
IMACS'2005  Space perception for remote controlled tasks  P. Hoppenot*, Y. Rybarczyk**, D. Mestre**, E. Colle* *LSC, University of Evry, hoppenot | ecolle @iup.univ-evry.fr **LMP, University of Marseille, rybar | mestre @laps.univ-mrs.fr  Abstract – In remote controlled tasks, for example with robotic systems, space perception and representation is a crucial issue. The operator and the machine are not in the same place. One way to make space perception and representation easier for the operator is to give him natural feedback information about the environment of the robot and the action done by the robot. A human-like conception of the robot helps to obtain this kind of space perception and representation. This paper deals with a manipulator arm embarked on a mobile base. Morpho-functional and morphological aspects are studied to show that anthropomorphic conception helps the operator in space representation.  Keywords: remote control, space perception and representation, robotics. I. INTRODUCTION The most important problem in remote controlled tasks comes from sensorial impoverishment because of the separation between the entity which controls the action (human being) and the entity which executes it (the machine). Fig. 1 illustrates remote control situation in which the human operator is far from the area where the action takes place.   Operator Barrier (Environment, distance, time…) Control station Robot Local loop  Distant loop  Fig. 1: Remote control situation (adapted from [FON01]). The most common solution to solve the problem is to elaborate a man-machine co-operation. The central point is then task allocation ([GAI97]) or function allocation ([HOC00]) between man and machine. The initial idea was to compare the performances of man and machine for one task and to assign it to the agent with the best result ([FIT51]). Several critics have been formulated. The main pertinent one is that some tasks are totally realised by the machine, but the human operator keeps the responsibility of the global system. In some cases, this strategy where human being is out of the control loop 

leads to the abandon of automatic modes by the operator ([VAN94]). The notion of joint cognitive systems, introduced in [HOL83] and developed in [RAS94] and [WOO95], reveals that "the system must facilitate the appropriation of the system response by the operator" ([KAR95]). So, the problem is not only task allocation but interpretation of the behaviour of the system by the operator. In normal situation, human being exploits a great diversity of sensorial information (visual, aural, tactile, vestibular…). In remote control situation, some of them are degraded or totally absent. Two of them are overexploited: vision and proprioception. Proprioceptive one is less used than visual one ([GRI97], [STA98]) even if recent works deal with haptic feedback ([COI02], [DUR03]). This paper deals with video feedback, which deteriorates control performances ([SMI90]). That leads to difficulty to evaluate relative positions of objects and specially affects relative distance evaluation, due to visual field restriction ([MAS89]). Disparity and binocular parallax indices disappear in video image because of the projection ([CUT95], [REI96]). More, movement of the operator does not generate optic flow (sagittal displacement) or movement parallax (lateral displacement) ([BIN98], [COR96]). It is also impossible to determine the distance of an object only using its size. So, reduction of spatial indices giving depth perception implies a reduction of performance in remote control situations ([FER01]). II. CONTEXT AND OBJECTVES The context of this paper is robotic assistance to disabled people. LSC (Complex System Laboratory) develops ARPH (Robotic Assistance to Person with Handicap) project since 1994 ([HOP02]). The objective is to give a part of autonomy to disabled people in daily life. A manipulator arm is embarked on a mobile base to restore, at least partially, the manipulation function. In that specific context, the human operator wants to act by herself/himself. Because of her/his handicap, the operator can not realise the mission totally by herself/himself. The robot and the human operator have perception, decision and action capacities. Both must co-



operate to achieve the desired mission, under the control of the person. The person has two main difficulties. The first one is perception of the distant scene, where the action takes place. The second one is perception of the actions of the robot in this scene. Both deal with feedback information and space perception and representation in the distant scene. One main issue of ARPH project is to give to the operator feedback information which can be easily understood. This paper deals with human like conception of the robot to make distant scene and distant action perception and representation easier by the operator. Two aspects are taken into account. Morpho-functional aspect is developed for mobility by implementation of visuo-motor anticipation mechanisms. Morphological aspect is studied for manipulation function by positioning visual reference frame compared to grasping organ. III. MORPHO-FUNCTIONAL ASPECT A. Study presentation In remote control situation, absence or bad restitution of certain types of perspective information constraints the operator to privilege certain sensorial modalities. Several studies have shown that visual modality is overexploited in remote control situation by comparison with natural situation ([TER90], [MES95]). But, even with this kind of feedback, performances decrease compared to natural perception of action space ([MAS89]). Two types of visual limits exist: temporal ones and spatial ones. In temporal point of view, works have shown that a delay up to 300 milliseconds involves great difficulties to control the system. Even without delay, indirect vision implies a lack of parallax ([COR96]) of optical flow ([GIB79], [WAR91]). In spatial point of view, limitation of visual field involves difficulty to evaluate distances and depth. To palliate these difficulties of space perception and representation, visuo-motor anticipation seems to be a good behavioural solution. During a displacement, the axis of the gaze systematically anticipates the future trajectory. Indeed, in curve trajectories, head orientation, more precisely gaze direction, of the person is deviated in the inside of the trajectory. This would guide the trajectory by a systematic anticipation of the trajectory direction with an interval of 200 milliseconds ([GRA96]). A strategy like "I go where I look" and not "I look where I go" seems to be involved in that case ([LAN98]). It is the same behaviour to walk around an obstacle. This suggests that gaze orientation is guided using a step by step mechanism which predicts the new direction to follow ([PAT91]). 

B. Experiment objective The objective of the experiment is to test anticipation phenomenon to mobile base command. This base is a two driving wheel one. A PC is embarked on it, which communicates with a fixed control station through Internet. A pan-tilt camera is used as well as a feedback sensor than an actuator. Two visual anticipations are implemented on the system. In the first one, the operator drives the mobile base and the camera anticipates the movement depending on the command. This is a "I look where I go" strategy. In the second one, the operator controls directly the camera and the mobile base follows the direction of the camera. This is a "I go where I look" strategy. In reference to the works presented above ([LAN98]), the second strategy should be better than the first one. C. Experiment results Three command modes have been tested, two with anticipation, one without anticipation. This last mode corresponds to a fixed camera, aligned with the robot axis, and a manual control of the displacement. In the first visual anticipation mode, called "mobile base" mode, the operator controls the mobile base. Fig. 2 shows the orientation of the camera in function of the trajectory of the robot. The camera is oriented in the direction of the tangent point of the trajectory.  Robot trajectory Mobile base axis r-(L/2) L  r  Camera axis Tangent point  Fig. 2: Mobile base anticipation mode. In the second visual anticipation mode, called "camera" mode, the operator controls the camera. Fig. 3 shows the orientation of the mobile base in function of the direction of the camera. The instant trajectory of the robot is the tangent straight line with circle centred on the obstacle. The radius of the circle depends on the radius of the robot. 



 R Mobile base axis Obstacle Camera axis 
a(t) S(t) Robot trajectory direction D(t) z(t)  Fig. 3: Camera anticipation mode. The hypothesis is that in "camera" control will be better than in "mobile base" mode. The "fixed" mode is used as a reference. The operator has to realise a slalom (Fig. 4). This is tested with two types of parameters: performance parameters (trajectory execution time, collision number, stop number) and behavioural parameters (trajectory smoothness, power law). 

 Fig. 4: Schematic representation of the trajectory. About collisions (Fig. 5), anticipation conditions ("camera" mode plus "mobile base" mode) present significantly less collision than "fixed" mode (p<0.01). There is no significant difference between "camera" mode and "mobile base" mode. 
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 Fig. 8: Trajectory in "fixed" mode. A small radius of curvature (log(r)<0) represents a small linear speed and big rotation speed, which corresponds to angular trajectory. An important radius of curvature (log(r)>0) represents a smooth trajectory. Fig. 9 shows an important occurrence of radius of curvature around log(r)=0 in all conditions. That corresponds to mean radius of curvature. But, around log(r)=-2, which corresponds to about only rotation, this number is significantly higher in "fixed" condition than in "mobile base" condition, which higher than in "camera" condition. So, anticipation conditions are batter than "fixed" condition, but also anthropomorphic condition ("camera") is better than non anthropomorphic condition ("mobile base").  
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fixe plate-forme caméraFixed Mobile base Camera   Fig. 9: Occurrence percentages of radius of curvature. This propensity to smooth trajectories is generalised by human being in all movements, probably to minimise a cost function ([TOD98], [VIV95]). It is not limited to geometrical aspects but takes into account a relation between geometry (radius of curvature) and cinematic (linear speed). This kind of relation has been studied for example in writing gestures ([VIV85], [MAS92], [SOE86]). They follow the "power law" ([LAC83], [VIV91]). It says that instantaneous linear speed is proportional to the cube root of the radius of curvature. This law is not only effective in arm movements but also 

in human locomotion ([VIE01]). In logarithm representation, a 1/3 ratio appears between the two. Results are very interesting. In "fixed" condition, correlation between linear speed and radius of curvature is not significant. The equation of the best fit line linking their logarithm is: y=0.01x+0. Conclusions are the same in "mobile base" condition. The equation of the best fit line in that case is: y=0.02x+y. Even if there was a significant correlation, the 1/3 ratio does not appears. In "camera" mode, conclusions are very different. First of all, correlation between linear speed and radius of curvature is now significant (p<0.001). But more, Fig. 10 shows that a 1/3 ratio appears between the two in logarithm representation. In that mode, the natural relation between linear speed and radius of curvature exists. 
 Logarithm of radius of curvature 
Logarithm of linear speed 

 Fig. 10: Relation between logarithm of radius of curvature and logarithm of linear speed. D. Discussion Two kinds of parameters have been studied to compare the three control modes. Performance parameters (trajectory execution time, collision number, stop number) show that both visual anticipation modes ("camera" and "mobile base") gives better results than "fixed" mode. Behavioural parameters (trajectory smoothness, power law) confirm the previous results. They also give more precision. The first parameter analyses smoothness and occurrence of radius of curvature. It shows that there is significantly less small radius of curvature, corresponding to pure rotation, in "camera" mode than in "mobile base" mode". The control is smoother in "camera" mode than in "mobile base" mode. The second parameter is the most interesting. It shows a natural control in "camera" mode, with respect to the power law, not present in "mobile base" mode. That means anthropomorphic condition ("camera" mode) gives easier distant scene and distant action perception and 



representation by the operator than non anthropomorphic condition ("mobile base" mode). IV. MORPHOLOGICAL ASPECT A. Study presentation Space organisation has been studied from different points of view. From a psychophysical point of view, three concentric spaces are considered around the operator. Personal space corresponds to space in which objects can be manipulated by arm extension. Action space, about 30 meters, corresponds to a kind of relational space in which it is possible to communicate, to move quickly from one point to another or to exchange objects. Different sources are used to detect space according distance ([CUT97]). From a neuropsychological point of view, near space and far space are distinguished. Some pathologies have been studied in which patients present neuropsychological disorders. Some of them can not have a representation of near space, other of far space ([COW99]). From a neurophysiologic point of view, studies have shown that different cerebral areas are activated according to space involved for the action, peri-corporal one or extra-corporal one ([JEA97]). This dichotomy in two or three spaces has no precise limit. Corporal scheme results from dynamic properties. [IRI96] shows that when a monkey uses a tool, its peri-corporal space extends to accessible space by this tool. In the case of peri-personal negligence, it is extended to stick dimension ([BER00]). In a remote control situation, the intervention field of the operator increase by the way of the mechanical tool. It could be possible to make the hypothesis that the same peri-corporal space extension of the operator exists including the remote controlled robot. But another characteristic of remote control situation is that no physical contact with the tool exists. That could disturb the visuo-tactile integration phenomena. Indeed, some works have shown that there is no peri-manual space extension in the case of physical discontinuity between the operator and a stick when the relation is passive ([MAR01]). In our case, the operator is active but has no tactile feedback. This very particular context of remote control situation is original to study modulation of space representation. B. Experiment objective The objective of these experiments is to study if an anthropomorphic eye-arm relation on the remote controlled robot facilitates the control of the system. The way we choose to measure this facilitation is the appropriation degree of the system by the operator. Indeed, if the remote controlled robot enters the peri-personal space that proves that the operator has a good perception of the environment of the robot. 

In [WAR87], a number Π is defined to characterise the ratio between a dimension of the human organism and an experimental variable associated to it. It is then possible to identify optimal contexts in which actions will be easier or efficient and, in the opposite, critical contexts in which actions will be more difficult. In the following experiments, object to catch are at a distance D which is compared with the length of the robotic arm, R. In this case, Π=D/R. If D exceeds R, it is impossible to catch the object. Π not only measures a simple geometrical space perception but representational capacities of the operator. Indeed, to estimate the distance for which the object is not reachable, the operator must transform absolute co-ordinates of the environment in relative coordinates referenced to the arm ([FIT78]). C. Experiment results In fact, the issue is to compare R and the maximal catching distance Dm evaluated by the operator. So, the more Πm=Dm/R is near to 1, the more the appropriation is effective. R is easy to estimate. For Dm, it is more difficult. 8 positions are defined according to R. 4 are lower than R, 4 are higher than R with 1 more centimetre in each variation: ±1cm, ±4cm, ±8cm, ±13cm. The subject must answer by "yes" or "no" to the following question: "Can you catch the object with a simple arm extension?". To obtain the threshold value, each position is proposed 10 times in the five directions (Fig. 11). Once the 80 responses are recorded, the threshold S corresponds to the same number of "yes" and "no" in each side of S ([BON86]).  20°  0° -20° 40° -40° 
20 cm 20° Shoulder Camera  Fig. 11: Characteristic of experimental device Two experimental configurations have been tested. In remote control condition, the camera is situated on the left of the mechanical arm, which corresponds to a right anthropomorphic condition. Operators have only indirect information of the scene through a camera feedback. In natural condition, operators are put in the same situation than the robotic arm. In that case, operators use their own perception systems. 



The first major result of this experiment shows that there is no significant difference between remote control condition and human referenced condition. More, this identity is acquired very quickly, suggesting that reorganization of space representation is possible without extensive use of the tool ([BER00], [MAR01]). With a more precise analyse, direction by direction, a second result appears. In two directions, 0° and 20°, Πm is lower than 1 in robotic condition and nearly equals to 1 in natural condition. Two interpretations are possible: either the subject has over-estimated the distances or the length of the arm was underestimated. Several works have shown a tendency to underestimation of distances by subjects in monocular or limited field vision ([CRA70], [MOR84], [SER92], [BIN98], [COE97]). [FOG96] shows that peri-personal space is similar to circular or spherical arcs around the considered organ. But, contrarily to human arm, Manus arm, used in this experiment, presents a more important extension radius in 0° direction than on the sides. This bias explains Πm variations. If only the numerator of Πm is taken into account, the representation of extension space of the arm tends towards a circle like human arm. We can deduce that the operator had transposed her/his own arm representation on the robotic arm. D. Discussion This experiment shows that anthropomorphic position of the camera according to the arm implies space representation in remote control situation similar to natural situation. Once again, this facilitates distant scene and distant action perception and representation by the operator. V. CONCLUSIONS AND PERSPECTIVES Space perception and representation is a crucial issue in robotics. It is especially important in remote control modes in which the operator and the robotic system are not in the same place. The operator must perceive the scene where the action takes place and the action of the robot in this scene. One main issue of ARPH project is to give to the operator feedback information which can be easily understood. Human like conception is a good solution to help the user in space perception and representation. A robotic arm deals with two aspects: mobility and object grasping. For both of them, this paper shows that anthropomorphic situations give better results than non anthropomorphic ones using different kinds of complementary parameters. That illustrates that anthropomorphic situations help the operator in remote control situation to have a good perception and 
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