Copositive Optimization
 Paula Amaral

Dep. Mathematics and CMA
University Nova de Lisboa

Copositive Optimization

Motivation

Copositive Optimization

Standard quadratic program
$(\mathrm{StQ}) \quad \min \quad x^{T} Q x$

$$
\text { s.t. } \quad e^{T} x=1
$$

$$
x \geq 0
$$

(StQCp) min $\langle Q, X\rangle$

$$
\begin{array}{ll}
\text { s.t. } & \langle E, X\rangle=1 \\
& X \in\left\{X \in \mathcal{M}_{n}: X=Y Y^{T}, Y \in \mathbb{R}^{n \times k}, Y \geq O\right\}=\mathcal{C}^{*}
\end{array}
$$

(StQCo) max y
s.t. $\quad Q-y E \in\left\{X \in \mathcal{M}_{n}: y^{T} X y \geq 0\right.$ for all $\left.y \in \Re_{+}^{n}\right\}=\mathcal{C}$
$y \in \mathbb{R}$

Copositive Optimization

Copositive Optimization

$$
\min \langle C, X\rangle
$$

$$
\begin{array}{ll}
\text { s.t. } & \left\langle A_{i .}, X\right\rangle=b_{i}, i \in\{1, \ldots, m\} \\
& X \in \mathcal{K}
\end{array}
$$

$\mathcal{K}=\mathcal{C}$ Copositive Cone or $\mathcal{K}=\mathcal{C}^{*}$ Completely Positive
Cone

$$
\langle X, Y\rangle=\operatorname{trace}\left(Y^{T} X\right)=\sum_{i, j=1}^{n} X_{i j} Y_{i j}
$$

Copositive Optimization

Lower Bounds

Copositive Relaxation

$$
\begin{array}{cl}
\min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i, .}, X\right\rangle=b_{i}, i \in\{1, \ldots, m\} \\
& X \subset \mathcal{C}^{*} \\
& X \in \mathcal{K} \supset \mathcal{C}^{*}
\end{array}
$$

Outline

Properties of Copositive Matrices and Copositive Cone
Detecting Copositivity
Duality
Formulation of Problems as Conic Programs

Copositive Optimization

Cones

Definition (Cone)

A set $\mathcal{K} \in \Re^{n}$ is a cone if $\lambda \geq 0, A \in \mathcal{K} \Rightarrow \lambda A \in \mathcal{K}$.

Definition (Pointed Cone)

A cone \mathcal{K} is pointed if $\mathcal{K} \cap-\mathcal{K}=\{0\}$.

Definition (Convex Cone)

A cone \mathcal{K} is convex if for $A, B \in \mathcal{K}$ and $\alpha, \beta \in \Re^{+}, \alpha A+\beta B \in \mathcal{K}$.
Definition (Closed Cone)
A cone \mathcal{K} is closed if it contains its boundary.

Copositive Optimization

Definition (Cone of Symmetric matrices)

$$
\mathcal{M}_{n}=\left\{X \text { an } n \times n \text { matrix : } X^{T}=X\right\}
$$

Definition (Cone of Nonnegative symmetric matrices)

$$
\mathcal{N}_{n}=\left\{X \in \mathcal{M}_{n}: X_{i j} \geq 0 \text { for } i, j=1, \ldots, n\right\}
$$

Definition (Cone of the Positive Semidefinite matrices)

$$
\mathcal{S}_{n}=\left\{X \in \mathcal{M}_{n}: y^{T} X y \geq 0 \text { for all } y \in \Re^{n}\right\}
$$

Definition (Cone of the Positive Definite matrices)

$$
\mathcal{S}_{n}^{+}=\left\{X \in \mathcal{M}_{n}: y^{T} X y>0 \text { for all } y \in \Re^{n} \backslash\{0\}\right\}
$$

Copositive Optimization

Definition (Cone of Doubly Nonnegative matrices)

$$
\mathcal{D}_{n}=\left\{X \in \mathcal{M}_{n}: X=D_{0} \cap S_{0} \text { with } D_{0} \in \mathcal{N}_{n} \text { and } S_{0} \in \mathcal{S}_{n}\right\}
$$

Definition (Dual of the Cone of Doubly Nonnegative matrices)

$$
\mathcal{D}_{n}^{*}=\left\{X \in \mathcal{M}_{n}: X=D_{0}+S_{0} \text { with } D_{0} \in \mathcal{N}_{n} \text { and } S_{0} \in \mathcal{S}_{n}\right\}
$$

Copositive Optimization

Definition (Cone of the Copositive matrices)

$$
\mathcal{C}_{n}=\left\{X \in \mathcal{M}_{n}: y^{T} X y \geq 0 \text { for all } y \in \Re_{+}^{n}\right\}
$$

Definition (Cone of the Strict Copositive matrices)

$$
\mathcal{C}_{n}^{+}=\left\{X \in \mathcal{M}_{n}: y^{T} X y>0 \text { for all } y \in \Re_{+}^{n} \backslash\{0\}\right\}
$$

Definition (Cone of the \mathcal{D}-Copositive matrices)

$$
\mathcal{C D}_{n}=\left\{X \in \mathcal{M}_{n}: y^{T} X y \geq 0 \text { for all } y \in \mathcal{D} \subseteq \Re_{+}^{n}\right\}
$$

Copositive Optimization

Properties of Copositive Matrices and Copositive Cone

[Diananda(1962)], [Hall and Newman(1963)], [Baston(1968/1969)]

- Nonnegative $\left(X \in \mathcal{N}_{n}\right) \Rightarrow$ Copositive $\left(X \in \mathcal{C}_{n}\right)$
- Semidefinite $\left(X \in \mathcal{S}_{n}\right) \Rightarrow$ Copositive $\left(X \in \mathcal{C}_{n}\right)$

Copositive Optimization

- For $n=2$

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{12} & X_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=X_{11} y_{1}^{2}+2 X_{12} y_{1} y_{2}+X_{22} y_{2}^{2} \geq 0} \\
\left(X_{11} \geq 0\right) \wedge\left(X_{22} \geq 0\right) \wedge(\underbrace{\left(X_{12} \geq 0\right)}_{\text {Nonnegative }-\mathcal{N}_{n}} \vee \underbrace{\left(X_{12}^{2}-X_{11} X_{22} \leq 0\right.}_{\text {Semidefinite }-\mathcal{S}_{n}})
\end{array}\right)
$$

- $\mathcal{C}_{n}=\mathcal{N}_{n}+\mathcal{S}_{n}$ for $n=3,4$.

Copositive Optimization

- Example (Horn)

$$
\begin{gathered}
H=\left[\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right] \\
x^{T} H x=\left(x_{1}-x_{2}+x_{3}+x_{4}-x_{5}\right)^{2}+4 x_{2} x_{4}+4 x_{3}\left(x_{5}-x_{4}\right) \\
x^{T} H x=\left(x_{1}-x_{2}+x_{3}-x_{4}+x_{5}\right)^{2}+4 x_{2} x_{5}+4 x_{3}\left(x_{4}-x_{5}\right)
\end{gathered}
$$

- $X_{i i} \geq 0$.

$$
e_{i}^{T}=\left[\begin{array}{lllll}
0 & \ldots & \underbrace{1} & \ldots & 0
\end{array}\right] \text { then } e_{i}^{T} X e_{i}=X_{i i}
$$

Copositive Optimization

- $X_{i i}=0 \Rightarrow X_{i j} \geq 0$.

$$
\begin{gathered}
\left(\alpha e_{i}+e_{j}\right)^{T} X\left(\alpha e_{i}+e_{j}\right)=\alpha^{2} X_{i i}+2 \alpha X_{i j}+X_{j j} \\
\text { if } X_{i i}=0 \text { and } \alpha \rightarrow+\infty \text { then } X_{i j} \geq 0
\end{gathered}
$$

- Not invariant under basis transformations.
- Is invariant under permutation and scaling transformations.
- \mathcal{C}_{n} is closed, convex, pointed and full dimensional.
- \mathcal{C}_{n} is nonpolyhedral.
- The interior of \mathcal{C}_{n} is the set of strictly copositive matrices, \mathcal{C}_{n}^{+}.
- If there exists a strictly positive vector v such that $v^{T} A v=0$ then $A \in \mathcal{S}_{n}$.

Copositive Optimization

- It is co-NP-complete to check that a matrix is copositive ([Murty and Kabadi(1987)])

Copositive Optimization

Dual Cone

Definition (Dual Cone)

Consider the cone $\mathcal{K} \subseteq \mathbb{R}^{n \times n}$. The dual cone of \mathcal{K} is,

$$
\mathcal{K}^{*}=\left\{Y \in \mathbb{R}^{n \times n}: \forall X \in \mathcal{K},\langle X, Y\rangle \geq 0\right\}
$$

Definition (Self Dual)

A cone \mathcal{K} is self-dual if $\mathcal{K}=\mathcal{K}^{*}$.
Example: $\mathcal{S}_{n}^{*}=\mathcal{S}_{n}$.

Copositive Optimization

Properties of the Dual Cone

Let \mathcal{K} be a cone,

- \mathcal{K}^{*} is closed and convex.
- $\mathcal{K}^{* *}=\overline{\operatorname{conv}(\mathcal{K})}$.
- \mathcal{K} closed and convex $\Rightarrow \mathcal{K}^{* *}=\mathcal{K}$.
- Lemma $\hat{\mathcal{K}} \subseteq \mathcal{K} \Rightarrow \hat{\mathcal{K}}^{*} \supseteq \mathcal{K}^{*}$.

Copositive Optimization

Completely Positive Cone - Dual Copositive Cone

Definition (Cone of Completely Positive matrices)

$$
\begin{aligned}
\mathcal{C P}_{n} & =\left\{X \in \mathcal{M}_{n}: X=\sum_{i=1}^{k} z^{i}\left(z^{i}\right)^{T}: k \in \mathbb{N}, z^{i} \geq 0\right\} \\
& =\left\{X \in \mathcal{M}_{n}: X=Y Y^{T}, Y \in \mathbb{R}^{n \times k}, Y \geq O\right\}
\end{aligned}
$$

Theorem

The dual of \mathcal{C}_{n} is the cone of Completely Positive matrices.

Copositive Optimization

Theorem

$$
\begin{aligned}
\mathcal{C} \mathcal{P}_{n} & =\mathcal{C}_{n}^{*} \\
\mathcal{C P}{ }_{n}^{*} & =\mathcal{C}_{n} \\
\mathcal{C}_{n}^{* *} & =\mathcal{C}_{n}
\end{aligned}
$$

Copositive Optimization

Proof

$$
\begin{gathered}
\text { Any } A \in \mathcal{C} \text { and } B=\sum_{i=1}^{k} z^{i}\left(z^{i}\right)^{T}, z^{i} \geq 0 \in \mathcal{C P} \\
\langle A, B\rangle=\left\langle A, \sum_{i=1}^{k} z^{i}\left(z^{i}\right)^{T}\right\rangle=\sum_{i=1}^{k}\left(z^{i}\right)^{T} A z^{i} \geq 0(\text { because } A \in \mathcal{C}) \\
B \in \mathcal{C}^{*} \Rightarrow \mathcal{C P} \subseteq \mathcal{C}^{*}
\end{gathered}
$$

Any $A \in \mathcal{C} \mathcal{P}^{*}$ then $\langle A, B\rangle \geq 0$ in particular $B=v v^{T}(v \geq 0)$ we have

$$
\left\langle A, v v^{T}\right\rangle=v^{T} A v \geq 0 \text { and so } A \in \mathcal{C} \text { and } \mathcal{C} \mathcal{P}^{*} \subseteq \mathcal{C}
$$

From the previous result we have that $\mathcal{C P} \supseteq \mathcal{C}^{*}$ so

$$
\mathcal{C}^{*}=\mathcal{C P}
$$

Copositive Optimization

- \mathcal{C}_{n}^{*} is closed, convex, pointed and full dimensional.
- The extremal rays of \mathcal{C}_{n}^{*} are the rank-one matrices $X=x x^{T}$ with $x \geq 0$ and $x \neq 0$.
- Characterization of the interior of the completely positive cone. [Dür and Still(2008)]

$$
\operatorname{int}\left(\mathcal{C}^{*}\right)=\left\{A A^{T}: A=\left[A_{1} \mid A_{2}\right], \text { with } A_{1}>0 \text { nonsingular, } A_{2} \geq 0\right\}
$$

- Checking that a matrix is in \mathcal{C}_{n}^{*} is NP-hard. [Dickinson and Gijben(2014)]

Copositive Optimization

Copositive Optimization

Detecting Copositivity

Based on Submatrices

A principal submatrix of A is a matrix which is constructed by selecting some of the rows and columns of A simultaneously. Given $I=1, \ldots, n, A_{I I}=\left[A_{i j}\right]$ for $i, j \in I$.

Copositive Optimization

Eigenvector and eigenvalues

[Kaplan(2001)]

The matrix A is copositive if and only if all principal submatrices of A have no positive eigenvector with negative eigenvalue.

$$
A_{I I} v=\lambda v \text { if } v>0 \Rightarrow \lambda \geq 0
$$

Copositive Optimization

Similar to the Schur Complement

$$
\left[\begin{array}{ll}
a & b^{T} \\
b & C
\end{array}\right]
$$

The matrix A is copositive $(a \geq 0)$ if and only one of the following conditions hold.

- $C \in \mathcal{C} \wedge\left(a C-b b^{T}\right) \in \mathcal{C}_{\mathcal{D}}$ with $D=\left\{y: b^{T} y \leq 0, y \geq 0\right\}$ Remember?
- $b \geq 0 \wedge C \in \mathcal{C}$
- $b \leq 0 \wedge\left(a C-b b^{T}\right) \in \mathcal{C}$

Copositive Optimization

Theorem

$A \in \mathcal{M}, D \subseteq \mathbb{R}^{n}$ a polyhedral cone and R a matrix whose columns are representatives of the extremal rays of D then $A \in \mathcal{C}_{\mathcal{D}}$ iif $R^{T} A R \in \mathcal{C}$.

Checking copositivity in polynomial time,

- $\{-1,+1\}^{n \times n}$,
- diagonal matrices,
- tridiagonal matrices,
- acyclic matrices.

Copositive Optimization

Based on Simplicial Partitions

[Sponsel et al.(2012)Sponsel, Bundfuss, and Dür], [Bundfuss(2009)]

Lemma

Let $A \in \mathcal{M}_{n}$.

$$
\begin{aligned}
& A \in \mathcal{C}_{n} \Leftrightarrow \\
& x^{T} A x \geq 0, \forall x \in \mathcal{R}_{+}^{n}, \text { with }\|x\|=1 \\
& A \in \mathcal{C}_{n}^{+} \Leftrightarrow \\
& x^{T} A x>0, \forall x \in \mathcal{R}_{+}^{n}, \text { with }\|x\|=1
\end{aligned}
$$

Proof \Leftarrow Let $x \in \mathcal{R}_{+}^{n}, \tilde{x}=\frac{x}{\|x\|}$, such that $\|\tilde{x}\|=1$ so $\tilde{x}^{T} A \tilde{x} \geq 0$ but since $\tilde{x}^{T} A \tilde{x}=\frac{1}{\|x\|^{2}} x^{T} A x$ we have that $x^{T} A x \geq 0$.

Copositive Optimization

Choose the 1-norm, $\|x\|_{1}$, define the standard simplex

$$
\Delta^{S}=\left\{x \in \mathcal{R}_{+}^{n}:\|x\|_{1}=1\right\}=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

Copositive Optimization

For all $x \in \Delta^{S}$, there are unique $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ with $\lambda \geq 0$ such that

$$
\begin{gathered}
x=\sum_{i=1}^{n} \lambda_{i} e_{i} \text { with } \sum_{i=1}^{n} \lambda_{i}=1 . \\
x^{T} A x=\left(\sum_{i=1}^{n} \lambda_{i} e_{i}^{T}\right) A\left(\sum_{i=1}^{n} \lambda_{i} e_{i}^{T}\right)=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{i} e_{i}^{T} A e_{j}
\end{gathered}
$$

Sufficient condition $e_{i}^{T} A e_{j} \geq 0 \Leftrightarrow A(i, j) \geq 0, \forall i, j \Leftrightarrow A \in \mathcal{N}_{n}$

Copositive Optimization

A family of $P s$ of simplices $\left\{\Delta_{1}, \ldots, \Delta_{m}\right\}$ satisfying

$$
\bigcup_{i=1}^{m} \Delta_{i}=\Delta_{S} \text { and } \operatorname{int}\left(\Delta_{i}\right) \cap \operatorname{int}\left(\Delta_{j}\right)=\emptyset, \quad i \neq j
$$

is called a simplicial partition of Δ_{S}.

Copositive Optimization

Δ is the convex hull of n affinely independent points (vertices) $\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ For all $x \in \Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$, there are unique $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ with $\lambda \geq 0$ such that (barycentric coordinates with respect to Δ):

$$
x=\sum_{i=1}^{n} \lambda_{i} v_{i} \text { with } \sum_{i=1}^{n} \lambda_{i}=1
$$

As a simplex Δ is determined by its vertices, it can be represented by a matrix V_{Δ} whose columns are these vertices. $V_{\Delta}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$

$$
x^{T} A x=\left(\sum_{i=1}^{n} \lambda_{i} v_{i}^{T}\right) A\left(\sum_{i=1}^{n} \lambda_{i} v_{i}^{T}\right)=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{i} v_{i}^{T} A v_{j}
$$

Sufficient condition $v_{i}^{T} A v_{j} \geq 0 \forall i, j$
Necessary condition $v_{i}^{T} A v_{i} \geq 0 \forall i$

Copositive Optimization

Theorem

Let $A \in \mathcal{M}_{n}$, and let P be a simplicial partition of Δ_{S}. If

$$
\left(v_{i}^{k}\right)^{T} A\left(v_{j}^{k}\right) \geq 0, \forall \Delta_{k}=\operatorname{conv}\left\{v_{1}^{k}, \ldots, v_{2}^{k}\right\} \in P
$$

then A is copositive.

Proof

$$
\begin{gathered}
V^{k}=\left[v_{1}^{k}, \ldots, v_{n}^{k}\right] \\
x \in \Delta_{k} \\
x^{T} A x=\left(V^{k} \lambda\right)^{T} A\left(V^{k} \lambda\right)=\lambda^{T}\left(V^{k T} A V^{k}\right) \lambda \geq 0
\end{gathered}
$$

Copositive Optimization

Data: $A \in \mathcal{M}_{n}$,
Result: Copositive certificate $=$ "Yes" or "No"
$P s=\left\{\Delta_{S}\right\}$;
while $P s \neq \emptyset$ do
choose $\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\} \in P s ;$ if $\frac{\exists v_{i} \in\left\{v_{1}, \ldots, v_{n}\right\}: v_{i}^{T} A v_{i}<0}{\text { return "No" }}$ then
else
if $v_{i}^{T} A v_{j} \geq 0$ for all $i, j=1, \ldots, n$ then
$P s \leftarrow P s \backslash \Delta ;$
else
$P s \leftarrow P s \backslash \Delta$;
partition Δ into Δ_{1} and Δ_{2};
$P s \leftarrow P s \backslash \Delta \cup\left\{\Delta_{1}, \Delta_{2}\right\}$
end
end
end

Copositive Optimization

$$
P s=\left\{\Delta_{1}, \ldots, \Delta_{m}\right\}
$$

(Fineness of a Partition $P s$) $\mapsto \delta(P s)=\max _{\Delta \in P s} \max _{u, v \in V(\Delta)}\|u-v\|$

Theorem

Let $A \in \mathcal{M}_{n}$. The following assertions are equivalent

- A is not copositive,
- There exists $\epsilon>0$ such that for all partitions $P s$ of Δ^{S} with $\delta(P s)<\epsilon$ there exists a $v \in V(P s)$ with $v^{T} A v<0$.

Theorem

Let $A \in \mathcal{M}_{n}$, strict-copositive, $A \in \mathcal{C}^{+}$then there exits $\epsilon>0$ such that for all partitions Ps of Δ^{S} with $\delta(P s)<\epsilon, \quad v^{T} A u>0$ for all $(u, v) \in V(P s)$.

Copositive Optimization

Algorithm may not terminate

Theorem

Let $A \in \mathcal{M}_{n}$, be copositive, and $\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$, with $v_{i}^{T} A v_{i}>0$. If $\exists x \in \Delta \backslash\left\{v_{1}, \ldots, v_{n}\right\}$ such that $x^{T} A x=0$ then there $\exists i, j \in\{1,2, \ldots, n\}$ such that $v_{i}^{T} A v_{j}<0$.

Copositive Optimization

Proof By contradition $v_{i}^{T} A v_{j} \geq 0$.

$$
\begin{aligned}
x^{T} A x & =\left(\sum_{i=1}^{n} \lambda_{i} v_{i}^{T}\right) A\left(\sum_{i=1}^{n} \lambda_{i} v_{i}^{T}\right)=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{i} \overbrace{v_{i}^{T} A v_{j}}^{>0} \\
& \geq \sum_{i=1}^{n} \lambda_{i}^{2} v_{i}^{T} A v_{i}>0 .
\end{aligned}
$$

Require only that A is ϵ-copositive, $x^{T} A x \geq-\epsilon$

Copositive Optimization

Subdivision

$\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$

- bisection of the simplex along the longest edge
- $\delta(P) \rightarrow 0$
- $v^{T} A u<0, w=\lambda v+(1-\lambda) u$ such that $v^{T} A w \geq 0$ and $u^{T} A w \geq 0$

Copositive Optimization

Polyhedral inner approximations of the copositive cone

$$
\begin{gathered}
\mathcal{P}=\left\{\Delta_{1}, \ldots, \Delta_{m}\right\} \\
\Delta_{k}=\operatorname{conv}\left\{v_{1}^{k}, v_{2}^{k}, \ldots, v_{n}^{k}\right\} \\
\mathcal{I}_{\mathcal{P}}=\{A \in \mathcal{M}: \underbrace{\left(v_{i}^{k}\right)^{T} A v_{j}^{k}}_{\text {linear }} \geq 0, \forall k=1, \ldots, m, \forall i, j \in\{1, \ldots, n\}\} \\
\mathcal{I}_{\Delta_{S}}=\left\{A \in \mathcal{M}: A_{i j} \geq 0, \forall i, j \in\{1, \ldots, n\}\right\}=\mathcal{N}_{n}
\end{gathered}
$$

Lemma

Let $\mathcal{P}, \mathcal{P}_{1}, \mathcal{P}_{2}$ denote two simplicial partitions of Δ_{S}. Then

- $\mathcal{I}_{\mathcal{P}}$ is a closed convex polyhedral cone,

Copositive Optimization

- If $\mathcal{I}_{\mathcal{P}} \subseteq \mathcal{C}\left(\mathcal{I}_{\mathcal{P}}\right.$ is an inner approximation of $\left.\mathcal{C}\right)$,
- if \mathcal{P}_{2} is a refinement of \mathcal{P}_{1}, then $I_{\mathcal{P}_{1}} \subset I_{\mathcal{P}_{2}}$.

Theorem

Let \mathcal{P}_{r} be a sequence of simplicial partitions of Δ_{S} with $\delta\left(\mathcal{P}_{r}\right) \rightarrow 0$. Then we have

$$
\mathcal{C}=\overline{\bigcup_{r \in \mathcal{N}} \mathcal{I}_{\mathcal{P}_{r}}}
$$

Copositive Optimization

$M \in W \subseteq \mathcal{C}$

Sufficient condition $v_{i}^{T} A v_{j} \geq 0 \forall i, j$

$$
\begin{gathered}
V_{\Delta}^{T} A V_{\Delta} \in \mathcal{N} \\
V_{\Delta}^{T} A V_{\Delta} \in \mathcal{W} \subseteq \mathcal{C}
\end{gathered}
$$

The choice $M=\mathcal{N}$ is not always desirable. To check whether a matrix is non negative does not take much effort but the non negative cone is a poor approximation of the copositive cone.

- the choice of the set M influences the number of iterations and the runtime
- the set M should be a good approximation of \mathcal{C}
- checking membership of M should be cheap

Copositive Optimization

Data: $A \in \mathcal{M}_{n}, \mathcal{W} \in \mathcal{C}$
Result: Copositive certificate $=$ "Yes" or "No"
$P s=\left\{\Delta_{S}\right\}$;
while $P s \neq \emptyset$ do
choose $\Delta \in P s$;
if $\exists v \in V_{\Delta}^{T}: v^{T} A v<0$ then
return "No" ;
$P s=\emptyset$
else
if ${ }^{V_{\Delta}^{T} A V_{\Delta} \in \mathcal{W}}$ then
else
$P s \leftarrow P s \backslash \Delta ;$
partition Δ into Δ_{1} and Δ_{2};
$P s \leftarrow P s \backslash \Delta \cup\left\{\Delta_{1}, \Delta_{2}\right\}$
end
end
end

Copositive Optimization

Based on Polinomials [Parrilo(2000)], [Bomze and de Klerk(2002)],

 [Peña et al.(2007)Peña, Vera, and Zuluaga], [Lasserre(2000/01)]$$
\begin{aligned}
& x=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \mathcal{R}_{+}^{n} \text { can be written as } x o x=\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]^{T} \in \mathcal{R}^{n} \\
& x^{T} A x \geq 0, x \geq 0 \text { replacing } x_{i} \text { by } x_{i}^{2} \text { we have } P(x)=(x o x)^{T} A(x o x) \geq 0 \\
& {\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left\langle\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right],\left[\begin{array}{cc}
x_{1}^{2} & x_{1} x_{2} \\
x_{1} x_{3} \\
x_{1} x_{2} & x_{2}^{2} \\
x_{1} x_{3} & x_{2} x_{3} \\
x_{3} & x_{3}^{2}
\end{array}\right] /\right.} \\
& a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3} \\
& \left\langle\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right],\left[\begin{array}{ccc}
x_{1}^{4} & x_{1}^{2} x_{2}^{2} & x_{1}^{2} x_{3}^{2} \\
x_{1}^{2} x_{2}^{2} & x_{2}^{4} & x_{2}^{2} x_{3}^{2} \\
x_{1}^{2} x_{3}^{2} & x_{2}^{2} x_{3}^{2} & x_{3}^{4}
\end{array}\right]\right\rangle= \\
& a_{11} x_{1}^{4}+a_{22} x_{2}^{4}+a_{33} x_{3}^{4}+2 a_{12} x_{1}^{2} x_{2}^{2}+2 a_{13} x_{1}^{2} x_{3}^{2}+2 a_{23} x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

Copositive Optimization

$$
\begin{aligned}
& w_{x}^{T}=\left[\begin{array}{lllllllll}
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} & x_{1} x_{2} & \ldots & x_{1} x_{n} & \ldots & x_{n-1} x_{n}
\end{array}\right] \\
& w_{x}^{T} M w_{x}=\left\langle M, w_{x} w_{x}^{T}\right\rangle \\
& \text { and } M \text { is of order } n+\frac{1}{2} n(n-1)
\end{aligned}
$$

$$
\left[\begin{array}{cccccccccc}
x_{1}^{4} & x_{1}^{2} x_{2}^{2} & x_{1}^{2} x_{3}^{2} & x_{1}^{3} x_{2} & x_{1}^{3} x_{3} & x_{1}^{2} x_{2} x_{3} \\
x_{1}^{2} x_{2}^{2} & x_{2}^{4} & x_{2}^{2} x_{3}^{2} & x_{2}^{3} x_{1} & x_{2}^{2} x_{1} x_{3} & x_{2}^{3} x_{3} \\
x_{1}^{2} x_{3}^{2} & x_{2}^{2} x_{3}^{2} & x_{3}^{4} & x_{3}^{2} x_{1} x_{2} & x_{3}^{3} x_{1} & x_{3}^{3} x_{2} \\
x_{1}^{3} x_{2} & x_{1}^{3} x_{3} & x_{3}^{2} x_{1} x_{2} & x_{1}^{2} x_{2}^{2} & x_{1}^{2} x_{2} x_{3} & x_{2}^{2} x_{1} x_{3} \\
x_{1}^{3} x_{3} & x_{2}^{2} x_{1} x_{3} & x_{3}^{3} x_{2} & x_{1}^{2} x_{2} x_{3} & x_{1}^{2} x_{3}^{2} & x_{3}^{2} x_{1} x_{2} \\
x_{1}^{2} x_{2} x_{3} & x_{2}^{3} x_{3} & x_{3}^{3} x_{2} & x_{2}^{2} x_{1} x_{3} & x_{3}^{2} x_{1} x_{2} & x_{2}^{2} x_{3}^{2}
\end{array}\right]\left[\begin{array}{cccccc}
\mu_{12} & \mu_{12} & 0 & 0 & \eta_{123} \\
\mu_{12} & \alpha_{2} & \mu_{23} & 0 & \eta_{213} & 0 \\
\mu_{13} & \mu_{23} & \alpha_{3} & \eta_{312} & 0 & 0 \\
0 & 0 & \eta_{312} & \nu_{12} & \delta_{123} & \delta_{213} \\
0 & \eta_{213} & 0 & \delta_{123} & \nu_{13} & \delta_{312} \\
\eta_{123} & 0 & 0 & \delta_{213} & \delta_{312} & \nu_{23}
\end{array}\right]
$$

Copositive Optimization

$$
L_{A}^{0}=\left\{M \in \mathcal{M}_{d}:(x o x)^{T} A(x o x)=w_{x}^{T} M w_{x}\right\}
$$

Theorem

The matrix A is copositive if there is a matrix $M \in L_{A}^{0}$ nonnegative or positive semidefinite.

Lemma

Condition $(x o x)^{T} A(x o x) \geq 0$ hold if the polynomial $w_{x}^{T} M w_{x}$ can be written as a sum of squares $\sum_{i=1}^{r} f_{i}(x)^{2}$, for some polynomial functions f_{i}. A sum of squares decomposition is possible if and only if a representation of $w_{x}^{T} M w_{x}$ exists where $M=\tilde{S}+\tilde{N}$ where $\tilde{S} \in \mathcal{S}_{d}$ and $\tilde{N} \in \mathcal{N}_{d}$.

Copositive Optimization

Example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]} \\
(x o x)^{T} A(x o x)=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+2 x_{1}^{2} x_{2}^{2}+2 x_{1}^{2} x_{3}^{2}-2 x_{2}^{2} x_{3}^{2} \\
w_{x}^{T}=\left[\begin{array}{lllll}
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{1} x_{2} & x_{1} x_{3} \\
x_{2} & x_{2} x_{3}
\end{array}\right] \\
w_{x}^{T} M w_{x}=w_{x}^{T}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] w_{x}= \\
=\left(x_{1}^{2}\right)^{2}+\left(\sqrt{2} x_{1} 2 x_{2}\right)^{2}+\left(\sqrt{2} x_{1} x_{3}\right)^{2}+\left(x_{2}^{2}-x_{3}^{2}\right)^{2}
\end{gathered}
$$

Copositive Optimization

Lemma

$$
\begin{gathered}
L_{A}^{0} \cap \mathcal{N}_{d} \neq 0 \Leftrightarrow A \in \mathcal{N}_{n} \\
L_{A}^{0} \cap \mathcal{S}_{d} \neq 0 \Leftrightarrow A \in\left(\mathcal{N}_{n}+\mathcal{S}_{n}\right)
\end{gathered}
$$

How to obtain higher order sufficient conditions?

$$
\begin{aligned}
P(x) & =(x o x) A(x o x)=w_{x}^{T} M w_{x} \\
P^{r}(x) & =P(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{r} \\
P(x) \geq 0 & \Leftrightarrow P^{r}(x) \geq 0 \\
P^{r}(x) \geq 0 & \Leftrightarrow P^{r}(x)=\sum_{i=1}^{s} f_{i}(x)^{2}
\end{aligned}
$$

Copositive Optimization

$$
\begin{gathered}
L_{A}^{0}=\left\{M \in \mathcal{M}_{d}: P(x)=(x o x)^{T} A(x o x)=w_{x}^{T} M w_{x}\right\} \\
L_{A}^{r}=\left\{M \in \mathcal{M}_{d_{r}}: P^{r}(x)=P(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{r}=w_{x^{r}}^{T} M w_{x^{r}}\right\}
\end{gathered}
$$

Lemma

$$
L_{A}^{r} \cap \mathcal{S}_{d} \neq 0 \Rightarrow A \in \mathcal{C}_{n}
$$

Copositive Optimization

$$
\begin{aligned}
P(x) & =(x o x) A(x o x)=w_{x}^{T} M w_{x} \\
P^{r}(x) & =P(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{r} \\
P^{r}(x) & =\sum_{i=1}^{s} f_{i}(x)^{2}
\end{aligned}
$$

Definition

The convex cone \mathcal{K}_{n}^{r} consists of the matrices in \mathcal{M}_{n} for which $P^{r}(x)$ allows a polynomial sum of squares decomposition (sos). $\mathcal{K}_{n}^{0}=$ $\mathcal{N}_{n}+\mathcal{S}_{n}$.

Copositive Optimization

Lemma

$$
\mathcal{K}_{n}^{r} \subseteq \mathcal{K}_{n}^{r+1} \text { for all } r
$$

Proof

$$
\begin{aligned}
P^{r+1}(x) & =P(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{r+1}= \\
& =P(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{r}\left(\sum_{k=1}^{n} x_{k}^{2}\right)= \\
& =P^{r}(x)\left(\sum_{k=1}^{n} x_{k}^{2}\right) \\
& =\sum_{i=1}^{l} f_{i}(x)^{2}\left(\sum_{k=1}^{n} x_{k}^{2}\right)=\sum_{i k}\left(x_{k} f_{i}\right)^{2}
\end{aligned}
$$

Copositive Optimization

$$
A \in \mathcal{K}_{n}^{r} ?
$$

The copositive cone can be approximate to a given accuracy by a sufficiently large set of linear matrix inequalities. Each copositive programming problem can be approximated to a given accuracy by a sufficiently large SDP.
$d=\mathcal{O}\left(n^{r+2}\right)$. In practice we are restricted to $r=1$. Degree 6.

For $r>2$ the resulting problems become too large for current SDP solvers even for small values of n.

Also possible to have LP approximations of the copositive cone, that are weaker than the SDP approximations but are easier to solved.

Copositive Optimization

Definition

The convex cone \mathcal{P}_{n}^{r} consists of the matrices in \mathcal{M}_{n} for which $P^{r}(x)$ has no negative coefficients. $\mathcal{P}_{n}^{0}=\mathcal{N}_{n}$ and $\mathcal{P}_{n}^{r} \subseteq \mathcal{K}_{n}^{r}$ and $\mathcal{P}_{n}^{r} \subseteq \mathcal{P}_{n}^{r+1}$.

$$
A \in \mathcal{P}_{n}^{r} ?
$$

The copositive cone can be approximate to a given accuracy by a sufficiently large set of linear inequalities. Each copositive programming problem can be approximated to a given accuracy by a sufficiently large LP.

Copositive Optimization

Theorem

Let $A \in \mathcal{C}_{n}^{+}$such that $A \notin \mathcal{N}_{n}+\mathcal{S}_{n}$. Then there are integers $r_{\mathcal{K}}$ and $r_{\mathcal{P}}$ with $1 \leq r_{\mathcal{K}} \leq r_{\mathcal{P}} \leq+\infty$ such that

$$
\begin{gathered}
\mathcal{N}_{n}=\mathcal{P}_{n}^{0} \subseteq \mathcal{P}_{n}^{1} \subseteq \cdots \subseteq \mathcal{P}_{n}^{r} \\
A \in \mathcal{P}_{n}^{r} \text { for all } r \geq r_{\mathcal{P}} \text { but } A \notin \mathcal{P}_{n}^{r_{\mathcal{P}}-1}
\end{gathered}
$$

and

$$
\begin{gathered}
\mathcal{N}_{n}+\mathcal{S}_{n}=\mathcal{K}_{n}^{0} \subseteq \mathcal{K}_{n}^{1} \subseteq \cdots \subseteq \mathcal{K}_{n}^{r} \\
A \in \mathcal{K}_{n}^{r} \text { for all } r \geq r_{\mathcal{K}} \text { but } A \notin \mathcal{K}_{n}^{r_{\mathcal{K}}-1}
\end{gathered}
$$

Copositive Optimization

Approximations for the \mathcal{C}^{*}

The dual cone of \mathcal{C} is the cone \mathcal{C}^{*} of completely positive matrices. By duality, the dual cone of an inner (resp. outer) approximation of \mathcal{C} is an outer (resp. inner) approximation of \mathcal{C}^{*}.

Copositive Optimization

Copositive Optimization

Duality

Definition (Dual)

The dual of conic problem P

$$
\begin{aligned}
v_{P}^{*} \leftarrow & \inf \langle C, X\rangle \\
\text { s.t. } & \\
& \left\langle A_{i}, X\right\rangle=b_{i}, i \in\{1, \ldots, m\} \\
& X \in \mathcal{K}
\end{aligned}
$$

is the conic problem D

$$
\begin{array}{ll}
v_{D}^{*} \leftarrow & \sup b^{T} y \\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \in \mathcal{K}^{*} \\
& y \in \mathcal{R}^{m}
\end{array}
$$

Attainability

Definition (Conic duality theorem)

If there exists an interior feasible solution of $(P)\left(X^{0} \in \operatorname{int}(\mathcal{K})\right)$, and a feasible solution of (D) then $v_{P}^{*}=v_{D}^{*}$ and the supremum in (D) is attained. Similarly, if there exist $y^{0} \in \mathcal{R}^{m}$ such that $C-\sum_{i=1}^{m} y_{i}^{0} A_{i} \in$ $\operatorname{int}\left(\mathcal{K}^{*}\right)$ and a feasible solution of (P), then $v_{P}^{*}=v_{D}^{*}$ and the infimum in (P) is attained.

Copositive Optimization

Dual of a Copositive Program - Completely Positive Program

Definition (Dual)
The dual of conic problem P

$$
\begin{aligned}
v_{P}^{*} \leftarrow & \inf \langle C, X\rangle \\
\text { s.t. } & \\
& \left\langle A_{i}, X\right\rangle=b_{i}, i \in\{1, \ldots, m\} \\
& X \in \mathcal{C}
\end{aligned}
$$

is the conic problem D

$$
\begin{array}{ll}
v_{D}^{*} \leftarrow & \sup b^{T} y \\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \in \mathcal{C}^{*} \\
& y \in \mathcal{R}^{m}
\end{array}
$$

Copositive Optimization

Formulation of Problems as Conic Programs

- Single Quadratic Constraint Quadratic Programs [Preisig(1996)]
- Standard Quadratic Program (maximum clique) [Bomze et al.(2000)Bomze, Dür, de Klerk, Roos, Quist, and Terlaky], [Bomze and de Klerk(2002)]
- Binary and continuous nonconvex quadratic programs [Burer(2009)]
- mixed-integer fractional quadratic [Amaral and Bomze(2015)]
- binary and ternary fractional quadratic [Amaral and Bomze(2015)]
- fractional quadratic programs. [Preisig(1996)], [Amaral et al.(2014)Amaral, Bomze, and Júdice]

Copositive Optimization

The pioneer work of Preisig

[Preisig(1996)]

$$
\begin{array}{cl}
\text { (SQC) } \min & x^{T} Q x \\
\text { s.t. } & x^{T} A x=b \\
& x \geq 0
\end{array}
$$

Without loss of generality $b=1$. Consider $y=x / \sqrt{b}$.

$$
\begin{aligned}
\text { (SQC1) } \min & x^{T} Q x \\
\text { s.t. } & x^{T} A x=1 \\
& x \geq 0
\end{aligned}
$$

Lemma

$A \in \mathcal{C}^{+}$then $\left\{x: x^{T} A x=1, x \geq 0\right\}$ is compact.

Copositive Optimization

Lemma

$A \in \mathcal{C}^{+}, Q \in \mathcal{M}$, then $\exists y_{0}$ such that

$$
\begin{align*}
(Q-y A) & \in \mathcal{C} \backslash \mathcal{C}^{+} \text {for } y=y_{0} \tag{1}\\
(Q-y A) & \in \mathcal{C}^{+}, \forall y<y_{0} \\
(Q-y A) & \notin \mathcal{C}, \forall y>y_{0}
\end{align*}
$$

Lemma

$A \in \mathcal{C}^{+}, Q \in \mathcal{M}$, then $\exists x_{0} \geq 0$, and $x_{0} \neq 0$, such that

$$
x_{0}^{T}\left(Q-y_{0} A\right) x_{0}=0
$$

and

$$
x_{0}=\arg \min _{\substack{x \geq 0 \\ e^{T} x=1}} x^{T}\left(Q-y_{0} A\right) x
$$

where y_{0} is as defined in 1 .

Copositive Optimization

Lemma

$A \in \mathcal{C}^{+}, Q \in \mathcal{M}$, then $\exists x_{0} \geq 0$, and $x_{0} \neq 0$, such that

$$
\begin{aligned}
& \min _{x>0} x^{T}\left(Q-y_{0} A\right) x \quad>0 \quad \forall y<y_{0} \\
& e^{\substack{x \geq 0 \\
x=1}} \\
& \min _{\substack{x \geq 0 \\
e^{T} x=1}} x^{T}\left(Q-y_{0} A\right) x \quad<0 \quad \forall y>y_{0}
\end{aligned}
$$

where y_{0} is as defined in 1 .

Theorem

$$
A \in \mathcal{C}^{+}, Q \in \mathcal{M}
$$

$$
\begin{aligned}
& x^{*}=\arg \min _{\substack{x \geq 0 \\
x^{T} A x=1}} x^{T} Q x \\
& y^{*}=\min _{\substack{x \geq 0 \\
x^{T} A x=1}} x^{T} Q x
\end{aligned}
$$

and y_{0} is as defined in 1 , then $y_{0}=y^{*}$.

Copositive Optimization

Relationship to fractional programming

Theorem

$A \in \mathcal{C}^{+}, Q \in \mathcal{M}$

$$
\begin{aligned}
y^{*} & =\min _{\substack{x \geq 0 \\
x T A x=1}} x^{T} Q x \\
y_{1}^{*} & =\min _{\substack{x \geq 0 \\
e^{T} x=1}} \frac{x^{T} Q x}{x^{T} A x}
\end{aligned}
$$

then $y^{*}=y_{1}^{*}$.

Copositive Optimization

Single Quad. Constrained Quad. Programs ($A \in \mathcal{C}^{+}$and $b>0$)

[Preisig(1996)]

$$
\begin{array}{rll}
\text { (SQC) } & \text { min } & x^{T} Q x \\
\text { s.t. } & x^{T} A x=b \\
& x \geq 0
\end{array}
$$

Completely Positive Formulation

$$
\begin{array}{cl}
(\mathrm{SQCCp}) & \text { min }
\end{array} \quad\langle Q, X\rangle,
$$

Copositive Formulation

$$
\begin{array}{ccl}
\text { (SQCCo) } & \max & b y \\
& \text { s.t. } & Q-y A \in \mathcal{C} \\
& & y \in \mathbb{R}
\end{array}
$$

Copositive Optimization

$$
A \in \mathcal{C}^{+} \text {and } b>0
$$

$$
(\mathrm{SQC}) \quad \min \quad x^{T} Q x
$$

$$
\begin{array}{ll}
\text { s.t. } & x^{T} A x=b \\
& x \geq 0
\end{array}
$$

$x^{T} Q x=\left\langle Q, x x^{T}\right\rangle$ and $x^{T} A x=\left\langle A, x x^{T}\right\rangle$. Also $X=x x^{T}$ then $X \in \mathcal{C}^{*}$ and $\operatorname{rank}(X)=1$.
(SQCCpR1) min $\langle Q, X\rangle$

$$
\text { s.t. } \quad\langle A, X\rangle=b
$$

X has rank one $X \in \mathcal{C}^{*}$

Copositive Optimization

Theorem

The extremal points of $\left\{X:\langle A, X\rangle=b, X \in \mathcal{C}^{*}\right\}$ are rank-one matrices $X=x x^{T}$ with $x^{T} A x=b$ and $x \geq 0$.

Proof

$$
\begin{aligned}
& \text { Fea }(S Q C)=\left\{x \in \mathcal{R}^{n}: x^{T} A x=b, x \geq 0\right\} \\
& \text { Fea }(S Q C C p)=\left\{X \in \mathcal{M}^{n}:\langle A, X\rangle=b, X \in \mathcal{C}^{*}\right\}
\end{aligned}
$$

Let $x \in F e a(S Q C)$ and consider $X=x x^{T}$. Then $X \in F e a(S Q C C p)$. Now suppose that

$$
X=\lambda X_{1}+(1-\lambda) X_{2}
$$

with X_{1} and X_{2} in $F e a(S Q C C p)$. We know that the extreme rays of the Completely Positive cone are the rank-one matrices. If X is an extreme ray of the cone then $X=D_{1}+D_{2}$ implies that $X=\nu_{1} D_{1}$ and $X=\nu_{2} D_{2}$. In this case, from

Copositive Optimization

$X=\lambda X_{1}+(1-\lambda) X_{2}$ there are μ_{1} and μ_{1} such that $X=\mu_{1} X_{1}$ and $X=\mu_{2} X_{2}$. But since X_{1} and X_{2} in Fea(SQCCp) we have:

$$
b=\langle A, X\rangle=\mu_{1} \underbrace{\left\langle A, X_{1}\right\rangle}_{b}=\mu_{2} \underbrace{\left\langle A, X_{2}\right\rangle}_{b}
$$

so

$$
\mu_{1}=\mu_{2}=1
$$

then from $X=\mu_{1} X_{1}$ and $X=\mu_{2} X_{2}$ we obtain $X=X_{1}$ and $X=X_{2}$, and X is an extreme point of $F e a(S Q C C p)$.

Now let X be an extreme point of $F e a(S Q C C p)$ and suppose that

$$
X=\sum_{i=1}^{d} x_{i}\left(x_{i}\right)^{T} \text { with } x_{i} \geq 0 \text { and } x_{i} \neq 0
$$

Consider $u_{i}=\sqrt{\frac{b}{x_{i}^{T} A x i}} x_{i}$ then $u_{i} A u_{i}=\sqrt{\frac{b}{x_{i}^{T} A x i}} \sqrt{\frac{b}{x_{i}^{T} A x i}} x_{i}^{T} A x_{i}=b$

Copositive Optimization

since $x_{i}=\sqrt{\frac{x_{i}^{T} A x i}{b}} u_{i}$, considering $U_{i}=u_{i}\left(u_{i}\right)^{T}$

$$
\begin{gathered}
X=\sum_{i=1}^{d} x_{i}\left(x_{i}\right)^{T}=\sum_{i=1}^{d}\left(\sqrt{\frac{x_{i}^{T} A x i}{b}} u_{i}\right)\left(\sqrt{\frac{x_{i}^{T} A x i}{b}} u_{i}\right)^{T} \\
=\sum_{i=1}^{d}\left(\frac{x_{i}^{T} A x i}{b}\right) u_{i} u_{i}^{T}=\sum_{i=1}^{d}\left(\frac{x_{i}^{T} A x_{i}}{b}\right) U_{i}
\end{gathered}
$$

since $\langle A, X\rangle=b,\left\langle A, \sum_{i=1}^{d} x_{i}\left(x_{i}\right)^{T}\right\rangle=\sum_{i=1}^{d} x_{i}^{T} A x_{i}=b$, then $\sum_{i=1}^{d} \frac{x_{i}^{T} A x_{i}}{b}=1$ and $\frac{x_{i}^{T} A x i}{b}>0$ then X is a convex combination of U_{1}, \ldots, U_{d} but since X is a extreme point of $F e a(S Q C C p)$, we have $U_{1}=\cdots=U_{d}$. In that case

$$
\begin{gathered}
X=U_{1} \sum_{i=1}^{d}\left(\frac{x_{i}^{T} A x i}{b}\right) \\
X=U_{1}=u_{1} u_{1}^{T}
\end{gathered}
$$

Copositive Optimization

Standard Quadratic Programs

[Bomze et al.(2000)Bomze, Dür, de Klerk, Roos, Quist, and Terlaky], [Bomze and de Kler

$$
\begin{array}{rll}
(\mathrm{StQ}) & \min & x^{T} Q x \\
\text { s.t. } & e^{T} x=1 \\
& & x \geq 0
\end{array}
$$

Completely Positive Formulation: (StQCp) min $\langle Q, X\rangle$

$$
\begin{array}{ll}
\text { s.t. } & \langle E, X\rangle=1 \\
& X \in \mathcal{C}^{*}
\end{array}
$$

Copositive Formulation: (StQCo) max y

$$
\begin{array}{ll}
\text { s.t. } & Q-y E \in \mathcal{C} \\
& y \in \mathbb{R}
\end{array}
$$

Copositive Optimization

Binary and continuous nonconvex quadratic programs

[Burer(2009)]

$$
\begin{array}{ccl}
(\mathrm{MBQ}) & \min & x^{T} Q x+2 c^{T} x \\
& \text { s.t. } & a_{i}^{T} x=b_{i} \text { for } i=1, \ldots, \\
& x_{j} \in\{0,1\} \forall j \in B \\
& x \geq 0
\end{array}
$$

$$
L=\left\{x \geq 0: a_{i}^{T} x=b_{i}, \forall i=1, \ldots, m\right\}
$$

Key assumption: $x \in L \Rightarrow 0 \leq x_{j} \leq 1 \forall j \in B$

Copositive Optimization

$$
\begin{array}{rrl}
(\mathrm{MBQ}) & \text { min } & x^{T} Q x+2 c^{T} x \\
& \text { s.t. } & a_{i}^{T} x=b_{i} \text { for } i=1, \ldots, m \\
& x_{j} \in\{0,1\} \forall j \in B \\
& x \geq 0 \\
(\mathrm{MBQ}) \quad \text { min } & \langle Q, X\rangle+2 c^{T} x \\
& \text { s.t. } & a_{i}^{T} x=b_{i} \text { for } i=1, \ldots, m \\
& x_{j}=X_{j j} \forall j \in B \\
& x \geq 0 \\
& X=x x^{T}
\end{array}
$$

Copositive Optimization

$$
\begin{array}{rrl}
\text { (MBQ) } & \text { min } & \langle Q, X\rangle+2 c^{T} x \\
\text { s.t. } & a_{i}^{T} x=b_{i} \text { for } i=1, \ldots, \\
& & x_{j}=X_{j j} \forall j \in B \\
& & x \geq 0 \\
& X=x x^{T} \\
\left(\mathrm{MBQC}^{*}\right) & \min & \langle Q, X\rangle+2 c^{T} x \\
& \text { s.t. } & a_{i}^{T} x=b_{i} \text { for } i=1, \ldots, \\
& a_{i}^{T} X a_{i}=b_{i}^{2} \text { for } i=1, \ldots, \\
& x_{j}=X_{j j} \forall j \in B \\
& {\left[\begin{array}{ll}
1 & x^{T} \\
x & X
\end{array}\right] \in \mathcal{C}^{*}}
\end{array}
$$

Copositive Optimization

Theorem

$(\mathrm{MBQ}) \Leftrightarrow\left(\mathrm{MBQ}^{*}\right)$

Eliminate x from the formulation

$$
\exists y \in \mathcal{R}^{m} \text { s.t. } \alpha=\sum_{i=1}^{m} y_{i} a_{i} \geq 0, \sum_{i=1}^{m} y_{i} b_{i}=1
$$

Copositive Optimization

Binary and ternary fractional quadratic

[Amaral and Bomze(2015)]

$$
\tau_{M I}^{*}:=\inf \left\{\frac{f(x)}{g(x)}: x \in \mathcal{R}_{+}^{n}, \widehat{C} x=\widehat{c}, x_{i} \in\left[L_{i}, U_{i}\right] \text { for all } i \in I\right\}
$$

$x_{i}=L_{i}+\sum_{j=0}^{l_{i}} z_{i}^{(j)} 2^{j}, i \in I ., z_{i}^{(j)} \in\{0,1\}, j \in\left[0, l_{i}\right]$, where $l_{i}=\left\lfloor\log _{2}\left(U_{i}-L_{i}\right)\right\rfloor$,
Example: $x \in[2,17]$

$$
\begin{gathered}
x=2+z^{(0)} 2^{0}+z^{(1)} 2^{1}+z^{(2)} 2^{2}+z^{(3)} 2^{3} \\
=2+z^{(0)}+z^{(1)} 2+z^{(2)} 4+z^{(3)} 8 \text { with } z^{(0)}, \ldots, z^{(3)} \in\{0,1\} \\
B:=\bigcup_{i \in I}\{i\} \times\left[0: l_{i}\right] .
\end{gathered}
$$

Copositive Optimization

Replace x by $v \in \mathcal{R}^{d}$ with $d=n+\sum_{i \in I} l_{i}$

$$
v=\left[x_{1}, x_{2}, \ldots, x_{r}, \ldots \ldots z_{i}^{(j)} \ldots\right]
$$

$$
\tau_{M B}^{*}:=\inf \left\{\frac{f(v)}{g(v)}: v \in \mathcal{R}_{+}^{d}, C v=c, v_{i} \in\{0,1\} \text { for all } i \in B\right\}
$$

Copositive Optimization

Homogenize a general quadratic constraint $v^{T} Q v+q^{T} v+\gamma$ considering new variables $w=\left[1, v^{T}\right]^{T}$

$$
\bar{Q}=\left[\begin{array}{cc}
\gamma & q^{T} \\
q & Q
\end{array}\right] \in \mathcal{M}_{d+1}
$$

as well as

$$
\begin{gathered}
Y=w w^{T}=\left[\begin{array}{ll}
1 & v^{T} \\
v & v v^{T}
\end{array}\right] \in \mathcal{C}_{d+1}^{*} . \\
v^{T} Q v+q^{T} v+\gamma=\bar{Q} \bullet Y .
\end{gathered}
$$

Copositive Optimization

$$
\begin{gathered}
C v=c \Leftrightarrow\|C v-c\|^{2}=0 \\
\overline{C_{c}}=\left[-c^{T} \mid C^{T}\right]^{T}[-c \mid C]=\left[\begin{array}{cc}
c^{T} c & -c^{T} C \\
-C^{T} c^{T} & C^{T} C
\end{array}\right] \in \mathcal{S}_{d+1}, \\
Y=w w^{T}=\left[\begin{array}{ll}
1 & v^{T} \\
v & v v^{T}
\end{array}\right] \\
\|C v-c\|^{2}=0 \rightarrow \overline{C_{c}} \bullet Y=0
\end{gathered}
$$

Copositive Optimization

$$
Y_{00}=1
$$

$Y_{0 i}=Y_{i i}$ ensure that $v_{i}=v_{i}^{2}$ for all $i \in B$, which in turn is equivalent to $v_{i} \in[0,1]$, so that we arrive at

$$
\tau_{M B}^{*}:=\inf \left\{\frac{f(v)}{g(v)}: v \in \mathcal{R}_{+}^{d}, C v=c, v_{i} \in\{0,1\} \text { for all } i \in B\right\}
$$

$\tau_{r k 1}^{*}:=\inf \left\{\begin{array}{l}\bar{A} \bullet Y \\ \bar{B} \bullet Y\end{array} \overline{C_{c}} \bullet Y=0, Y_{0 i}-Y_{i i}=0, Y_{00}=1\right.$, all $\left.i \in B, Y \in C_{d+1}^{*, r k 1}\right\}$,
where $\mathcal{C}_{d}^{*, r k 1}$ denotes the (non-convex, not closed) subcone of all completely positive $d \times d$ matrices Y of rank one.

Copositive Optimization

Under conditions

$$
\begin{aligned}
\left\{x \in \mathcal{R}_{+}^{d}: C x=0\right\}=0 & \left(\left\{x \in \mathcal{R}_{+}^{d}: C x=0\right\} \text { is bounded }\right) \\
w^{T} \bar{B} w>0 & \text { if } \bar{C} w=0 \text { for } w \in \mathcal{R}_{x}^{d+1} \backslash 0
\end{aligned}
$$

we have $Y_{00}>0$ and $\bar{B} \bullet Y>0$ and we replace Y rank-one by $Y \neq 0$.
So !!
$\tau_{r k 1}^{*}:=\inf \left\{\begin{array}{l}\bar{A} \bullet Y \\ \bar{B} \bullet Y\end{array} \overline{C_{c}} \bullet Y=0, Y_{0 i}-Y_{i i}=0, Y_{00}=1\right.$, all $\left.i \in B, Y \in C_{d+1}^{*, r k 1}\right\}$,
Under previous conditions and Burer's key condition we have an equivalent formulation $\bar{B} \bullet Y=1$.

$$
\tau_{C O P}^{*}:=\inf \left\{\bar{A} \bullet Y:, \bar{B} \bullet Y=1, \overline{C_{c}} \bullet Y=0, Y_{0 i}-Y_{i i}=0, \text { all } i \in B, Y \in C_{d+1}^{*}\right\}
$$

Copositive Optimization

Fractional quadratic programs

. [Amaral et al.(2014)Amaral, Bomze, and Júdice]

TO BE CONTINUED

Infeasibility, Fractional Quadratic Problems and Copositivity

Copositive Optimization

References

[Amaral and Bomze(2015)] Paula A. Amaral and Immanuel M. Bomze. Copositivitybased approximations for mixed-integer fractional quadratic optimization. PJO, 11 (2):225-238, 2015.
[Amaral et al.(2014)Amaral, Bomze, and Júdice] Paula A. Amaral, Immanuel M. Bomze, and Joaquim J. Júdice. Copositivity and constrained fractional quadratic problems. Math. Program., 146(1-2):325-350, 2014.
[Baston(1968/1969)] Victor J. D. Baston. Extreme copositive quadratic forms. Acta Arith., 15:319-327, 1968/1969.
[Bomze and de Klerk(2002)] Immanuel M. Bomze and Etienne de Klerk. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim., 24(2):163-185, 2002.

Copositive Optimization

[Bomze et al.(2000)Bomze, Dür, de Klerk, Roos, Quist, and Terlaky] Immanuel M. Bomze, Mirjam Dür, Etienne de Klerk, Cornelis Roos, Arie J. Quist, and Tamás Terlaky. On copositive programming and standard quadratic optimization problems. J. Global Optim., 18(4):301-320, 2000.
[Bundfuss(2009)] Stefan Bundfuss. Copositive Matrices, Copositive Programming, and Applications. Dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2009.
[Burer(2009)] Samuel Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program., 120(2, Ser. A):479-495, 2009.
[Diananda(1962)] Palahenedi Hewage Diananda. On non-negative forms in real variables some or all of which are non-negative. Proc. Cambridge Philos. Soc., 58:17-25, 1962.

Copositive Optimization

[Dickinson and Gijben(2014)] Peter J.C. Dickinson and L Gijben. On the computational complexity of membership problems for the completely positive cone and its dual. 57(2):403-415, 2014.
[Dür and Still(2008)] Mirjam Dür and Georg Still. Interior points of the completely positive cone. Electron. J. Linear Algebra, 17:48-53, 2008.
[Hall and Newman(1963)] Marshall Hall, Jr. and Morris Newman. Copositive and completely positive quadratic forms. Proc. Cambridge Philos. Soc., 59:329-339, 1963.
[Kaplan(2001)] Wilfred Kaplan. A copositivity probe. Linear Algebra Appl., 337: 237-251, 2001.
[Lasserre(2000/01)] Jean Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11(3):796-817, 2000/01.

Copositive Optimization

[Murty and Kabadi(1987)] Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. Math. Program., 39(2):117-129, 1987.
[Parrilo(2000)] Pablo A. Parrilo. Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA, May 2000.
[Peña et al.(2007)Peña, Vera, and Zuluaga] Javier Peña, Juan Vera, and Luis F. Zuluaga. Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim., 18(1):87-105, 2007.
[Preisig(1996)] James C. Preisig. Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints. SIAM J. Control Optim., 34(4):1135-1150, 1996.

Copositive Optimization

[Sponsel et al.(2012)Sponsel, Bundfuss, and Dür] Julia Sponsel, Stefan Bundfuss, and Mirjam Dür. An improved algorithm to test copositivity. J. Global Optim., 52: 537-551, 2012.

