
Assume that S 6= ∅. Let F1, . . . , Ft be the components of Gr − S and v1, . . . , vt be fixed
elements of F1, . . . , Ft respectively.

Assume first that v1, . . . , vt are pairwise disjoint. Thus, odd(Gr − S) 6 t 6 n/r. Let
v1 = x1 · · ·xr and v2 = y1 · · ·yr. Then, for all w1, . . . , wr−2 ∈ [n] − {v1 ∪ v2} and for all
i, j ∈ {1, . . . , r} the vertices xiyjw1 · · ·wr−2 are adjacent to both v1 and v2 and thus must
be in S. Therefore |S| > r2

(

n−2r

r−2

)

−1 (recall that we might have removed one vertex from

V (Gr)). Easy calculations show that r2
(

n−2r

r−2

)

− 1 > n/r > odd(Gr − S) as required.
Now suppose that there are i, j with 1 6 i < j 6 t such that |vi ∩ vj | = k for

some k ∈ {2, . . . , r − 1}. Without loss of generality let vi = a1 · · ·akxk+1 · · ·xr and
vj = a1 · · ·akyk+1 · · · yr. Then, for all w1 . . . , wr−1 ∈ [n] − {vi ∪ vj}, the vertices

amw1 · · ·wr−1 and xpyqw1 · · ·wr−2,
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where 1 6 m 6 k and p, q ∈ {k + 1, . . . , r}, are adjacent to both vi and vj and thus must
be in S. Therefore, |S| > k

(

n−2r+k

r−1

)

+ (r − k)2
(

n−2r+k

r−2

)

− 1.
It remains to prove that

k

(

n − 2r + k

r − 1

)

+ (r − k)2

(

n − 2r + k

r − 2

)

− 1 >

(

n

r − 1

)

. (2.3)

Let r = 3 and n > 12. We have k = 2 and (2.3) holds for n > 13. Let us consider the
case n = 12. Then, there is m ∈ [t]−{i, j} such that vm−{vi∪vj} 6= ∅. Otherwise, for all
m ∈ [t]−{i, j} we have vm ⊆ vi∪vj = {a1, a2, x3, y3}, but then we have only two choices for
distinct vm’s which implies t 6 4. Let z ∈ vm−{vi∪vj}. Then, for all w ∈ [n]−{vi∪vj∪vm}
the edges a1zw are adjacent to both vi and vm and hence are vertices of S. Note that
these vertices have not been considered before. Since |[n] − {vi ∪ vj ∪ vm}| > n − 7 and
n = 12 we have |S| > (n − 4)2 + (n − 7) − 1 >

(

n

2

)

> t.
Now assume that 4 6 r 6

1

6

√
n, that is, n > 576. We have,

k

(

n − 2r + k

r − 1

)

+ (r − k)2

(

n − 2r + k

r − 2

)

> 2

(

n − 2r + k

r − 1

)

> 2

(

n − 2r

r − 1

)

.

Therefore, to prove (2.3) it is enough to show that

2

(

n − 2r

r − 1

)

>

(

n

r − 1

)

. (2.4)

Easy calculations show that to prove (2.4) it is enough to show that

2(n − r + 1) · · · (n − 3r + 2)

n · · · (n − 2r + 1)
> 1. (2.5)

Observe that the following inequalities hold.

2(n − r + 1) · · · (n − 3r + 2)

n · · · (n − 2r + 1)
> 2

(

n − 3r + 2

n

)2r

> 2

(

n − 3r

n

)2r

> 2

(

1 − 1

2
√

n

)2r

> 2

(

1 − 1

2
√

n

)
1

3

√
n

, since r 6
1

6

√
n.

Since n > 576 we have that

2

(

1 − 1

2
√

n

)
1

3

√
n

> 1.

Therefore, inequality (2.5) holds, thus (2.3) is proved.
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2.2 Domino Decomposition of the Complete 4-graph

Recall that a domino decomposition of an r-graph is a decomposition of its edge set into
a fixed r-graph with two edges that intersect in exactly two vertices and single edges.

Theorem 2.9. Any optimal domino decomposition of the complete 4-graph with n > 6
vertices has

⌈

1

2

(

n

4

)⌉

elements.

Proof. Clearly any optimal domino decomposition of K4
n has at least that many elements.

We will now prove by induction that this lower bound is optimal. Let n = 6. Then

{

{1234, 1256},{1235, 2456}, {1245, 2346}, {1246, 3456},
{1345, 2356}, {1346, 2345}, {1236, 1456}, {1356}

}

is a domino decomposition of K4
6 . Let n > 7 and assume that the result holds for n − 1.

Let F be an optimal domino decomposition of K4
n−1. The result will follow if we show

how to extend F into a domino decomposition of K4
n with the prescribed number of

elements. Observe that E := E(K4
n)−E(K4

n−1) = {e∪ {n} | e ∈ E(K3
n−1)} and a domino

decomposition of E is the same as a bowtie decomposition of K3
n−1. Let B be an optimal

bowtie decomposition of K3
n−1 and F ′ its extension to a domino decomposition of E . If

K4
n−1 has an even number of edges then F ∪ F ′ is clearly a domino decomposition of K4

n

with the required number of elements. Now suppose that K4
n−1 has an odd number of

edges. In this case F has an element that is a single edge, say xyzw. If K3
n−1 has an even

number of edges then we are done as before. So suppose that K3
n−1 has an odd number

of edges. Then B has an element that is a single edge. From the proof of Theorem 2.4
it follows that we can always choose B such that xya, for some a ∈ [n − 1] − {x, y, z, w}
is the single edge in B. Then, F ∪ F ′ ∪ {xyzw, xyan} is a domino decomposition of K4

n

with
⌈

1

2

(

n

4

)⌉

elements.

2.3 Kite Decompositions of the complete 3-Graph and 4-Graph

Recall that a kite decomposition of an r-graph is a decomposition of its edge set into a
fixed r-graph with two edges that intersect in exactly r − 1 vertices and single edges.

Theorem 2.10. Any optimal kite decomposition of the complete 3-graph with n > 4
vertices has

⌈

1

2

(

n

3

)⌉

elements.

Proof. The lower bound follows immediately, thus it suffices to find a kite decompo-
sition of K3

n with
⌈

1

2

(

n

3

)⌉

elements. This is done by induction on n. If n = 4 then
{

{123, 234}, {124, 134}
}

is a kite decomposition of K3
4 . Let n > 5 and assume that the

result holds for n − 1. Let F be an optimal kite decomposition of K3
n−1. The result

follows by induction if we show how to extend F into a kite decomposition of K3
n with
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the required number of elements. We first write E(K3
n) − E(K3

n−1) as follows:

12n 13n 14n · · · 1(n − 1)n
23n 24n · · · 2(n − 1)n

34n · · · 3(n − 1)n
· · ·

(n − 3)(n − 2)n (n − 3)(n − 1)n
(n − 2)(n − 1)n

To proceed we have to consider two different cases.
Case I: Assume that K3

n−1 has an even number of edges. Then all the elements of F have
two edges, thus it suffices to pair the edges above. This can be done easily by pairing
the edges in the same row, starting from left to right, so if a row has an odd number
of elements then its element in the last column will be left unpaired. We end up this
procedure by pairing the elements left in the last column, leaving exactly one single edge
if and only if K3

n has an odd number of edges.
Case II: Assume that K3

n−1 has an odd number of edges. Then F has an element that
is a single edge, say xyz with x < y < z. We first pair this edge with the edge xyn and
then proceed as in Case I.

Theorem 2.11. Any optimal kite decomposition of the complete 4-graph with n > 5
vertices has

⌈

1

2

(

n

4

)⌉

elements.

Proof. The lower bound follows immediately, thus it suffices to find a kite decompo-
sition of K4

n with
⌈

1

2

(

n

4

)⌉

elements. This is done by induction on n. If n = 5 then
{

{1234, 1245}, {1235, 1345}, {2345}
}

is a kite decomposition of K4
5 . Let n > 6 and as-

sume that the result holds for n − 1. Let F be an optimal kite decomposition of K4
n−1.

The result follows by induction if we show how to extend F into a a kite decomposition
of K4

n. We first write E(K4
n) − E(K4

n−1) in n − 3 groups as follows:

M1 : 123n 124n 125n · · · 12(n − 1)n
134n 135n · · · 13(n − 1)n

· · ·
1(n − 3)(n − 2)n 1(n − 3)(n − 1)n

1(n − 2)(n − 1)n

M2 : 234n 235n · · · 23(n − 1)n
245n · · · 24(n − 1)n

· · ·
2(n − 3)(n − 2)n 2(n − 3)(n − 1)n

2(n − 2)(n − 1)n

. . .

Mn−3 : (n − 3)(n − 2)(n − 1)n
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To proceed we have to consider two different cases.
Case I: K4

n−1 has an even number of edges. Then all the elements of F have two edges,
thus it suffices to pair the edges above. This can be done using the following procedure.

For 1 6 i 6 n − 3, we consider the group Mi and pair the edges in the same
row, starting from left to right, so if a row has an odd number of elements
then its element in the last column will be left unpaired. We then pair the
elements left in the last column starting from top to bottom.

After all groups have been considered all the edges left are of the form x(n − 2)(n − 1)n,
with x ∈ [n]. We finish this procedure by pairing these edges, leaving exactly one single
edge if and only if K4

n has an odd number of edges.
Case II: Assume that K4

n−1 has an odd number of edges. Then F has an element that is
a single edge, say xyzw with x < y < z < w. We first pair this edge with the edge xyzn
and then proceed as in Case I.
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comments.
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