
Computers & Industrial Engineering 94 (2016) 93–104
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Combining statistical learning with metaheuristics for the Multi-Depot
Vehicle Routing Problem with market segmentation
http://dx.doi.org/10.1016/j.cie.2016.01.016
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lcalvetl@uoc.edu (L. Calvet), alberto.ferrer@upc.edu (A. Ferrer),

mirg@fct.unl.pt (M.I. Gomes), ajuanp@uoc.edu (A.A. Juan), dmasipr@uoc.edu
(D. Masip).
Laura Calvet a,⇑, Albert Ferrer b, M. Isabel Gomes c, Angel A. Juan a, David Masip a

aComputer Science Department, Open University of Catalonia - IN3, Castelldefels, Spain
bDepartment of Mathematics, Technical University of Catalonia, Barcelona, Spain
cCentro de Matemática e Aplicações, FCT, Universidade Nova de Lisboa, Lisbon, Portugal

a r t i c l e i n f o
Article history:
Received 25 July 2015
Received in revised form 20 January 2016
Accepted 21 January 2016
Available online 28 January 2016

Keywords:
Multi-Depot Vehicle Routing Problem
Market segmentation applications
Hybrid algorithms
Statistical learning
a b s t r a c t

In real-life logistics and distribution activities it is usual to face situations in which the distribution of
goods has to be made from multiple warehouses or depots to the final customers. This problem is known
as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and cor-
related stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the
distribution routes. Most of the existing work in the literature has focused on minimizing distance-
based distribution costs while satisfying a number of capacity constraints. However, no attention has
been given so far to potential variations in demands due to the fitness of the customer-depot mapping
in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in
which the depots are heterogeneous in terms of their commercial offer and customers show different
willingness to consume depending on how well the assigned depot fits their preferences. Thus, we
assume that different customer-depot assignment maps will lead to different customer-expenditure
levels. As a consequence, market-segmentation strategies need to be considered in order to increase sales
and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we
propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework.
First, a set of predictive models is generated from historical data. These statistical models allow estimat-
ing the demand of any customer depending on the assigned depot. Then, the estimated expenditure of
each customer is included as part of an enriched objective function as a way to better guide the stochastic
local search inside the metaheuristic framework. A set of computational experiments contribute to illus-
trate our approach and how the extended MDVRP considered here differs in terms of the proposed solu-
tions from the traditional one.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the distribution business, whenever a supplier operates from
multiple warehouses or depots it needs to decide two things: (a)
which set of customers will be served from each depot, i.e., the
customer-depot assignment map; and (b) the vehicle routing plan
for the given assignment map. This two-stage decision-making
process is called the Multi-Depot Vehicle Routing Problem
(MDVRP). During the last decades, researchers have extensively
addressed different variants of this problem, among others those
including heterogeneous fleets of vehicles, multiple products,
simultaneous pick-up and delivery, etc. (Caceres, Arias,
Guimarans, Riera, & Juan, 2015; Montoya-Torres, Lopez, Nieto,
Felizzola, & Herazo-Padilla, 2015). The large majority of models
aim at minimizing total distribution costs, which are often mod-
eled by means of a distance-based cost function. Minimization of
distribution costs has a major impact on the efficiency of any com-
petitive shipping company. However, following the trend to con-
sider richer and more realistic Vehicle Routing Problems
(Barbucha, 2014; Ehmke, Campbell, & Urban, 2015; Tas�, Jabali, &
Woensel, 2014), it should be noticed that these costs represent
only half of the equation, i.e.: if a distribution company wants to
maximize its benefits, it has also to account for the expected
incomes associated with different customer-to-depot assignment
plans. Thus, retail centers (depots) belonging to the same organiza-
tion may offer different products, trade credit policies, or comple-
mentary services, which often have a non-negligible impact on the
customer’s willingness to buy. Accordingly, under the existence of
a diversity of depots and commercial offers, the customer-to-depot
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assignment process should not only consider distribution costs but
also expected sales or total income.

In order to increase sales revenue, companies use market seg-
mentation strategies that allow grouping customers according to
their features (preferences, rent, age range, etc.). Ideally, each
group has homogenous features that allow the development of tai-
lored strategies and actions oriented to increase the customer’s
willingness to buy, i.e., the fitness between his/her utility function
and the commercial offer he/she is receiving. In this paper we
address an extended version of the MDVRP that also includes
market segmentation issues in order to maximize benefits (sales
revenue minus distribution costs). Thus, in our model customer-
to-depot assignation decisions are taken considering not only the
traditional distance-based cost but also other customers’ features
in an attempt to increase the expected expenditure by providing
a more adequate assignation. As a consequence of this, the assign-
ment and routing solutions might be very different from the ones
associated with the classical MDVRP. For instance, Fig. 1 shows
two different solutions, with the shape of each customer represent-
ing the shape of its best-fit depot. The one on the left only
considers distribution costs (to be minimized), while the one on
the right considers expected benefits (to be maximized), i.e.: not
only distribution costs but also additional revenue due to a ’smar-
ter’ customer-to-depot assignment. Notice that in the right-hand
solution each depot tends to deliver those customers that share a
similar shape, unless they are too far away so that the increase
in distribution costs overshadows the potential increase in
revenue. In the illustrative example of Fig. 1, it is estimated that
customer j will spend 20 monetary units when assigned to depot
2 (left-hand solution). On the other hand, if this same customer
is assigned to depot 1 (right-hand solution), it is estimated that
his/her willingness to spend will increase up to 30 monetary units.
Therefore, assigning customer j to depot 1 instead of to its closest
depot (depot 2) will pay off as far as the increase in transportation
costs will not exceed the marginal income attained (10 monetary
units in this case).

Our solving approach is based on the combination of statistical
predictive models with a metaheuristic framework. In short, the
algorithm develops in two main steps. Firstly, supported by the
company historical data concerning existent customers, new cus-
tomers are assigned to depots. This step is preceded by a historical
data analysis so that expected expenditure from new customers
among depots is estimated throughout a multiple regression
model. The regression model will capture the relationship between
each customer’s willingness to spend (response) as a function of
several variables (predictors), including: the assigned depot as well
as other customer’s features (e.g.: preferences, rent, sex, age, etc.).
In the second step, the routes associated to each customer-to-
depot assignment map are built. Given the interdependency
Fig. 1. Solutions for the classical MDVRP (le
between both decisions (assignation and routing), our procedure
is an iterative one. Different assignations are generated together
with the routing decisions and the top best solutions will be saved
and locally improved in the last step of the algorithm. The main
contributions of our work are: (i) the description of an extended
version of the MDVRP with heterogeneous depots, which can be
considered a rich routing problem, (ii) the development of a
methodology combining statistical learning and a metaheuristic
for solving it, and (iii) an analysis of how the solutions found for
the extended problem differ from those for the classical one in
terms of both expected benefits and distribution costs for a set of
instances artificially generated.

The rest of the paper is organized as follows: Section 2 formally
describes the well-known Multi-Depot Vehicle Routing Problem
and presents the extended version with heterogeneous depots,
while Section 3 reviews works addressing the classical version.
Section 4 discusses the importance of considering market segmen-
tation. Section 5 provides an overview on our solving approach,
while Section 6 offers some low-level details. The computational
experiments and a discussion of the results are presented in Sec-
tion 7. Lastly, the main contributions of this work are highlighted
in the Conclusion section.
2. Mathematical formulation for the Multi-Depot Vehicle
Routing Problem

The MDVRP may be formally described as an extension of the
Capacitated Vehicle Routing Problem (CVRP) and it is defined as
a complete directed graph G ¼ ðV ; EÞ, where V ¼ fVd;Vcg is the
set of nodes including the depots, Vd, and the customers, Vc , and
E is the set of edges or arcs connecting all nodes in V. Each cus-
tomer i in Vc has a positive demand to be satisfied, qi. Each edge
in E has an associated cost ci;j > 0 and distance di;j > 0 between
customers i and j. The distance matrix D :¼ ½di;j� and the cost matrix
C :¼ ½ci;j� are square matrices of order jV j. Usually, both matrices are
assumed to be symmetric (nevertheless, our approach could also
be applied even in the case of non-symmetric distances or costs).

For the MDVRP, a solution is a customer-to-depot assignment
map together with a set of routes covering all customers’ demands.
Each route starts at one depot in Vd, connects one or more cus-
tomers in Vc , and ends at the same depot, without exceeding the
capacity of the vehicle. The number of vehicles based at each depot
may be fixed or unlimited. The former defines a harder problem,
since it adds an additional constraint and there is also no guarantee
that a feasible solution exists (Chao, Golden, & Wasil, 1993). The
latter simplifies the modeling and solving.

As mentioned before, when adopting a marketing perspective,
companies focus on market segmentation to group customers
ft) and for the extended version (right).
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according to their features and preferences. Considering the
heterogeneity of markets, segmentation attempts to divide cus-
tomers into subsets that behave in a similar way. Our extension
of the MDVRP aims at assigning customers to depots based not
only on distribution costs but also on customers’ features and pref-
erences. The goal is then to optimize expected benefits by consid-
ering both distribution costs and expected incomes.

To formally describe the mathematical model for the MDVRP
with heterogeneous depots, we will first introduce a model for
the CVRP problem, which is a particular case of the MDVRP when
jVdj ¼ 1, i.e., Vd ¼ f0g, and a model for the classical MDVRP.

2.1. Mathematical model for the MDVRP with one depot (CVRP)

In graph theory, a finite path, /, of length r is a sequence of r þ 1
vertices, fa0;a1; . . . ;arg, together with a sequence of r arcs,
f/1;/2; . . . ;/rg, such that

/k ¼ ðak�1;akÞ; k ¼ 1;2; . . . ; r:

Sometimes we will denote a finite path, /, in the form:

/ : a0 ! a1 ! a2 ! � � � ! ar�1 ! ar :

The vertex a0 is called the start vertex and the vertex ar is called the
end vertex of the path. Both of them are called terminal vertices of
the path. The other vertices in the path are internal vertices. A finite
cycle is a path such that the start vertex and the end vertex are the
same. Note that the choice of the start vertex in a cycle is arbitrary.
A path with no repeated vertices is called a simple path, and a cycle
with no repeated vertices or arcs aside from the necessary repeti-
tion of the start and the end vertex is a simple cycle.

Definition 2.1. In our context, a route, q, of order r is a simple
finite cycle of length r þ 2 in which the start vertex and the end
vertex is the depot node 0,

q : 0 ! a1 ! a2 ! � � � ! ar�1 ! ar ! 0:

We denote,R, the set of all routes of the complete directed graph G.
Notice that the cardinality of R is jRj ¼ Pn

k¼1Pðn; kÞ, where
Pðn; kÞ represents the number of k-permutations of a set of n
elements (or customers in our case). Notice that
jRj ¼ Pn

k¼1Pðn; kÞ � n!e, where e represents the Euler’s number,
e ¼ P1

k¼0
1
k!.

Definition 2.2. Two routes are independent when they have no
internal vertices in common, i.e., the only vertex in common is the
depot node. A non-empty set of independents routes, S � R, is
named a complete system of routeswhen every customer belongs
to a route of S. The set of all the complete system of routes of R is
denoted by CSR.

Notice that from now, in order to simplify the notation, when
we write a 2 q, with q 2 S, and S 2 CSR, we want to indicate that
a is a node of the route q.

Traditionally, the cost of a route, cq, and its distance, dq, have
been modeled as

cq :¼ car ;a0 þ
Xr

k¼1

cak�1 ;ak ; dq :¼ dar ;a0 þ
Xr

k¼1

dak�1 ;ak :

Then, the optimization problem to be solved consists in finding a
complete system of routes, S, minimizing the total cost,
cT :¼ P

q2Scq subject to the following constraints: the total demand
served in each route q 2 S does not exceed a maximum constant
demand (or vehicles capacity) Qmax;

P
a2qqa 6 Qmax, and the total

distance of each route q 2 S does not exceed a maximum constant
distance Dmax; dq 6 Dmax. Therefore, the optimization problem is
minimize cT ¼
X
q2S

cq

subject to :
X
a2q

qa 6 Qmax; q 2 S

dq 6 Dmax; q 2 S
S 2 CSR:

ð1Þ
2.2. Mathematical model for the classical MDVRP

The extension to a MDVRP goes as follows: consider a complete
directed graph G ¼ ðV ; EÞ, where V is the disjoint union (also named
a partition) of the set of nodes including the depots, Vd, and the set
of nodes including customers Vc;V :¼ Vd [ Vc , and E is the set of
edges connecting all nodes in V. Hereafter, m :¼ jVdj will represent
the number of depots. A feasible solution for the MDVRP is a par-
tition of direct graphs Gi ¼ ðVi; EiÞ; i ¼ 1; . . . ;m, obtained from G
such that Vi :¼ f0i;v i

1; . . . ;v i
mi
g, for all i ¼ 1; . . . ;m, with 0i 2 Vd

and v i
j 2 Vc for all j ¼ 1; . . . ;mi. Then, the optimization problem

to solve consists in finding a family of complete system of routes,
fS1; . . . ;Smg, minimizing the total cost, cT :¼ Pm

i¼1

P
q2Si

cq subject
to the following constraints: the total demand served in each route
q 2 Si; i ¼ 1; . . . ;m, does not exceed a maximum constant demand,
Qmax, i.e., bq :¼ P

a2qqa 6 Qmax, for all q 2 Si; i ¼ 1; . . . ;m, and the
total distance of each route q 2 S does not exceed a maximum con-
stant distance Dmax, i.e., for all q 2 Si; dq 6 Dmax; i ¼ 1; . . . ;m. There-
fore, the optimization problem is

minimize cT ¼
Xm
i¼1

X
q2Si

cq

subject to : bq 6 Qmax; q 2 Si; i ¼ 1; . . . ;m;

dq 6 Dmax; q 2 Si; i ¼ 1; . . . ;m;

Si 2 CSR; i ¼ 1; . . . ;m:

ð2Þ
2.3. Mathematical model for the MDVRP with heterogeneous depots

The heterogeneous version of the MDVRP analyzed in this paper
does not assume depots are equal (homogeneous), which leads to
consider customers’ preferences. Then, demands will not be fixed
parameters, but depend on the assignment map of customers to
depots. Following a realistic approach, we assume demands are
not known, but can be predicted relying on an historical database
and information about new customers. In the heterogeneous case
the assignation of the customers is not made in advance using
the classical considerations of distance. Our procedure takes into
account the combination of statistical predictive models with a
metaheuristic, so three main steps must be considered.

(i) Analysis of the historical data so that expected expenditure
from new customers among depots is estimated using a
multiple regression model. The model captures the relation-
ship between each customer’s willingness to spend
(response) as a function of several variables (predictors),
which include the assigned depot as well as other customer’s
characteristics as preferences, rent, sex, age, and so on.

(ii) Assignation of the new customers to the depots supported
by the company historical data with respect to the existent
customers.

(iii) Routes are built, which are associated to each customer-to-
depot assignment map.

Notice that revenue incomes are not considered in the model
for the classical MDVRP because they do not depend on the
assignation of customers to depots and, consequently, they are a
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constant value. On the other hand, given the interdependency
between both assignation and routing, the procedure is an iterative
one. Different assignations are generated (see Fig. 1) then, together
with the routing decisions. The top best solutions will be saved and
locally improved in the last step of the algorithm in order to max-
imize the total benefit, bT , obtained from the difference between

the total income, iT :¼ Pm
i¼1

P
q2Si

bq
� �

and the total cost

cT :¼ Pm
i¼1

P
q2Si

cq
� �

.

bT :¼ iT � cT ¼
Xm
i¼1

X
q2Si

bq � cq
� �

:

Thus, the optimization problem for the heterogeneous case can be
described as

maximize bT :¼
Xm
i¼1

X
q2Si

bq � cq
� �

subject to : bq 6 Qmax; q 2 Si; i ¼ 1; . . . ;m;

dq 6 Dmax; q 2 Si; i ¼ 1; . . . ;m;

Si 2 CSR; i ¼ 1; . . . ;m:

ð3Þ
3. Literature review on the classical MDVRP

The MDVRP has received a considerable amount of attention in
the recent literature (Montoya-Torres et al., 2015). Tillman (1969)
is usually referred as the first paper to address this problem. It
considers a version where customer demands follow specific
probability distributions, which is solved with an extension of
the well-known CWS heuristic (Clarke & Wright, 1964). Most
works may be classified according to the proposed approach: exact
methods and heuristics/metaheuristics methods. The main differ-
ence is that the former guarantee the optimality of the solution
found, while the latter usually provide a high-quality solution fas-
ter. Currently, hybrid approaches have received more attention.
Ceselli, Righini, and Salani (2009) is an example of work employing
an exact methodology. The authors describe a version of the
Multi-Depot Heterogeneous Vehicle Routing Problem with Time
Windows (MDHVRPTW) including diverse constraints. A column
generation algorithm, in which the pricing problem is a resource-
constrained elementary shortest-path problem, is implemented
to solve real instances. Another methodology to solve the
MDHVRPTW is proposed in Bettinelli, Ceselli, and Righini (2011).
It describes a branch-and-cut-and-price algorithm, and different
pricing and cutting techniques. More recently, Contardo and
Martinelli (2014) have formulated the MDVRP employing a
vehicle-flow and a set-partitioning formulation.

A higher number of published works rely on heuristics-based
methodologies. For instance, Cordeau, Gendreau, and Laporte
(1997) present a Tabu Search (TS) metaheuristic. In Salhi and Sari
(1997), the authors propose a multi-level composite heuristic for
addressing a MDVRP in which the vehicle fleet composition has
to be determined. Nagy and Salhi (2005) consider the MDVRP with
Pickups and Delivers. Several heuristics from the Vehicle Routing
Problem (VRP) literature are adapted and some problem-specific
are constructed. Metaheuristics are frequently implemented to
solve real-size instances. The Simulated Annealing (SA) meta-
heuristic is chosen in Wu, Low, and Bai (2002) for solving the
Multi-Depot Location-Routing Problem. Polacek, Hartl, and
Doerner (2004) employ the Variable Neighborhood Search (VNS)
metaheuristic for addressing the MDVRP with Time Windows
(MDVRPTW). The MDVRP with a heterogeneous fleet of vehicles
is faced in Salhi, Imran, and Wassan (2014), where an algorithm
also based on the VNS metaheuristic is designed. Pisinger and
Ropke (2007) tackle different variants of the VRP, including the
MDVRP, by transforming them into rich pickup and delivery mod-
els and developing an Adaptive Large Neighborhood Search
methodology. A Genetic Algorithm (GA) is constructed in
Ombuki-Berman and Hanshar (2009). Another population-based
metaheuristic, the Path Relinking, is presented in Rahimi-Vahed,
Crainic, Gendreau, and Rei (2013).

Regarding hybrid algorithms, Ho, Ho, Ji, and Lau (2008) intro-
duce an algorithm relying on a GA. The initialization procedure
consists in a distance-based grouping, the CWS heuristic is
employed for routing, and the Nearest Neighbor Heuristic (NNH)
for scheduling (i.e., sequencing each route in every depot). Another
hybrid GA is developed in Vidal, Crainic, Gendreau, and Prins
(2013) for addressing several rich VRPs, including the MDVRPTW.
It has diversity management mechanisms, and employs geometric
and structural problem decompositions for large instances. Mirabi,
Fatemi-Ghomi, and Jolai (2010) describe a methodology combining
a constructive heuristic search and improvement techniques. First,
the nearest depot method, the CWS heuristic and the NNH are
implemented for grouping, routing, and scheduling, respectively.
The resulting solutions are improved by means of a deterministic,
stochastic, or the SA metaheuristic. Yu, Yang, and Xie (2011) con-
struct an algorithm based on the Ant Colony metaheuristic, apply-
ing a coarse-grain parallel strategy, an ant-weight strategy and
mutation operation. Cordeau and Maischberger (2012) design a
parallel Iterated Tabu Search heuristic which introduces the TS
heuristic into the Iterated Local Search (ILS) framework, in order
to ensure a broad exploration of the search space. The Particle
Swarm Optimization (PSO) metaheuristic is proposed in Geetha,
Vanathi, and Poonthalir (2012). It generates initial particles with
the k-means algorithm and the NNH. Lahrichi et al. (2012) present
a multi-thread cooperative search method called the Integrative
Cooperative Search for multi-attribute combinatorial optimization
problems. In Juan, Pascual, Guimarans, and Barrios (2014), the
authors combine an ILS metaheuristic with biased-randomization
techniques to solve the MDVRP. The same metaheuristic frame-
work is proposed in Li, Pardalos, Sun, Pei, and Zhang (2015). In this
case, an adaptive neighborhood selection mechanism is integrated
for the MDVRP with simultaneous deliveries and pickups. Luo and
Chen (2014a) develop an improved Shuffled Frog Leaping Algo-
rithm (SFLA) and its multi-phase model for the MDVRP and the
MDVRPTW. In order to improve the efficiency of the metaheuristic,
a Power Law Extremal Optimization Neighborhood Search is used.
The same problems are addressed in Luo and Chen (2014b), where
a multi-phase modified SFLA is applied. It implements the k-means
algorithm and presents cluster and global optimization procedures.
4. Importance of considering market segmentation

In a global and dynamic world, companies have to compete in
order to build profitable and long-lived relationships with cus-
tomers. Analyzing customer needs and desires, capabilities, social
values, and objectives of a specific company as well as how these
interrelate is a crucial area in business intelligence. During many
decades mass market-based strategies had prevailed, which make
profit from economies of scale, providing homogeneous goods and
services for a vast number of customers. Technological develop-
ments and flexible manufacturing systems have boosted the cus-
tomization of goods and services according to customer
preferences (Datta, 1996; Liu, Kiang, & Brusco, 2012). Market seg-
mentation is a key concept in this new approach.

Considering the heterogeneity of markets, segmentation
attempts to divide customers into subsets that behave in the same
way or have similar needs (Bennett, 1995). As a result, a better
understanding of customer requirements is obtained, which may
assist in the developing of marketing strategies as well as in the
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efficient allocation of resources among markets and products
(Wind, 1978). According to Foedermayr and Diamantopoulos
(2008), the segmentation process includes the following stages
(Fig. 2):

1. Market definition: The scope of the concept of market for a
company is chosen. It should be broad enough to cover as many
potential customers as possible, but also manageable.

2. Selection of segmentation variables or bases: These bases
should be capable of diminishing the market heterogeneity
and explaining why customers have different requirements
and/or do not respond similarly to marketing campaigns. From
the point of view of the company, they should be easy to obtain
or infer in terms of cost and time, among others. The most pop-
ular are classified into the following groups (Kotler &
Armstrong, 2011): (i) geographic bases (e.g., location); (ii)
demographic bases (e.g., age, occupation, and education level);
(iii) behavioral bases (e.g., purchase occasion, degree of usage,
and degree of loyalty); and (iv) psychographic bases (customer
activities and opinions).

3. Decision on segmentation method: A-priori versus post hoc
methods, and descriptive versus predictive methods, are the
criteria most commonly employed to classify segmentation
methods (Foedermayr & Diamantopoulos, 2008). A-priori meth-
ods are based on intuitions and prior experience, and/or sec-
ondary data. While in post hoc methods the data analysis is
what leads to the segments. In descriptive methods, no distinc-
tion is made between dependent and independent variables.
The focus is on exploring the relation between the units of anal-
ysis and the variables. In contrast, predictive methods link a
dependent variable (e.g., degree of loyalty) to a set of indepen-
dent variables, and use this set to segment. There are plenty of
techniques for segmentation, which includes: cross tabulation
analysis, RFM analysis, k-means clustering, hierarchical cluster-
ing, self-organizing map (SOM), automatic interaction detec-
tion, classification and regression trees, logistic regression,
support vector machine, linear regression, clusterwise regres-
sion, neural networks, finite mixture model, and metaheuristics,
among others. For instance, McCarty and Hastak (2007) investi-
gate RFM, decision trees, and logistic regression. Vellido, Lisboa,
and Meehan (1999) present a strategy combining SOM and fac-
tor analysis before clustering. Another two-stage approach
involving SOM is detailed in Kuo, Ho, and Hu (2014). These
authors apply SOM to determine the number of clusters and
the starting point, and the k-means algorithm to find the final
solution. Huang, Tzeng, and Ong (2007) employ a support vec-
tor clustering algorithm. Fish, Barnes, and Aiken (1995) analyze
the performance of artificial neural networks, in comparison
with those of discriminant analysis and logistic regression. A
case-based reasoning system is described in Chen, Wang, and
Feng (2010). It implements GAs for selecting variables and
instances.

4. Formation of market segments: The method selected in the pre-
vious step is applied to obtain a set of segments.

5. Profiling, evaluation, and final selection of target segments: A
detailed analysis of the resulting segments and a selection of
them are performed. There are several criteria to evaluate
Fig. 2. Scheme of the seg
market segments. Smith (1956), considered the first work to
tackle this issue, highlights the characteristics of identifiability,
which means that customers in a segment should have a similar
profile, allowing for their identification, and responsiveness, i.e.,
customers in a segment should similarly respond to a market-
ing strategy. DeSarbo and DeSarbo (2007) gather the main cri-
teria that have been proposed in the literature. Some
examples are: reachability, feasibility, profitability, and stability.

6. Implementation: The next step is to translate the results of the
previous work into specific strategies. This step involves deci-
sions that depend on a large number of factors as relevant as
company resources and ethics.

7. Segmentation strategy evaluation: Sales, profit, company
expansion, reputation, and customer satisfaction may be used
to evaluate a strategy. Although these steps could be sequen-
tially followed, all are interconnected. Therefore, it is recom-
mendable to allow the possibility to repeat previous steps in
order to reconsider some selections.

As it has been shown, marketing segmentation has been exten-
sively studied. It is an important topic of research due to its poten-
tial applications. New lines of research emerge from the
development of data techniques, the gathering of empirical evi-
dences, and the publication of new marketing theories, among
others. Many challenges still remain to be faced such as reducing
the gap between academic research and practitioner needs, study-
ing implementation issues.

5. Overview of our approach

The MDVRP includes two sequential and correlated stages: (a)
the assignment map of customers to depots; and (b) the corre-
sponding design of distribution routes to satisfy all customers’
demands. In order to assign customers, we take into account the
heterogeneity of the depots. It can be considered a realistic
approach, since depots belonging to the same organization usually
have different characteristics related to products, trade credit poli-
cies, and complementary services, among others. The diversity of
depots leads to consider customer preferences. Specifically, the
willingness to consume (or expenditure) of each customer depends
on how well the assigned depot fits his/her preferences. Market
segmentation techniques are applied to identify subsets of cus-
tomers with similar profiles and assign them to the particular
depot that better fits their preferences, considering the restrictions
of the problem. Accordingly, we propose to study the relationship
between expenditure and customers’ features from data of existent
customers by employing statistical learning methodologies (e.g.,
prediction techniques). It will enable the assignation of new cus-
tomers in such a way that the expected benefits (expected incomes
minus distribution costs) is maximized. The phases of our
approach are represented in Fig. 3 and described next:

1. Data collection. Our approach requires several inputs: database
of historical sales, description of new customers, location of
depots, vehicle maximum capacity, number of available vehi-
cles at each depot, and maximum distribution costs per route.
The sales database includes the following information for each
mentation process.



Fig. 3. The proposed approach.
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existent customer: personal features, geographical location,
expenditure level, and depot to which he/she has been assigned
(randomly or according to a metric not related to personal fea-
tures such as distribution costs). The description of new cus-
tomers gathers personal features and geographical locations.
This information may be easily obtained, for instance, in e-
commerce environments, where customers have to register
and provide personal data before buying. After processing and
analyzing this data, a company may assign a new client by redi-
recting him/her to a specific directory/website and offering
goods from a given depot. Regarding the information of both
existent and new customers, an initial selection of variables
has to be performed by assessing which ones may be valuable.
Besides explaining the differences of expenditures among
depots, they should be easy to obtain, estimate or compute,
and store.

2. Statistical learning. Given the database of existent customers, a
statistical model exploring the relationship between customers’
features and expenditure is performed for each group of cus-
tomers assigned to a specific depot. Considering several groups,
we allow the existence of a different trend in each one. A high
number of methodologies are available to carry out regression
analysis (Hastie, Tibshirani, & Friedman, 2001; Lantz, 2013).
Probably, the most applied is Linear Regression (Montgomery,
Peck, & Vining, 2012), which is easy to understand and inter-
pret, highly relevant in the marketing literature, and has associ-
ated a relatively low risk of overfitting (i.e., the model
describing noise). Neural Networks represent a popular alterna-
tive capable of capturing non-linear relationships. However,
they are computationally more intensive, may overfit/underfit
data more easily and are difficult to interpret. Support Vector
Machines constitute another powerful black box approach,
which is more robust and less prone to overfitting than Neural
Networks. Its main disadvantage is that requires testing several
combinations of kernels and model parameters. Model Trees
combine Decision Trees with modeling of numeric data. It
results in an approach that may fit some types of data better
than linear regression and perform automatic feature selection.
On the other hand, it may be difficult to determine the overall
net effect of individual variables on the response.

3. Prediction of expenditure for new customers. Once a methodol-
ogy has been selected and the different functions have been fit-
ted, the expenditure is predicted for each new customer given
his/her features if assigned to each depot. Here, it is assumed
that the sample (set of existent customers) is representative
of the population (market).

4. Assignment of customers to depots. In order to perform an effi-
cient and feasible assignation, it is necessary not only to con-
sider the predicted expenditure but also the distribution costs,
the maximum number of vehicles per depot, and their capacity.
Taking a decision for each customer individually may provide
non-feasible and poor-quality solutions. Consequently, we pre-
sent a global and iterative strategy where customers are
selected one at a time to be assigned to a specific depot. It
prioritizes the assignments of those customers that have
associated a relatively high expected benefits only for a partic-
ular depot, and is based on the procedure developed in Juan
et al. (2014). In particular, the following steps are proposed:
� For each depot k and customer i,
– Compute the expected benefits lk
i as the difference

between the predicted expenditure pk
i and the distribu-

tion costs cki (computed as the cost of moving from k to i).
– Compute the difference between the expected benefits of

assigning i to k and the maximum expected benefits of
assigning i to a depot l other than k, i.e.:

ski ¼ lk
i �maxl2Vdnfkg l

l
i 8i 2 Vc; 8k 2 Vd:

We refer to this measure as ‘‘marginal savings”. Accordingly, ski
will be high in the case customer i reports relevant expected
benefits only if assigned to k, low (in absolute terms) if the
expected benefits are similar for k and at least one other depot,
presenting both depots the highest expected benefits, and very
low (negative) when there is at least one depot where the
expected benefits are larger than those estimated for k.

� For each depot k, create a priority list of customers and sort
it in descending order according to the marginal savings ski .

� Create a list of unassigned customers. Then, select a depot
and choose the next customer to assign from its priority list.
Update the list of unassigned customers and repeat these
steps while there are unassigned customers. Different poli-
cies may be applied to determine which depot selects the
next customer, as: (i) allowing the depot with the highest
remaining capacity to choose, (ii) using a round robin-
based criterion, or (iii) selecting it randomly.

5. Routing. Having an assignment map, the MDVRP can be solved
as a set of independent CVRPs. However, the most important
challenge when addressing a MDVRP instance is the interrela-
tion between assignation and routing. Therefore, algorithms
are required to take the decisions associated to both phases ’si-
multaneously’. Thus, instead of finding an optimal or near-
optimal solution for the customer-to-depot assignment phase
and then use this unique solution as a starting point to solve
the routing phase, an iteration process combines ’good’ and fast
computed solutions for the first stage with ’good’ and fast com-
puted solutions for the second one in order to find a near-
optimal solution for the overall problem.

Note that our approach will be appropriate as long as the exis-
tent customers had been assigned randomly or based on a variable
not related to personal features. If regression functions were esti-
mated again after implementing this procedure (replacing existent
customers by the new ones), the predictive model could be not
valid anymore, since the groups of customers assigned to each
depot may not be representative of all potential customers. At this
point, a description of each resulting group may be performed.
Accordingly, a new customer would be assigned to the closest
group (considering standardized data, the Euclidean distance, and
an average profile per group, for instance). In the described
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approach, the statistical learning techniques and the metaheuristic
are sequentially employed. There are other realistic versions of the
problem that may be addressed by adapting our approach to inte-
grate the statistical learning techniques inside the metaheuristic.
For instance, consider a dynamic scenario in which the willingness
of customers to spend varies as new customers are assigned to
each depot (e.g., due to the decrease in the service’s quality or in
the number of available offers). In this case, the learning mecha-
nism would iteratively run throughout the searching process in
order to update each customer’s willingness to spend after each
assignment.

6. Detailed algorithm

This section describes some low-level details of the proposed
approach. Fig. 4 summarizes it highlighting the main differences
between the classical version of the problem and the proposed one.
Fig. 4. Flow chart of our approach for solving
Since the phase of data collection is company-specific, we will
assume it has already been done. The second and the third phases
are related to the development and use of predictive statistical
learning models. First, the database of existent customers is split
into two subsets: a training set, which will be used to build the
models, and a test set, to assess their performance. These subsets
are generated by means of random sampling: 75% of customers
are assigned to the training set and 25% to the test set. Having dif-
ferent alternatives to explore the relationship between expendi-
ture and customers’ features, in our experiments (described later
in this paper) we make use of three well-known methodologies:
Multiple Linear Regression (MLR), Multi-layer Feedforward Net-
work (MFN), and Model Tree.

� Regarding Multiple Linear Regression, given a database of cus-
tomers with m features and jVdj depots, the models proposed
may be described as follows:
the MDVRP with heterogeneous depots.
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Expi ¼b j
0þb j

1 � f 1iþb j
2 � f 2iþ . . .þb j

m � f miþ�i 8i2V j
c; 8j2Vd;

where f 1i; . . . ; f mi represent the features of customer i; b j
0; . . . ;b

j
m

are the parameters of the model, Expi and �i denote the expendi-

ture and an error term for customer i, and V j
c is the set of cus-

tomers assigned to depot j. The ordinary least squares method
is applied to estimate the parameters, and the stepwise regres-
sion approach with a bidirectional elimination procedure is cho-
sen to perform the variable selection.

� Regarding the Multi-layer Feedforward Network with one hid-
den layer, the generated models are:
Zli ¼ rðbjl
0 þ bjl

1 � f 1i þ bjl
2 � f 2i þ � � � þ bjl

m � f miÞ
8i 2 V j

c; 8j 2 Vd; l ¼ 1; . . . ;p;

Expi ¼ a j
0 þ a j

1 � Z1i þ � � � þ a j
p � Zpi 8i 2 V j

c; 8j 2 Vd;

where r is the sigmoid function and p the number of hidden
units. The value of p (4;5;6;7, or 8) and the decay value for reg-
ularization (0:2;0:3;0:4; 0:5 or 0:6) are set using 10-fold cross
validation based on the metric R2 (Kuhn, 2008). The back prop-
agation method is employed to estimate the parameters.

� The algorithm selected to implement a model tree is the stan-
dard M5P (Wang & Witten, 1996). Basically, it builds a
decision-tree induction algorithm relying on a splitting criterion
that minimizes the intra-subset variation in the class values
down each branch. The pruning of the tree is performed back
from each leaf. Instead of a constant value, the final solution
for each leaf is a linear regression model considering the vari-
ables participating in decisions.

Different criteria can be employed to select one of the former
statistical learning methodologies. The most common criteria are
related to performance, easiness to apply and understand, required
time, or any combination of the aforementioned properties. Con-
sidering the first one, we compute the Mean Squared Error (MSE)
for each model (the number of models is the number of depots
multiplied by the number of methodologies tested) using the same
problem instance. The Total MSE (TMSE) is computed by aggregat-
ing the values of the models corresponding to the same methodol-
ogy. In mathematical terms:

MSEaj ¼ 1

jV j
cj
X
8i2V j

c

dExpa
i � Expi

� �2 8a ¼ 1; . . . ; o 8j 2 Vd;

TMSEa ¼
XjVd j

j¼1

MSEaj 8a ¼ 1; . . . ; o;

where a represents the methodology assessed, and dExpa
i refers to

the predicted expenditure for customer i employing the methodol-
ogy a. In our experiments, for each instance we always select the
methodology associated with the lowest TMSE. Thus, during the
third phase, the expenditure that each new customer would make
if he/she was assigned to each one of the depots is predicted using
the selected methodology and the customer’s features.

For the assignation and the routing phases, an existing method-
ology described in Juan et al. (2014) has been adapted. The authors
propose an efficient algorithm based on an ILS metaheuristic
framework (Lourenço, Martin, & Stützle, 2010), which is a popular
choice for solving routing problems (see Cattaruzza, Absi, Feillet, &
Vigo, 2014). This metaheuristic guides the search by interspersing
exploration and intensification movements. Firstly, an initial solu-
tion is generated assigning customers to depots according to the
marginal savings (only the distribution costs are considered) and
designing the routes by implementing the classical CWS heuristic
(Clarke & Wright, 1964). Afterwards, an iterative procedure is
started in which the base solution (the initial solution in the first
iteration) is perturbed. If the new solution is better than the base
solution, then the latter is replaced. In case no improvement is
achieved, a Demon-based acceptance criterion (Talbi, 2009) is con-
sidered to avoid entrapment at local optimum. It allows move-
ments that deteriorate the base solution with a higher frequency
at the beginning, when a global search is required, and restricts
them as the execution proceeds. These steps are repeated until a
termination condition is met. Finally, the top best solutions are
improved by means of a post optimization process, and the best
one is returned. The described algorithm includes Biased Random-
ization techniques to further diversify the search (Juan et al., 2009).
These techniques are introduced in traditionally deterministic
steps in order to add biased randomization, which favors the gen-
eration of high-quality alternatives. In particular, they are imple-
mented both in the assignation phase, to randomize the sorted
priority list of customers of each depot in such a way that the rea-
soning behind the sorting is not erased but many orderings are
provided, and in the routing phase, where the CWS heuristic is
randomized.
7. Numerical experiments

An algorithm based on the described approach has been imple-
mented and employed to solve a number of generated instances.
The computational experiments compare the results of our
approach for the analyzed version of the MDVRP and for the clas-
sical version (i.e., the one assuming homogeneous depots). This
section provides the description of the instances and the tests car-
ried out, as well as the numerical results and their analysis.

7.1. Set of instances

A total of 15 instances have been generated. Each of them con-
sists in three datasets: the first two gather data concerning existent
and new customers, respectively, and the third includes depots’
locations and information related to restrictions. Regarding data
of existent customers, four variables have been created: age (a dis-
crete variable following a Uniform distribution with parameters 16
and 80), sex (a categorical variable with two equally probable val-
ues), estimated income (it follows a Normal distribution with a
mean of 1500 and standard deviation of 300), and preferred article
(a categorical variable including four equally probable values). Ini-
tially, each customer has been assigned to his/her closest depot,
while the expenditure level has been determined by a given func-
tion that depends on the depot, the aforementioned variables and a
white noise term. For a total of 100 new customers, the variables
age, sex, estimated income and preferred article have been gener-
ated using the same distributions. Customers’ and depots’ locations
have been randomly generated in a square of 100 � 100. In order to
simplify the instances’ generation, Euclidean distances are
employed as distribution costs. Different values have been chosen
for the number of depots, existent customers and vehicles, the
maximum cost per route and vehicles’ capacity. This information
is shown in Table 1.

7.2. Test

Each instance has been adapted by modifying the expenditure
of existent customers to analyze the following scenarios: (1) low
ratio (LR), the ratio between average expenditure of existent cus-
tomers and average distribution costs is similar; (2) medium ratio
(MR), average expenditure is relatively higher than average



Table 1
Description of the generated instances.

Instance Numb.
depots

Numb.
existent cust.

Numb.
vehicles

Vehicle
capacity

Max.
cost

1 3 300 3 250 200
2 3 300 3 225 200
3 3 300 3 225 150
4 3 300 3 225 200
5 3 300 3 200 150
6 3 400 3 350 225
7 3 400 3 300 200
8 3 400 3 200 175
9 5 400 4 325 175

10 5 400 4 200 150
11 5 400 4 275 175
12 5 400 4 275 150
13 5 400 4 225 200
14 5 400 4 175 125
15 5 400 4 250 175

Fig. 5. Boxplot of the expected benefits for each scenario and version of the
problem.

Fig. 6. Boxplot of the distribution costs and the expected incomes for the rich
version of the problem.
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distribution costs; and (3) high ratio (HR), average expenditure is
much higher than average distribution costs. The target ratio has
been reached multiplying expenditures by a coefficient. The result-
ing instances are available from the authors upon request. The
analysis of these scenarios will allow us to compare the expected
benefits (expected incomes, defined as the sum of predicted expen-
ditures, minus distribution costs) associated to solutions consider-
ing only distribution costs and those taking into account also
customers’ preferences (predicted expenditure), thus exploring
the consequences of having different weights of expenditure in
the objective solution. For the first scenario, it is expected that
the gap between distribution costs will be low (i.e., solutions are
expected to be relatively similar). Likewise, it is expected that this
gap will be higher as the ratio increases. Similarly, it is also
expected that the higher the ratio, the higher the gap between
the expected benefits of the solutions. The code has been imple-
mented with Java and R – version 2.15.0 (Team, 2008) (packages:
caret, MASS, nnet, and RWeka). A standard personal computer,
Intel QuadCore i5 CPU at 3.2 GHz and 4 GB RAM with Windows
XP, has been used to perform all tests. The ILS process runs for
4,000 iterations, and all executions are solved for 10 different
seeds. Only the best values obtained after the 10 runs are reported.

7.3. Results and analysis

The results of the experiments carried out are summarized in
Figs. 5 and 6. The boxplots in the first figure show the expected
benefits per scenario and version of the problem: considering
heterogeneous depots (rich) and assuming homogeneous ones
(traditional). Even if the medians associated to each ratio level do
not differ significantly, the third and second quartile values do pre-
sent a higher value for the extended version of the problem. This
behavior is caused by the long right tails of the corresponding dis-
tributions, which indicate that for some instances the rich version
results in better solutions in terms of expected benefits. The second
figure displays the variables in which expected benefits are decom-
posed per scenario considering the rich version. We observe that
differences of expected benefits between scenarios are mainly
due to differences between expected incomes.

Tables 2–4 provide a detailed description of the results. The
information gathered in the tables is the following: instance name;
methodology selected for prediction; distribution costs, expected
incomes, expected benefits and time associated to the best solution
found considering only distribution costs (classical MDVRP) and to
the best solution found when maximizing expected benefit
(MDVRP with heterogeneous depots); and gaps between distribu-
tion costs, expected incomes and expected benefits of both solu-
tions. The average of each gap is also shown.
Given the flexibility of Feedforward Neural Networks to model
relationships between variables, and despite the basic topology
and parameter fine-tuning, and the medium size of the training
set, they have been selected to solve more than half of the
instances (57.8%). Multiple Linear Regression has provided the best
TMSE in a high number of cases (31.1%). Although less frequently,
the algorithm M5P has also been used in some instances (11.1%).
Being an experiment for illustrative purposes, we show that differ-
ent methodologies with particular strengths may be easily applied,
but we do not aim to perform a comprehensive comparison among
them.

The gaps related to the distribution costs and the expected
incomes are strictly positive except in one case. It confirms the
trade-off decision-makers face between both measures; that is to
say, higher distribution costs are required to obtain an increase
in expected incomes. Regarding the gap of expected benefits, it is
strictly positive for all instances except for two where both solu-
tions are equal. Therefore, attempting to achieve the highest bene-
fits studying only distribution costs in instances with
heterogeneous depots results in sub-optimal solutions. As
expected, all average gaps increase with the ratio, i.e., the differ-
ence between solutions (in terms of distribution costs, expected
incomes or expected benefits) is positively correlated to the



Table 2
Results obtained for 15 instances: scenario characterized by a low ratio.

Inst. Meth. Traditional (1) Rich(2) Gaps(2-1)

Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben.

p01.1 MLR 898.6 961 62.4 82 930.6 1006 75.4 123 31.9 45.0 13.1
p02.1 M5P 834.3 943 108.7 112 834.5 947 112.6 335 0.1 4.0 3.9
p03.1 MFN 944.0 911 �33.0 143 964.4 939 �25.4 159 20.4 28.0 7.6
p04.1 MFN 891.8 852 �39.8 79 923.4 884 �39.4 165 31.6 32.0 0.4
p05.1 MFN 909.7 824 �85.7 189 914.4 829 �85.4 66 4.8 5.0 0.2
p06.1 MFN 868.5 1425 556.5 655 870.2 1429 558.8 613 1.7 4.0 2.3
p07.1 MFN 923.4 1073 149.6 103 925.7 1093 167.3 383 2.3 20.0 17.7
p08.1 M5P 898.2 867 �31.2 105 900.9 872 �28.9 122 2.7 5.0 2.3
p09.1 MLR 1039.2 2008 968.8 91 1127.5 2218 1090.5 33 88.3 210.0 121.7
p10.1 MFN 1029.6 1404 374.4 63 1062.5 1462 399.5 40 32.9 58.0 25.1
p11.1 MLR 880.7 1469 588.3 47 939.1 1609 669.9 464 58.4 140.0 81.6
p12.1 MFN 1858.4 1699 �159.4 108 1864.2 1709 �155.2 328 5.8 10.0 4.2
p13.1 MLR 1428.3 1495 66.7 437 1568.0 1691 123.0 144 139.6 196.0 56.4
p14.1 MFN 930.0 1163 233.0 43 930.0 1163 233.0 40 0.0 0.0 0.0
p15.1 M5P 1268.1 1401 132.9 374 1375.0 1512 137.0 59 107.0 111.0 4.0

Average 35.2 57.9 22.7

Table 3
Results obtained for 15 instances: scenario characterized by a medium ratio.

Inst. Meth. Traditional (1) Rich(2) Gaps(2-1)

Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben.

p01.2 MLR 925.3 1383 457.7 277 978.0 1483 505.0 173 52.7 100.0 47.3
p02.2 MLR 901.2 1334 432.8 301 921.9 1385 463.1 254 20.7 51.0 30.3
p03.2 MLR 959.3 1405 445.7 134 979.1 1438 458.9 89 19.8 33.0 13.2
p04.2 MFN 942.5 1280 337.5 124 947.8 1292 344.3 101 5.3 12.0 6.7
p05.2 MFN 919.0 1264 345.0 51 921.3 1269 347.8 221 2.3 5.0 2.7
p06.2 MFN 945.6 2103 1157.4 106 948.6 2122 1173.4 327 3.1 19.0 15.9
p07.2 MFN 962.8 1581 618.2 394 992.3 1617 624.7 139 29.5 36.0 6.5
p08.2 MFN 969.9 1302 332.1 300 969.9 1302 332.1 296 0.0 0.0 0.0
p09.2 MFN 1169.6 2897 1727.4 36 1336.1 3335 1998.9 173 166.5 438.0 271.5
p10.2 MFN 1165.1 2109 943.9 161 1222.9 2222 999.1 97 57.8 113.0 55.2
p11.2 MLR 1001.8 2212 1210.2 80 1054.4 2288 1233.7 253 52.5 76.0 23.5
p12.2 MFN 1050.0 2571 1521.0 75 1070.5 2620 1549.5 41 20.6 49.0 28.4
p13.2 MLR 1633.4 2178 544.6 106 1778.2 2446 667.8 270 144.8 268.0 123.2
p14.2 MFN 1020.2 1703 682.8 63 1026.8 1717 690.2 67 6.6 14.0 7.4
p15.2 M5P 1419.6 2090 670.4 69 1560.2 2257 696.8 106 140.5 167.0 26.5

Average 48.2 92.1 43.9

Table 4
Results obtained for 15 instances: scenario characterized by a high ratio.

Inst. Meth. Traditional (1) Rich(2) Gaps(2-1)

Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben. Time Dist. cost Exp. Inc. Exp. ben.

p01.3 MLR 1060.3 1930 869.7 199 1153.7 2132 978.3 42 93.4 202.0 108.6
p02.3 M5P 1070.7 1803 732.3 253 1097.0 1864 767.0 174 26.3 61.0 34.7
p03.3 MFN 1042.7 1864 821.3 23 1067.1 1923 855.9 162 24.4 59.0 34.6
p04.3 MFN 1043.2 1701 657.8 54 1080.5 1755 674.5 393 37.2 54.0 16.8
p05.3 MFN 994.0 1621 627.0 174 1011.0 1657 646.0 68 17.0 36.0 19.0
p06.3 MFN 1068.1 2856 1787.9 109 1102.7 2906 1803.3 208 34.6 50.0 15.4
p07.3 MFN 1064.1 2115 1050.9 152 1081.2 2139 1057.8 71 17.1 24.0 6.9
p08.3 M5P 1069.6 1741 671.5 32 1069.6 1741 671.5 261 0.0 0.0 0.0
p09.3 MLR 1420.5 4269 2848.5 37 1690.6 4825 3134.4 138 270.1 556.0 285.9
p10.3 MFN 1434.8 2913 1478.2 113 1734.8 3396 1661.2 33 299.9 483.0 183.1
p11.3 MLR 1238.0 3020 1782.0 25 1486.3 3407 1920.7 265 248.3 387.0 138.7
p12.3 MFN 1195.7 3385 2189.3 37 1216.1 3452 2235.9 125 20.3 67.0 46.7
p13.3 MLR 1843.3 2801 957.7 79 2321.4 3387 1065.6 101 478.1 586.0 107.9
p14.3 MFN 1198.9 2297 1098.1 17 1251.0 2351 1100.0 23 52.1 54.0 1.9
p15.3 M5P 1416.0 2086 670.0 164 1595.5 2311 715.6 210 179.5 225.0 45.5

Average 119.9 189.6 69.7
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average expenditure for fixed average distribution costs. However,
this rule does not apply for all cases. In some of them, despite the
fact that the gap of expected incomes increases, so does the gap of
distribution costs. As a consequence, the gap of expected benefit
may be reduced.
8. Conclusions

This paper addresses an extension of the Multi-Depot Vehicle
Routing Problem (MDVRP) in which heterogeneous depots are con-
sidered. The resolution of the classical MDVRP has two sequential
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and interrelated stages: (a) the assignment of customers to depots,
and (b) the corresponding design of distribution routes. Typically,
the assignment map is generated by minimizing the total distance,
which is intended to lead to the minimization of distribution costs.
Implementing this approach, researchers assume that depots are
homogeneous. However, this is an unrealistic assumption since
several factors may result in differences between depots from a
particular organization. We propose to take into account the exis-
tence of heterogeneous depots, which allows the consideration of
customers’ preferences. The customers’ willingness to consume is
affected by how well the assigned depot fits their preferences.
Thus, the main contribution of this work is the development of a
simple yet comprehensive metaheuristic-based approach includ-
ing market segmentation issues in order to maximize expected
benefits (expected sales incomes minus distribution costs).

The proposed methodology consists of five steps: (i) data collec-
tion, in which information basically related to existent customers
that have been already served and new customers is gathered;
(ii) statistical learning, where the relationship between customers’
features and expenditure for different depots is studied employing
existent customer data; (iii) expenditure prediction for new cus-
tomers; (iv) assignment of new customers; and (v) routing. A set
of computational experiments has been carried out in order to
illustrate our methodology. A total of 15 instances have been arti-
ficially generated and analyzed considering three scenarios, which
vary in the weight of the expenditure of existent customers. It has
been shown how our approach differs from an approach based only
on minimizing distribution costs when solving instances with
heterogeneous depots. Our experiment also allows quantifying
how the performance gap between both approaches increases as
the weight of the expenditures is incremented.
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