Decompositions of graphs into 5-cycles and other small graphs

Teresa Sousa*
Tepper School of Business Carnegie Mellon University
Pittsburgh, PA 15213
tmj@andrew.cmu.edu

Submitted: Jan 13, 2005; Accepted: Aug 31, 2005; Published: Sep 29, 2005
Mathematics Subject Classifications: 05C35, 05C70

Abstract

In this paper we consider the problem of finding the smallest number q such that any graph G of order n admits a decomposition into edge disjoint copies of a fixed graph H and single edges with at most q elements. We solve the case when H is the 5 -cycle, the 5 -cycle with a chord and any connected non-bipartite non-complete graph of order 4 .

1 Introduction

Let G be a simple graph with vertex set V and edge set E. The number of vertices of a graph is its order. The degree of a vertex v is the number of edges that contain v and will be denoted by $\operatorname{deg}_{G} v$ or simply by $\operatorname{deg} v$. For $A \subseteq V$, $\operatorname{deg}(v, A)$ denotes the number of neighbors of v in the set A. The set of neighbors of v is denoted by $N_{G}(v)$ or briefly by $N(v)$ if it is clear which graph is being considered. Let $\bar{N}_{G}(v)=V-\left(N_{G}(v) \cup\{v\}\right)$. The complete bipartite graph with parts of size m and n will be denoted by $K_{m, n}$ and the cycle on n vertices will be denoted by C_{n}. The chromatic number of G is denoted by $\chi(G)$.

Let \mathscr{H} be a family of graphs. An \mathscr{H}-decomposition of G is a set of subgraphs G_{1}, \ldots, G_{t} such that any edge of G is an edge of exactly one of G_{1}, \ldots, G_{t} and all $G_{1}, \ldots, G_{t} \in \mathscr{H}$. Let $\phi(G, \mathscr{H})$ denote the minimum size of an \mathscr{H}-decomposition of G. The main problem related to \mathscr{H}-decompositions is the one of finding the smallest number $\phi(n, \mathscr{H})$ such that every graph G of order n admits an \mathscr{H}-decomposition with

[^0]at most $\phi(n, \mathscr{H})$ elements. Here we address this problem for the special case where \mathscr{H} consists of a fixed graph H and the single edge graph.

Let H be a graph with m edges and let $\operatorname{ex}(n, H)$ denote the maximum number of edges that a graph of order n can have without containing a copy of H. Then

$$
\operatorname{ex}(n, H) \leq \phi(n, \mathscr{H}) \leq \frac{1}{m}\left(\binom{n}{2}-\operatorname{ex}(n, H)\right)+\operatorname{ex}(n, H)
$$

Moreover, for the complete graph on n vertices, K_{n}, we have $\phi\left(K_{n}, \mathscr{H}\right) \geq \frac{1}{m}\binom{n}{2}$.
A theorem of Kövari, Sós and Turán [6] asserts that for the complete bipartite graph $K_{m, m}, \operatorname{ex}\left(n, K_{m, m}\right)=o\left(n^{2}\right)$. Therefore the decomposition problem into any fixed bipartite graph and singles edges is asymptotically solved and we have the following theorem.

Theorem 1.1. Let H be a bipartite graph with m edges. Then

$$
\phi(n, \mathscr{H})=\left(\frac{1}{m}+o(1)\right)\binom{n}{2} .
$$

Suppose now, that H is a graph with chromatic number r, where $r \geq 3$.
The unique complete r-partite graph on n vertices whose partition sets differ in size by at most 1 is called the Turán graph; we denoted it by $T_{r}(n)$ and its number of edges by $t_{r}(n)$. Then $\phi(n, \mathscr{H}) \geq t_{r-1}(n) \geq\left(1-\frac{1}{r-1}\right)\binom{n}{2}$, since $T_{r-1}(n)$ does not contain any copy of H. In fact we believe that this result is asymptotically correct. We conjecture the following.

Conjecture 1. Let H be a graph with $\chi(H) \geq 3$. Then

$$
\phi(n, \mathscr{H})=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2} .
$$

Erdös, Goodman and Pósa [4] showed that the edges of any graph on n vertices can be decomposed into at most $\left\lfloor n^{2} / 4\right\rfloor$ triangles and single edges. Later Bollobás [1] generalized this result by showing that a graph of order n can be decomposed into at most $t_{r-1}(n)$ edge disjoint cliques of order $r(r \geq 3)$ and edges.

In this paper we will prove similar results to the ones obtained by Erdös, Goodman and Pósa and by Bollobás for some special cases of graphs H of order 4 and 5 with chromatic number 3, namely C_{5}, C_{5} with a chord and the two connected non-bipartite non-complete graphs on 4 vertices. The ideas involved in the proofs were inspired by the ideas developed by Erdös, Goodman and Pósa [4] and Bollobás [1].

2 Decompositions

Let \mathscr{H} consist of a fixed graph H and the single edge graph. In this section we will study \mathscr{H}-decompositions for some fixed H. In all cases considered here the exact value of the function $\phi(n, \mathscr{H})$ will also be obtained.

The first case that we consider is $H=C_{5}$. In this case we can prove that any graph of order n, where $n \geq 6$, can be decomposed into at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ copies of C_{5} and single edges. Furthermore, the graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ shows that this result is, in fact, best possible. In the special case where our graph has order $n=5$ we can find a graph with no copy of C_{5} having 7 edges. In a similar way will also show that the above claim still holds if instead of C_{5} we take H to be C_{5} with a chord. This section will be concluded with similar results for the case where H is any connected non-bipartite non-complete graph on 4 vertices.

Theorem 2.2. Any graph of order n, with $n \geq 6$, can be decomposed into at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ copies of C_{5} and single edges. Moreover, the bound is tight for $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.
Proof. This is by induction on the number of vertices in a graph. By inspection, and using Harary's [5] atlas of all graphs of order at most 6, we can see that the result holds for $n=6$. Assume that it is true for all graphs of order less than n and note that for any positive integer n

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor .
$$

Let G be a graph of order n, where $n \geq 7$, and let v be a vertex of minimum degree. If $\operatorname{deg} v \leq\left\lfloor\frac{n}{2}\right\rfloor$ then going from $G-v$ to G we only need to use the edges joining v to the other vertices of G and there are at most $\left\lfloor\frac{n}{2}\right\rfloor$ of these, so the induction hypothesis implies the result.

Assume that $\operatorname{deg} v>\left\lfloor\frac{n}{2}\right\rfloor$ and let $\operatorname{deg} v=d+m$ where $d=\left\lfloor\frac{n}{2}\right\rfloor$ and $m \geq 1$. Suppose that there are m edge disjoint C_{5} 's containing v, so the $d+m$ edges incident with v can be decomposed into at most $m+(d+m-2 m)=d$ edge disjoint C_{5} 's and edges, so the induction hypothesis implies the result.

To complete the proof, it remains to show that we can always find m edge disjoint C_{5} 's containing vertex v.

Assume first that G is not the complete graph and let $x \in N(v)$ and $y \in \bar{N}(v)$. We have

$$
\begin{align*}
\operatorname{deg}(x, N(v)) & \geq 2 m-1 \tag{2.1}\\
\operatorname{deg}(y, N(v)) & \geq 2 m+1
\end{align*}
$$

Let $x_{1}, \ldots x_{m}, z_{1}, \ldots, z_{m+1} \in N(y) \cap N(v)$ and let

$$
X=\left\{x_{1}, \ldots x_{m}\right\} \text { and } Y=N(v)-X
$$

Using (2.1) it is easy to see that $G[X, Y]$ has an X-perfect matching. Let $M=$ $\left\{x_{i}, v_{i}\right\}_{i=1, \ldots, m}$ be an X-perfect matching such that $\left|\left\{v_{1}, \ldots, v_{m}\right\} \cap\left\{z_{1}, \ldots, z_{m+1}\right\}\right|$ is minimized. If $\left\{v_{1}, \ldots, v_{m}\right\} \cap\left\{z_{1}, \ldots, z_{m+1}\right\}=\emptyset$, then $v, v_{i}, x_{i}, y, z_{i}, v$, where $i=1, \ldots, m$, are m edge disjoint C_{5} 's containing v, and we are done.

Assume that $\left|\left\{v_{1}, \ldots, v_{m}\right\} \cap\left\{z_{1}, \ldots, z_{m+1}\right\}\right|=k$, for some $1 \leq k \leq m$, so say $v_{i}=z_{i}$ for $i=1, \ldots, k$. As before, $v, v_{i}, x_{i}, y, z_{i}, v$, for $i=k+1, \ldots, m$, are $m-k$ edge disjoint C_{5} 's containing v; hence it remains to show that we can find k other edge disjoint C_{5} 's containing v.

Our choice of M implies that, for $i=1, \ldots, k, N\left(x_{i}\right) \cap N(v) \subseteq N(y) \cup V=V \cup X \cup Z$, where

$$
V=\left\{v_{k+1}, \ldots, v_{m}\right\} \text { and } Z=\left\{z_{1}, \ldots, z_{m+1}\right\} .
$$

(a) If $k=1$ then $v, z_{1}, x_{1}, y, z_{m+1}, v$ is a 5 -cycle and we are done.
(b) If $k=2,3$ then for $i=1,2$ we have $\operatorname{deg}\left(x_{i} ; X \cup\left\{z_{3}, \ldots, z_{m+1}\right\} \cup V\right) \geq 2 m-3$ and $\left|\left(X-\left\{x_{i}\right\}\right) \cup\left\{z_{3}, \ldots, z_{m+1}\right\} \cup V\right|=3 m-2-k$. Then x_{1} is adjacent to x_{2} or they must have a common neighbor, say a, in $\left(X-\left\{x_{1}, x_{2}\right\}\right) \cup\left\{z_{3}, \ldots, z_{m+1}\right\} \cup V$. Figure 1 shows that we can always find k edge disjoint C_{5} 's containing v.

Figure 1: Case $k=2,3$
(c) Let $k \geq 4$ and let

$$
X^{\prime}=X-\left\{x_{1}, x_{2}, x_{3}\right\} \text { and } Z^{\prime}=Z-\left\{z_{1}, z_{2}, z_{3}\right\}
$$

For $k=4$ and $i=1,2,3$ we have $\operatorname{deg}\left(x_{i} ; V \cup X^{\prime} \cup Z^{\prime}\right) \geq 2 m-6$ and $\left|V \cup X^{\prime} \cup Z^{\prime}\right|=3 m-9$. Then there exist $a, b \in V \cup X^{\prime} \cup Z^{\prime}$ with $a \neq b$ such that a is adjacent to x_{1} and x_{2} and b is adjacent to x_{1} and x_{3} or a is adjacent to x_{1} and x_{2} and b is adjacent to x_{2} and x_{3}.

Assume that $k \geq 5$. Then for $i=1,2,3$, $\operatorname{deg}\left(x_{i}, V \cup Z^{\prime}\right) \geq m-3$, and $\left|V \cup Z^{\prime}\right|=$ $2 m-k-2$. Thus there exist $a, b \in V \cup Z^{\prime}$ with $a \neq b$ such that a is adjacent to x_{1} and x_{2} and b is adjacent to x_{1} and x_{3} or a is adjacent to x_{2} and x_{3} and b is adjacent to x_{1} and x_{3}. Without loss of generality assume the first case holds in both situations (the second follows from symmetry). Then Figure 2 shows that we can always find three edge disjoint C_{5} 's containing vertex v.

We repeat this procedure for every triple x_{i}, x_{i+1}, x_{i+2}, where $i \equiv 1(\bmod 3), i+2 \leq k$ and $Z^{\prime}=Z-\left\{z_{i}, z_{i+1}, z_{i+2}\right\}$.

If $k \equiv 0(\bmod 3)$ then we are done, since we can find k edge disjoint C_{5} 's containing v.

If $k \equiv 1(\bmod 3)$ then we can find $k-1 C_{5}$'s as before that with $v, z_{k}, x_{k}, y, z_{m+1}, v$ form the required number of C_{5} 's needed.

If $k \equiv 2(\bmod 3)$ then x_{k-1} and x_{k} have a common neighbor in $V \cup\left(Z-\left\{z_{k-1}, z_{k}\right\}\right)$, say a. Therefore, the $k-2 C_{5}$'s found so far, together with $v, z_{k-1}, x_{k-1}, a, x_{k}, v$ and $v, z_{k}, x_{k}, y, z_{m+1}, v$, give the required number of C_{5} 's needed.

Figure 2: Case $k \geq 4$

Now suppose that $G=K_{n}$ and let vertices v and y be fixed. An argument similar to the one described in case (c) gives the required number of edge disjoint C_{5} 's incident with v. Alternatively, using [7] we can find the exact number of edge disjoint C_{5} 's in K_{n} and then see that the theorem holds.

Suppose that instead of a 5-cycle we consider decompositions of graphs into copies of H and single edges, where H is a 5 -cycle with a chord. Using the same argument we can prove the following result.

Theorem 2.3. Any graph of order n, with $n \geq 6$, can be decomposed into at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ copies of H and single edges. This bound is best possible for $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.

Proof. We proceed as in the proof of Theorem 2.2 and will only describe the steps that are different.

If $\left\{v_{1}, \ldots, v_{m}\right\} \cap\left\{z_{1}, \ldots, z_{m+1}\right\}=\emptyset$, then $v, v_{i}, x_{i}, y, z_{i}, v$, where $i=1, \ldots, m$, induce m edge disjoint copies of H containing v, and we are done.

Assume that $\left|\left\{v_{1}, \ldots, v_{m}\right\} \cap\left\{z_{1}, \ldots, z_{m+1}\right\}\right|=k$, for some $1 \leq k \leq m$, say $v_{i}=z_{i}$ for $i=1, \ldots, k$. As before, $v, v_{i}, x_{i}, y, z_{i}, v$, for $i=k+1, \ldots, m$, induce $m-k$ edge disjoint copies of H containing v. For every triple x_{i}, x_{i+1}, x_{i+2} where $i \equiv 1(\bmod 3)$ and $i+2 \leq k$, Figure 3 shows that we can always find two edge disjoint copies of H. So in total we have $2\left\lfloor\frac{k}{3}\right\rfloor$ copies of H.

Therefore, for $k \equiv 0(\bmod 3) v$ is in at least $m-k+2\left\lfloor\frac{k}{3}\right\rfloor$ edge disjoint copies of H, so we are left with at most $d+m-3\left(m-k+2\left\lfloor\frac{k}{3}\right\rfloor\right)$ single edges incident with v. Consequently, the edges incident with v can be decomposed with at most $m-k+$ $2\left\lfloor\frac{k}{3}\right\rfloor+d+m-3\left(m-k+2\left\lfloor\frac{k}{3}\right\rfloor\right)<d$ edge disjoint copies of H and single edges. Let $k \equiv 1,2(\bmod 3)$ and assume $m \geq 2$. The vertices $v, z_{k}, x_{k}, y, z_{m+1}, v$ induce another copy of H. So, in total, the $d+m$ edges incident with v can be decomposed into at most $m-k+2\left\lfloor\frac{k}{3}\right\rfloor+1+d+m-3\left(m-k+2\left\lfloor\frac{k}{3}\right\rfloor+1\right) \leq d$ edge disjoint copies of H and edges. If $m=1$ then we can easily find a copy of H and the proof is complete.

Figure 3: 2 copies of H

We conclude with the following result on decompositions of graphs into connected nonbipartite non-complete graphs of order 4 and single edges. Let H be one of the following graphs.

Theorem 2.4. Any graph of order n, with $n \geq 4$, can be decomposed into at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ copies of H and single edges. Furthermore, the bound is sharp for $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.

To prove the theorem we will need the following result .
Theorem 2.5. [2] Let G be a graph of order n with minimum degree k. Then G contains a path of length k.

Proof of Theorem 2.4. We proceed by induction on the number of vertices. The result clearly holds for every graph with 4 vertices. Let G be a graph of order n, where $n \geq 5$, and let v be a vertex of minimum degree. If $\operatorname{deg} v \leq\left\lfloor\frac{n}{2}\right\rfloor$ then the result follows by induction as before. Suppose that $\operatorname{deg} v>\left\lfloor\frac{n}{2}\right\rfloor$ and let $\operatorname{deg} v=d+m$ where $d=\left\lfloor\frac{n}{2}\right\rfloor$ and $m \geq 1$.

Assume first that $m \geq 2$ and let $G_{v}:=G[N(v)]$. Since $\operatorname{deg}_{G_{v}} x \geq 2 m-1$ for every vertex of G_{v}, Theorem 2.5 implies that G_{v} contains a path of length $2 m-1$, say P. Then every 3 vertices of P give rise to one copy of H, so the edges incident with v can be decomposed into at most $\left\lfloor\frac{2 m}{3}\right\rfloor+\left(d+m-3\left\lfloor\frac{2 m}{3}\right\rfloor\right) \leq d$ edge disjoint copies of H and single edges, so the result follows by induction.

To complete the proof it remains to show that for $m=1$ we can always find a copy of H containing vertex v. If we can find a path of length 2 in $N(v)$ then we are done. If not then $N(v)$ contains only independent edges. Hence all vertices in $N(v)$ must be adjacent to all vertices in $\bar{N}(v)$. Let $\{a, b\}$ be an independent edge in $N(v)$ and let $y \in \bar{N}(v)$; then the vertices v, a, b, y induce a copy of H and we are done.

Remark: The graph $K_{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\left\lceil\frac{n}{2}\right\rceil\right.}$ shows that the number $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ mentioned in previous theorems is best possible. So $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ is an extremal graph for these decompositions. However, we do not know if it is the only one.

Acknowledgement. The author thanks Oleg Pikhurko for helpful discussions and comments.

References

[1] B. Bollobás. On complete subgraphs of different orders. Math. Proc. Cambridge Philos. Soc., 79(1):19-24, 1976.
[2] B. Bollobás. Modern Graph Theory. Springer-Verlag, 2002.
[3] R. Diestel. Graph Theory. Springer-Verlag, 2nd edition, 2000.
[4] P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections. Canad. J. Math., 18:106-112, 1966.
[5] F. Harary. Graph theory. Addison-Wesley, 1972.
[6] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50-57, 1954.
[7] A. Rosa and Š. Znám. Packing pentagons into complete graphs: how clumsy can you get? Discrete Math., 128(1-3):305-316, 1994.

[^0]: *Research supported in part by the Portuguese Science Foundation under grant SFRH/BD/8617/2002

