
16 SQP VOL. 15, NO. 4/© 2013, ASQ

Complex software systems inherently require
a variety of models used in all of the
development stages. A general concern is
to guarantee consistency and traceability
among these models. Model-driven develop-
ment (MDD) can help tackle this concern.
Although MDD has been mainly used in
later development stages, it is relatively
unexplored in requirements engineering. In
this article, the authors discuss how to
leverage MDD to support consistency and
traceability in requirements modeling. To
illustrate this, they apply MDD to goal-
oriented requirements engineering (GORE)
by making bidirectional mappings between
two well-known GORE approaches (i* and
KAOS). The result is an interoperable frame-
work that can be used to migrate from one
goal model to another through automatic
model transformations, keeping consistency
and traceability, so requirements engineers
can make the best use of each approach.

Key words

domain specific language, goal-oriented
requirements engineering, model-driven
development

S Y S T E M S A N D S O F T W A R E
E N G I N E E R I N G P R O C E S S E S

Adding
Interoperability
to Requirements

Models
Rui Monteiro, João Araújo, Vasco Amaral,

Miguel Goulão, and Pedro Patrício
Universidade Nova de Lisboa, Portugal

INTRODUCTION
Complex software systems are characterized not only by
a large number of software artifacts (for example, models,
components), but also by their intrinsic diversity (Vangheluwe,
DeLara, and Masterman 2002). At the modeling level, no single
notation is able to capture all of the relevant aspects of those
artifacts. Different kinds of models can be used to capture
these different perspectives, but the challenge is to make
all of these models consistent and to establish traceability
among them.

Model-driven development (MDD) has a recognized role
in software development in general due to its capabilities of
producing consistent and traceable models. The main focus
of MDD has been on the design and implementation levels.
But requirements engineering (RE) could also benefit from its
advantages by allowing different kinds of requirements model
transformations between different paradigms, or inside the
same paradigm, thus providing support for efficiently capturing,
tracing, and handling the different perspectives.

To illustrate and discuss this challenge, the authors apply
MDD to goal-oriented requirements engineering (GORE). GORE
has a great impact and importance in the RE community
(Lamsweerde 2001). It helps in identifying, organizing, and
structuring requirements, as well as in exploring and evaluating
alternative solutions to a problem (Lamsweerde 2001; Regev
and Wegmann 2005). In the context of GORE there are a
wide variety of goal-modeling languages, such as i* (Yu 1995),

Adding Interoperability to Requirements Models

www.asq.org 17

knowledge acquisition in automated specification
(KAOS) (Lamsweerde 2009), goal-based requirements
analysis method (GBRAM) (Anton 1996), goal-oriented
requirement language (GRL) (ITU-T 2008), and non-
functional requirements (NFR) framework (Chung et al.
2000). Despite the existing work on these approaches,
consistent and traceable mappings of models from
different approaches remain a challenge (Matulevičius
and Heymans 2007). For example, it may be desirable
to convert one model into another model because one
may want to: refine an organizational-level model (for
example, using i* models) to a system-level model (for
example, by using a KAOS goal model) and vice versa;
compare different approaches and decide which one is
more expressive to capture a set of requirements (that
is, an approach can be more expressive than another
to represent certain concepts—for example, obstacles
are represented explicitly in KAOS, but not in i*); or
facilitate the communication between professionals
specialized in different approaches.

The main contribution of this work is to offer an
approach to perform the mapping and support trace-
ability between different models. In particular, the
authors propose a model transformation framework,
called MDGore, to transform i* models into KAOS
models and vice versa, through rules defined in the
Atlas Transformation Language (Jouault 2008). This
article extends (Monteiro et al. 2012) where the problem
was tackled solely in mapping i* models to KAOS,
completing the approach.

RELATED WORK
Nan et al. (2009) propose a framework for tracing
aspects from requirements goal models to implemen-
tation. The framework provides language support for
modeling goal aspects and mechanisms for transforming
models to aspect-oriented programs. This approach
uses model-to-code transformation, while the authors’
approach uses model-to-model transformation.

A semi-automatic approach, presented in (Sánchez
et al. 2010), aims to derive an aspect-oriented (AO)
architecture from an AO requirements specification.
An AO requirements scenario model is automatically
transformed into an AO architectural model. One-
way transformations are made from requirements to
architecture. In contrast, the authors’ approach makes
bidirectional transformations at the requirements level.

A UML-based modeling tool, called MATA, uses
graph transformations to specify and compose aspects
(Whittle and Jayaraman 2008). Its main goal is to
compose aspects in UML models. In contrast with
the authors’ approach, MATA graph rules are defined
over the concrete syntax of the modeling language,
in this case the UML. Comparing this approach with
the authors’ approach, MATA focuses on a particular
kind of transformation, that is, composition.

In Ameller, Franch, and Cabot (2010), the current
state of MDD approaches with respect to NFRs is
reported. In general, NFRs are not addressed in MDD
methods and processes. A general framework that
integrates NFRs into the core of the MDD process is
outlined, but no full-fledged approach is proposed.

In (Patrício et al. 2011), the authors propose a new
extensible language to unify and represent GORE
languages. The unifying treatment of concepts in their
model makes it possible to define more projections of
each problem than the existing languages by themselves.
Also, hybrid models can be used. However, if it is not
possible or desirable to adopt a unifying language, a
transformation-based approach, proposed in this article,
is a plausible alternative.

BACKGROUND
This section introduces the MDD and GORE. The
authors chose KAOS and i* to discuss and illustrate
the transformations, as they are among the most
popular GORE approaches.

Model-Driven Development
MDD (Völter and Stahl 2006) is a paradigm that
promotes the systematic use of models and model
transformations for the specification and implemen-
tation of software systems. The goal of MDD is to
automate the process of creating new software and
to facilitate its evolution in changing environments
through model transformations. In MDD, a model is
defined by a metamodel. In other words, a model must
be constructed following certain rules and conform to
a certain metamodel. In the same way, the metamodel
is a model of a modeling language and must conform to
the rules defined in the meta-metamodel (for example,
MOF). Once the metamodels and models are defined, the
model transformations are used to derive a model from
one or more models. That is, a model transformation

Adding Interoperability to Requirements Models

18 SQP VOL. 15, NO. 4/© 2013, ASQ

to decompose tasks. A task can be decomposed into
subgoal, subtask, resource, and softgoal. Also, there
are positive and negative contribution links.

The authors use LDE i* (Nunes et al. 2009), a
domain-specific language (DSL) (Kelly and Tolvanen
2008), for i*. Its main objective is to ensure a better
management of complexity and scalability of i* models
by introducing the notion of a compartment where
elements of an i* model can be grouped. This DSL
was implemented using MDD techniques, and includes
an Ecore (Steinberg et al. 2008) metamodel based on
existing ones (Yu 1995; Alencar et al. 2008). Figure 1
shows a fragment of the LDE i* metamodel. The full
version can be found in (Nunes et al. 2009).

The root of the metamodel is the class SR model.
This class is composed of zero or more nodes, repre-
sented by the abstract class node, and zero or more
links, represented by the abstract class relationship.
A node can be a dependablenode, specialized as an
actor, or a dependum. A dependum may be one of
the following types: task, resource, goal, softgoal,
elementcontainer, and softgoalcontainer. The latter
two represent the compartments. The elementcontainer
compartment groups tasks, goals, and resources. The
softgoalcontainer compartment groups softgoals. A
relationship can be one of the following types: contribu-
tionlink, decompositionlink, meansendlink, and link.
The link class represents the dependency relationship
through classes dependeelink and dependerlink. This
DSL was implemented using the EMF/GMF eclipse
plug-ins (Steinberg et al. 2008; Richley 2007).

takes as input a model conforming to a given metamodel
and produces as output another model in conformance
to a given target language metamodel.

Model transformation languages aim at automating
the process of deriving one model from another one. The
authors used ATL in their project for specifying their
model transformations, as it is very well documented
and supported.

The i* Approach
i* was developed for modeling and reasoning about
organizational environments and their information
systems. It focuses on the concept of intentional
actor. Actors in their organizational environment
have intentional properties such as goals, beliefs,
abilities, and commitments. i* has two main modeling
components: the strategic dependency (SD) model
and the strategic rationale (SR) model. The SD model
describes the dependency relationships among the
actors in an organizational context. In this model, an
actor (depender) depends on another actor (dependee)
to achieve goals and softgoals (for example, quality
attributes), to perform tasks, and to obtain resources.
The SR model provides a more detailed level of
modeling than the SD model, since it focuses on the
modeling of intentional elements and relationships
internal to actors. Intentional elements (goals, soft-
goals, tasks, and resources) are related by means-end
or decomposition links. Means-end links are used to
link goals (ends) to tasks (means) to specify alternative
ways to achieve goals. Decomposition links are used

©2
01

3,
 A

SQ

DependableNode

Node SRModel Relationship

Link MeansEndLink

ContributionLink

DecompositionLink

DependerLink

DependeeLink

SoftGoalContainerSoftGoal
Goal

Resource

Task

DependumActor

ElementContainer

HasGoal

hasTask

hasResource

hasSoftGoal

DependumHasLink

LinkHasDependum

0 . . *

0 . . *

0 . . * 0 . . *

0 . . *

0 . . *

0 . . *

0 . . 1

1 . . 1

1 . . 1

LinkHasDependable

DependableHasLink

hasNode hasRelationship

FIGURE 1	 Partial LDE i* metamodel

Adding Interoperability to Requirements Models

www.asq.org 19

and links. The nodes class can be object, goal, or
obstacle. An object can be agent or entity. A goal can
be an expectation, requirement, or softgoal. Links can
be: obstructionlink, solutionlink, OrRefinement, or
AndRefinement. Obstructionlink connects an obstacle
to a goal. Solutionlink connects a goal to an obstacle.
Links OrRefinement and AndRefinement refine goals.

MDGORE: A MODEL-
DRIVEN GOAL-ORIENTED
REQUIREMENTS FRAMEWORK
FOR I* AND KAOS
This work proposes MDGore, a model-to-model
transformation approach between i* and KAOS models.
This transformation consists in transforming from
i* SR into KAOS goal models and vice versa. Figure
3 gives an overview of the authors’ framework. The
dashed rectangle is the focus of their approach. If the
source model is the i* SR model, this is transformed
into a KAOS goal model through the application of
rules implemented in ATL. Likewise, if the source

The KAOS Approach
KAOS is a systematic approach for discovering and
structuring system-level requirements. Goals can
be divided into requirements (a type of goal to be
achieved by a software agent), expectations (a type
of goal to be achieved by an environment agent), and
softgoals. Goals can be refined into subgoals through
and/or decompositions. There is also the possibility
of specifying conflicts between goals. KAOS also
introduces the concept of “obstacle” as a situation
that prevents the achievement of a goal. Usually the
solution to the obstacle is expressed as a requirement.

The authors use the modularKAOS DSL (Dias,
Amaral, and Araújo 2009) for dealing with KAOS
models. ModularKAOS incorporates the notion of
compartment to handle model complexity. This DSL
was implemented based on a metamodel defined in
(Matulevičius and Heymans 2007), using Ecore. Figure
2 shows a partial modularKAOS metamodel. The full
version can be found in Dias, Amaral, and Araújo (2009).

The class KAOS is the metamodel root. This is
composed of zero or more compartmentnodes, nodes,

©2
01

3,
 A

SQ

Agent

name
CompartmentNode

TransformationSource
name
Source
Target

Links

name
TransformationSource
IstarActorContainer

Nodes

formalDef
informalDef

Goal

gmf.diagram

gmf.node

gmf.node

KAOS

gmf.link

ObstructionLink

gmf.node

Obstacle

gmf.node

Entity

gmf.node

Expectation

gmf.node

Requirement

gmf.node

Softgoal

gmf.link

SolutionLink

gmf.link

OrRe�nement

gmf.link

AndRe�nement

informalDef
Object

hasCompartmentNode
hasNodes

hasLinks

obstacleObstruction

obstacle

obstacleToGoal
obstacleToGoal

orRefToOtherGoal
orRefToGoal

andRefToGoal

goalIsAndRef

solutionIsGoal

obstacleSolution

solution

goalIsOrRef

other GoalIsOrRef

otherGoalIsAndRef

andRefToOtherGoal

goalHasObstacle

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

1 . . 1
1 . . 1

1 . . 1 1 . . 1

1 . . 1
1 . . 1

1 . . 1
1 . . 1

FIGURE 2	 Partial modularKAOS metamodel

Adding Interoperability to Requirements Models

20 SQP VOL. 15, NO. 4/© 2013, ASQ

Another concern the authors had was to ensure
traceability in the transformation process. Through
attributes in the KAOS metamodel, they store the
history of the transformation in the transformed KAOS
model. For example, when an i* element is transformed
into a KAOS element, the type of the i* element is stored
into an attribute of the KAOS element. This solution
enables the possibility of transforming a KAOS goal
model back to the corresponding i* SR model, ensuring
bidirectionality in the transformation process.

Finally, the authors’ framework is flexible enough
to change the transformed model, in particular by
removing, adding, or changing elements in the model. To
implement the transformation rules, a study of relations
between the elements of the two selected approaches
was made, in order to establish their mappings. This
is discussed next.

is the KAOS goal model, this is transformed into an
i* SR model.

An i* SR model is specified using the LDE i* frame-
work and it conforms to the i* metamodel implemented
in this framework. A KAOS model conforms to the
KAOS metamodel implemented in the DSL of modu-
larKAOS. ATL rules conform to the ATL metamodel.
Finally, these three metamodels were implemented
using Ecore and, therefore, conform to the Ecore
meta-metamodel. This framework is semi-automatic,
since the initial phase of the transformation process
is applied for user intervention, to make decisions
about the mapping of some i* elements into the
corresponding KAOS elements and vice versa. These
specific cases will be addressed in the next section.
The authors defined a metamodel, illustrated in Figure
4, to generate a “decision model” so the users can
make and record their choices.

The root of this metamodel is the modeldecision
class, which is composed of zero or more decisions,
represented by the abstract class decisions. This class
represents an abstract decision element and has the
attribute elementname of String type that corresponds
to its name. The actordecision class represents the
i* element in which a decision will be recorded. This
class extends the decisions class and has an attribute,
softwarecomponent, of enumeration type. The enu-
meration, called softwarecomponentoptions, has the
values “yes” or “no.” The decision model is generated
from the i* SR model and contains elements of type
actordecision under which decisions are made. For each
of these elements the user must decide which option on
the attribute softwarecomponent is more appropriate.

One of the problems associated with the transforma-
tions between models of different approaches is the
information loss. This problem arises from the fact that
the abstract syntaxes of the approaches involved in the
transformations are different and, as a consequence, it
is not always possible to transform all the elements. This
problem is also present when relating i* and KAOS mod-
els. To address this problem the authors introduce the
notion of a log model. This model keeps the information
of all the elements that were not possible to transform.
This model is represented using the i* notation. Looking
again at Figure 1, the application of the transformation
rules results in two models: one KAOS goal model with
the transformed elements, and a log model with the
nontransformed elements of the i* SR model.

FIGURE 3	 Process overview of the MDGore
framework

©2
01

3,
 A

SQ

Conforms to

Meta-
metamodel

 i* Model KAOS Model

i* Log Model KAOS Log Model

ATL Rules

ATL
Metamodel

Conforms to

i*
Metamodel

Conforms to

Conforms toConforms to Conforms to

Conforms toConforms to

Through ThroughThrough

Transformed into

Through

KAOS
Metamodel

©2
01

3,
 A

SQ

SoftwareComponent
ActorDecision

Yes
No

SoftwareComponentOptions

ModelDecision

hasDecisions
0 . . *

ElementName
Decisions

FIGURE 4	 Metamodel of the decision model

Adding Interoperability to Requirements Models

www.asq.org 21

This happens because an i* resource is mapped into a
KAOS entity, and in KAOS the links that involve entities
are ConcernsLinks. Finally, the MeansEndlink has two
possible mappings: AndRefinement or OrRefinement. If
the source element of the MeansEndLink has another
MeansEndLink, each of the destination elements is
seen as an alternative to obtain the same source ele-
ment. In this case, each MeansEndLink is mapped to
an OrRefinement. On the other hand, if the source
element has only one MeansEndLink, its target element
is the only way to get it and this link is mapped to
an AndRefinement. Regarding the dependency link,
this is only transformed if the relationship occurs
between the internal elements of the i* actors. If the
dependency link is between actors, it cannot be trans-
formed, since there is no correspondence in KAOS.
This dependency link between actors is the only i*
element that is not possible to transform directly, so
user intervention is needed.

Example of Transformation
To help explain the transformation process, the
authors introduce a partial i* SR model (illustrated
in Figure 5) of the “Project BTW: if you go, my advice
to you” (Lucena et al. 2009). The main goal of this
project is to develop a route planning system that
allows community input. The model contains two
actors: travelers and Internet.

The goal of the travelers is to have a trip to inter-
esting places realized. The task “travel to interesting
places” is a means to achieve that goal. This task
is decomposed into the “planning trip” subtask. To
plan a trip, it is necessary to perform the following
subtasks: get destination info, and (select) transport to
destination. The goal of the Internet is to have services
provided. The task “provide services” is a means to
achieve that goal. This task is decomposed into the
following subtasks: provide transport info and provide
places info. To provide info about transport, this subtask
requires the resource “transport info.” Finally, the actor
travelers depends on the actor Internet to achieve the
goal “information be provided.”

Transformation Process
In this section the authors describe the transformation
process of an i* SR model into a KAOS goal model.
This transformation process is based on the mappings

Mapping Between i*
and KAOS Elements
The relations between i* and KAOS elements have been
established based on the concepts of the two approaches
introduced previously and on the abstract syntax of
each approach. Table 1 represents the mappings of i*
model elements into KAOS model elements.

As shown in Table 1, a task can be mapped to an
expectation or a requirement, depending on the map-
ping of the actor that contains it. That is, if the actor is
mapped to an EnvironmentAgent, the task is mapped
to an expectation, whereas if the actor is mapped to
a SystemAgent, the task is mapped to a requirement.

The reason for this type of mapping is related to the
restrictions imposed by KAOS. In KAOS, an expectation
can only be associated with EnvironmentAgents, while a
requirement can only be associated with SystemAgents.
The i* actor types (actor, position, agent, and role) can
be mapped to SystemAgents or EnvironmentAgents.
This is the only mapping that cannot be done automati-
cally. Here, user intervention is necessary to select,
through the decision model, the type of KAOS agent
that corresponds the type of i* actor. The decomposi-
tion link can be mapped to an AndRefinement link or
ConcernsLink (omitted in Figure 2).

If a task is decomposed into subtasks, goals, or
softgoals, the decomposition link is mapped to an
AndRefinement. If a task is decomposed into resources,
the decomposition link is mapped to a ConcernsLink.

TABLE 1	 Mappings of i* elements into
KAOS elements

©2
01

3,
 A

SQ

i* KAOS

Goal Goal

Task Expectation; Requirement

Softgoal Softgoal

Resource Entity

Actor, Position, Agent, Role SystemAgent; EnvironmentAgent

Decomposition AndRefinement; ConcernsLink

MeansEndLink AndRefinement; OrRefinement

Is-part-of Association Aggregation

ISA Association Inheritance

Break, Some-, Hurt Conflict

Make, Some+, Help OrRefinement

Dependency AndRefinement

Adding Interoperability to Requirements Models

22 SQP VOL. 15, NO. 4/© 2013, ASQ

selected, which means it will be mapped into an
EnvironmentAgent. Although Figure 6 does not show
it, for the Internet actor the “yes” option was selected,
which means it will be mapped to a SystemAgent.

Step 2: Generation of an
annotated i* SR model
After taking all of the decisions in the previous step,
this step generates an annotated i* SR model, from
the decision model and the original i* SR model, with
all of these decisions. In fact, the annotated model

described previously, and consists of: 1) generation of
a decision model; 2) generation of an annotated i* SR
model; 3) generation of an intermediate KAOS goal
model; 4) generation of the final KAOS goal model; and
5) generation of a log model. For each step, a set of ATL
transformation rules was specified and implemented.

Step 1: Generation of a decision model
In this step a decision model from the i* SR model is
generated, so the user can infer decisions about the type
of some i* elements, based on domain knowledge of the
problem. As mentioned, the four types of i* actors can be
mapped into two types of KAOS agents: SystemAgent or
EnvironmentAgent. It is up to the user to decide which
agent the actor should be mapped to. Figure 6 presents a
decision model containing the actors of the i* SR model.

In this decision model, for each actor the user
must select whether it is a software component
by using the options “yes” or “no” of the property
SoftwareComponent. The “yes” option means the actor
is part of the system, and in this case it will then be
mapped to a SystemAgent. The “no” option means the
actor is an intervening one in the system and will then
be mapped to an EnvironmentAgent.

In the example for the travelers actor, the “no”
option in the property SoftwareComponent was

©2
01

3,
 A

SQ

Information be provided
<<i* Goal>>

Trip to interesting places
<<i* Goal>>

Transport info
<<i* Resource>>

<<i* task>>

Planning Trip

<<i* task>>

Transport to dest.

<<i* task>>

Get destination info

<<i* task>>

Travel to int. places

Travelers <<i* Actor>>

<<i* task>>

Provide services<<i* task>>

Provide transport info

<<i* task>>

Provide places info

Internet <<i* Actor>>

Commited Commited

Services Provided
<<i* Goal>>

FIGURE 5	 Partial i* SR model of the BTW project

©2
01

3,
 A

SQ

FIGURE 6	 Decision model example

Adding Interoperability to Requirements Models

www.asq.org 23

that were transformed, but were related to elements
that could not be transformed, so their relationships
are preserved through the log model. For example, in
the i* SR model of Figure 5, the dependency relation-
ship between actors is impossible to transform. This
relationship is stored in the log model, shown in Figure
8, together with the actors (travelers and Internet) and
the goal (information be provided) in the center of the
dependency. Although these elements (actors and goal)
have been transformed, they appear in the log model
because they are part of the dependency link that was
not transformed, because it is not possible to store such
a link without its source and target elements. If all of
the SR model elements are transformable, an empty log
model is generated. Otherwise, a log model is generated
with the elements that are not transformed.

Transformation Result
The output of the transformation process explained
previously is a KAOS goal model with the transformed

contains the same elements as the
original i* SR model, and is enriched
with user decisions. From this step
on, all of the mappings are defined
and the conditions are satisfied to
perform the transformation into
an intermediate KAOS goal model.

Step 3: Generation
of an intermediate
KAOS goal model
In this step, an intermediate KAOS
goal model is generated from the
annotated i* SR model built in
the previous step. This model is
intermediate because KAOS has
responsibility links between the
expectations or requirements and
their agents that do not exist in i*.
As a consequence, there is no i*
element to serve as a pattern for
generating the responsibility link. The solution was: an
i* element generates two KAOS elements, one being the
responsibility link and the other being a task. However,
this solution does not fully solve the problem, since the
responsibility links between agents and requirements
or expectations are not automatically derived. This
problem is resolved in the next step.

Step 4: Generation of the
final KAOS goal model
The output of this step is a final KAOS goal model,
illustrated in Figure 7, which is generated from the
intermediate KAOS goal model of the previous step.
The purpose of this step is to complete the KAOS
goal model structure generated in the previous step.
In this sense, an ATL rule was created to restore the
responsibility links between the elements and their
agents. These responsibility links are visible in Figure
7, between the EnvironmentAgent travelers and their
expectations and between the SystemAgent Internet
and its requirements.

Step 5: Generation of a log model
The purpose of this step is to generate a log model from
the annotated i* SR model in the second step, with all of
the i* elements that are impossible to transform. Note
that this log model will also include model elements

©2
01

3,
 A

SQ

G Services provided

G Trip to interesting places

G Goal

G Information provided

R Provide services

R Provide transport info

R Requirement

R Provide places info
E Transport to destination

E Information provided

E Travel to int. places

E Planning trip

E Get destination info

E Expectation

En Transport info

En Entity

Concerns

SA Internet

SA System
Agent

EA Travelers

EA Environment
Agent

FIGURE 7	 KAOS goal model obtained

©2
01

3,
 A

SQTravelers
<<i* Actor>>

Internet
<<i* Actor>>

Commited Commited

Information be provided
<<i* Goals>>

FIGURE 8	 Log model

Adding Interoperability to Requirements Models

24 SQP VOL. 15, NO. 4/© 2013, ASQ

elements and a log model with the i* elements that
cannot be transformed. In the KAOS goal model,
illustrated in Figure 7, one can see that the i* goals
were transformed into KAOS goals. The travelers
actor was transformed into an EnvironmentAgent,
as in the decision model; the authors decided that it
is not a software component. For the Internet actor
in the same decision model, the authors decided
that this actor is a software component and in this
case it was transformed into a SystemAgent. The
internal tasks of the travelers actor were transformed
into expectations since this actor corresponds to an
EnvironmentAgent. Similarly, the internal tasks of
the Internet actor were transformed into require-
ments, since this actor corresponds to a SystemAgent.
The internal resources to the Internet actor were
transformed into entities.

All decomposition links between tasks were trans-
formed into AndRefinement links and decomposition
links between tasks and resources were transformed
into ConcernsLinks. The MeansEndLinks between the
goals and tasks were transformed into AndRefinement,
as each goal has only one MeansEndLink.

The authors’ framework is f lexible, allowing
users to change the KAOS goal model generated by
the transformations. This is suitable since it is not
possible to automatically transform the dependency
relationship between actors (see Figure 8).

The authors changed the KAOS goal model to
establish a possible solution to this dependency
relationship. The solution was to represent the
dependum “information be provided” for both
perspectives, that is, travelers’ and Internet’s.
First, they specified the expectation “information
be provided” (traveler’s perspective) resulting from
the refinement of the expectation “travel to interest-
ing places.” Second, the expectation “information
provided” is refined into the requirement “provide
services,” which is under the responsibility of
Internet SystemAgent, and as such depends on this
requirement to be fulfilled. The authors also cre-
ated the goal “information be provided” (Internet’s
perspective), which is refined into the requirement
“provide services,” depending on this to be achieved.
Thus, it is possible to establish the dependency
relationship between travelers and the Internet,
through the dependency between the expectation
and requirement.

TABLE 2	 Mappings of KAOS elements into
i* elements

©2
01

3,
 A

SQ

KAOS i*

Goal
Goal (external)

Goal (internal)

Requirement

Task (external)

Task (internal)

Goal (internal)

Expectation

Task (external)

Task (internal)

Goal (internal)

Softgoal
Softgoal (external)

Softgoal (internal)

Operation
Task (external)

Task (internal)

Obstacle
Softgoal (external)

Softgoal (internal)

Domain properties
Softgoal (external)

Softgoal (internal)

Entity
Resource (external)

Resource (internal)

System Agent, Environment Agent

Position

Role

Agent

Actor

OrRefinement

Means—End link

Help

Some+

Make

Decomposition

AndRefinement

Decomposition

Means—End link

Dependency

Make

ObstacleLink Break

ObstacleRefinement Make

Solution Break

Concerns Decomposition

DomainPropertiesLink Decomposition

OperationalizationLink Decomposition

Inheritance ISALink

Aggregation IsPartOfLink

Conflict

Break

Some–

Hurt

Adding Interoperability to Requirements Models

www.asq.org 25

Watcher case study, which is a real-world system that
provides information about public health (Massoni,
Soares, and Barba 2007). The detailed model of
the Health Watcher system built with the authors’
approach can be found in (Soares, Barba, and
Laureano 2006).

The authors also conducted a pilot study with seven
final-year master’s degree students in computer science
at the Universidade Nova de Lisboa, who had previous
experience with GORE and MDD, to assess the effect
of the proposed approach and its tool support in GORE
activities. A group of five testers is normally enough to
uncover more than 80 percent of the usability problems
(Nielsen and Landauer 1993). None of the participants
was working under the supervision of the authors, or
enrolled in courses taught by the authors, to minimize
potential biases that could otherwise occur.

The participants received 60 minutes of training.
After completing their training, they were asked to
perform a set of modeling tasks. First, they manually
created a KAOS goal model based on the i* SR model
of the BTW project. Then, they transformed the i*
SR model into the KAOS goal model and compared it
with the goal model they created manually. A similar
process was followed for the transformation from KAOS
to i*. Upon completion of these tasks, participants
were asked to fill in a questionnaire to compare the
approach with the baseline manual approach.

The questionnaire included four questions, similar
for both transformation processes:

•	Q1: “How do you rate the model generated
by the transformations in comparison to the
model created manually?” (1—very bad;
2—bad; 3—similar; 4—good; 5—very good)

•	Q2: “Was there any information lost in the
transformation process?” (1—yes; 5—no)

•	Q3: “How do you rate the simplicity of the
transformation process?” (1—complex; 2—
little simple; 3—reasonably simple; 4—simple;
5—very simple)

•	Q4: “How do you rate the usefulness of the
approach?” (1—useless; 2—little useful; 3—
somehow useful; 4—useful; 5—very useful)

Table 3 summarizes the responses, broken down
by question, for both transformation processes
denoted by the label (i*-k) when transforming from i*
to KAOS and (k-i*), when transforming from KAOS to

Mapping From KAOS
to i* Elements
Table 2 shows the mappings that must be carried out
from KAOS to i*. This mapping direction brings dif-
ferent possibilities for each model element, requiring
more interventions from the stakeholder to decide the
most appropriate target model element.

Some KAOS model elements are mapped into i*
model elements that can be external or internal to the
i* actor. A model element is external if it is not linked
to any element that is under the responsibility of the
agent, and internal otherwise. For example, a KAOS goal
is mapped to an i* goal, but this can be inside or outside
an i* actor, that is, internal or external to the actors.

Requirements and expectations can be mapped
either to internal goals (as they are always directly
linked to an agent) or internal/external tasks. Similarly,
softgoals are mapped to internal or external softgoals.
Operations can also be mapped to either internal or
external tasks.

Concerning obstacles, there is no direct correspon-
dence. The closest one is to softgoals. The same applies
to domain properties. Entities can be mapped to internal
or external resources. System and environment agents
can be mapped to actor, agent, position, or role.

Regarding relationships, OrRefinements can be
mapped into a means-end link, contribution links, or
an alternative decomposition link. AndRefinements are
mapped into and decomposition, make contribution,
a dependency, or a means-end link. Obstacle links,
refinements, and resolutions can be mapped into con-
tribution links: break, make and break, respectively.
Concerns, domain properties, and operationaliza-
tion links are mapped into decomposition links.
Inheritance and aggregation of objects are mapped
into isALink and a IsPartOfLink. Finally, conflict links
can be mapped into the contribution links.

By transforming the KAOS model in Figure 7, the
authors obtain the i* SR model in Figure 5. Due to
space constraints, they do not present the KAOS log
model, which is considerably larger than the log model
for the transformation from i* to KAOS.

Validation
The authors assessed their transformation rules’
correctness by applying the approach to the Health

Adding Interoperability to Requirements Models

26 SQP VOL. 15, NO. 4/© 2013, ASQ

i*. Note that there are only two categories
for question 2, while there are five for
the remaining questions. The authors
aggregate the answers from categories 1,
2, and 3 as no improvement, denoted by
“/” and those with categories 4 and 5
as improvement, denoted by “.” Finally,
the authors present the chi-square test for
the aggregated answers.

The aggregate results are consistent for
both transformations, and show improve-
ments on questions 1, 2, and 4, with
statistical significance, although the authors
must stress that with only seven participants,
it would be advisable to conduct replica-
tions of this study. All participants rated favorably the
generated models and the usefulness of the approach.
None of the participants reported information losses in
the process. They particularly enjoyed the support for
interoperability among teams with different expertise
in GORE, which was one of the planned contributions
of this approach.

The answers to question 3 were mostly neutral
(the transformation process was considered “reason-
ably simple”). The participants considered that the
settings of the transformation process were not as
simple as they would feel comfortable with. They
suggested that the creation of a wizard for setting up
the transformation process in the tool support would
mitigate this problem.

CONCLUSIONS
MDD can be used successfully to relate models of differ-
ent approaches, in different abstraction levels, that share
the same paradigm. The MDGore approach brings the
following contributions to the requirements community:

•	A bidirectional, traceable mapping with no
information loss, thanks to the use of log models

•	Decision support concerning which approach is
more expressive than another in a given context

•	Facilitated communication between profession-
als specialized in different approaches

In this article, the authors expanded a previous
work (Monteiro et al. 2012) by producing a complete
semi-automatic model-to-model transformation frame-
work, to relate KAOS and i* models in both directions.
They validated their approach by applying it to two

case studies and via a questionnaire. This preliminary
evidence confirms the framework’s usefulness.

The authors’ future work includes developing
transformations to other requirements approaches
using different paradigms.

ACKNOWLEDGMENTS

The authors would like to acknowledge CITI—PEst—OE/EEI/UI0527/2011,
Centro de Informática e Tecnologias da Informação (CITI/FCT/UNL)—2011-
2012)—for the financial support for this work.

REFERENCES

Alencar, F., C. Silva, M. Lucena, J. Castro, E. Santos, and R. Ramos. 2008.
Improving the understandability of i* models. In Proceedings of the 10th
International Conference on Enterprise Information Systems (ICEIS’08),
June 12-16, Barcelona, Spain: SAIC.

Ameller, D., X. Franch, and J. Cabot. 2010. Dealing with non-functional
requirements in model-driven development. In Proceedings of the
18th IEEE International Requirements Engineering Conference (RE’10),
September 27-October 1. Sydney, Australia: IEEE Computer Society.

Antón, A. 1996. Goal-based requirements analysis. In Proceedings of
the Second IEEE International Conference on Requirements Engineering
(ICRE’96), April 15-18. Colorado Springs, CO: IEEE Computer Society.

Chung, L., B. Nixon, E. Yu, and J. Mylopoulos. 2000. NFR in software engi-
neering. Netherlands: Kluwer.

Czarnecki, K., and S. Helsen. 2003. Classification of model transformation
approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the context of MDA, October 27, Anaheim, CA.

Dias, A., V. Amaral, and J. Araújo. 2009. Towards a domain specific lan-
guage for a goal-oriented approach based on KAOS. In Proceedings of the
Third IEEE International Conference on Research Challenges in Computer
Science (RCIS’09), April 22-24. Fès, Morocco: IEEE Computer Society.

ITU-T. 2008. Recommendation Z.151 (09/08). User Requirements Notation
(URN)—Language definition. Geneva, Switzerland.

Jouault, F., F. Allilaire, J. Bézivin, and I. Kurtev. 2008. ATL: A model trans-
formation tool. Science of Computer Programming, vol. 72 no.1: Elsevier.

TABLE 3	 Questonnaire’s answers frequency, by question

©2
01

3,
 A

SQ

Responses Aggregate Chi-Square Test (Aggr.)

Questions 1 2 3 4 5 /  Chi-sqr df Sig

Q1 (i*-k) 0 0 0 2 5 0 7 7.000 1 0.008

Q2 (i*-k) 0 7 0 7 7.000 1 0.008

Q3 (i*-k) 0 1 5 1 0 6 1 3.571 1 0.059

Q4 (i*-k) 0 0 0 1 6 0 7 7.000 1 0.008

Q1 (k-i*) 0 0 0 3 4 0 7 7.000 1 0.008

Q2 (k-i*) 0 7 0 7 7.000 1 0.008

Q3 (k-i*) 0 1 6 0 0 7 0 7.000 1 0.008

Q4 (k-i*) 0 0 0 1 6 0 7 7.000 1 0.008

Adding Interoperability to Requirements Models

www.asq.org 27

Soares, S., P. Borba, and E. Laureano. 2006. Distribution and persistence as
aspects. Software: Practice and experience vol. 36, no. 7.

Steinberg, D., F. Budinsky, M. Paternostro, and E. Merks. 2008. EMF eclipse
modeling framework. Reading, MA: Addison-Wesley.

Vangheluwe, H., J. De Lara, and P. J. Mosterman. 2002. An introduction to
multi-paradigm modelling and simulation. In Proceedings of the AIS’2002
Conference (AI, Simulation and Planning in High Autonomy Systems),
April 7-10, Lisbon, Portugal.

Völter, M., and T. Stahl. 2006. Model-driven software development—
Technology, engineering, management. New York: Wiley.

Whittle, J., and P. Jayaraman. 2008. MATA: A tool for aspect-oriented mod-
eling based on graph transformation. In Models in Software Engineering.
Berlin: Springer-Verlag.

Yu, E. 1995. Modelling strategic relationships for process reengineering.
Ph.D. thesis, University of Toronto, Canada.

BIOGRAPHIES

Rui Monteiro holds bachelor’s and master’s degrees in informatics
from FCT/UNL, Portugal. He currently works as a software engineering
consultant at Aubay and BNP Paribas Net. He can be reached by email
at rm.chambel@gmail.com.

João Araújo holds a doctorate from Lancaster University, U.K., and is an
assistant professor at FCT/UNL, Portugal. His principal research interests
are in requirements engineering, model-driven engineering, and soft-
ware product lines where he has published circa 200 articles on journals
and conferences. He was a co-founder of the Early Aspects and MoDRE
workshops and a contributor to several European and national research
projects. He has served on the program and organizing committees for
top conferences such as RE, MoDELS, CAiSE, ICSE, ER, and AOSD. He can
be reached by email at joao.araujo@fct.unl.pt.

Vasco Amaral is assistant professor at FCT/UNL and full member of CITI. He
holds a doctorate from the University of Mannheim, Germany, and worked
in the past as software engineer on high-energy physics computing and very
large databases at CERN (Switzerland), DESY (Germany), and LIP (Portugal).
Amaral’s research interests include software languages engineering, model-
driven development, verification, model composition and transformations,
and multiparadigm modeling. He serves on the program and organizing com-
mittees of several international conferences and workshops and is the main
organizer of the domain-specific modeling theory and practice summer
school series. He can be reached by email at vma@fct.unl.pt.

Miguel Goulão earned his doctorate in informatics from FCT/UNL (Portugal)
in 2008. He is assistant professor of the Informatics Department of FCT/UNL,
a member of the CITI research group, and one of the founding members of
the Portuguese Association for Quality in Information and Communication
Technologies. His research interests include experimental software engi-
neering, and how it can be applied to support quality improvement
throughout the software process, from requirements elicitation to software
evolution. He has published more than 45 peer-reviewed papers and served
as a reviewer in several journals, conferences, and workshops. He can be
reached by email at mgoul@fct.unl.pt.

Pedro Patrício holds bachelor’s and master’s degrees in informatics from
FCT/UNL, Portugal. He currently works as a software engineering consultant
at Link. He can be reached by email at pedropt@gmail.com.

Kelly, S., and J. Tolvanen. 2008. Domain specific modeling. New York: Wiley.

Lamsweerde, A. 2001. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering (RE’01), August 27-31. Toronto, Canada: IEEE
Computer Society.

Lamsweerde, A. 2009. Requirements engineering: From system goals to
UML models to software specifications. New York: Wiley.

Lucena, M., J. Castro, C. Silva, F. Alencar, E. Santos, and J. Pimentel. 2009.
A model transformation approach to derive architectural models from
goal-oriented requirements models. In Proceedings of the On The Move
to Meaningful Internet Systems: OTM 2009 Workshops, November 1-6.
Vilamoura, Portugal: Springer.

Massoni, T., S. Soares, and P. Borba. 2007. Requirements health-watcher
version 2.0. In Proceedings of the Early Aspects at ICSE: Workshop in
Aspect-Oriented Requirements Engineering and Architecture Design, May
20-26, Minneapolis, MN.

Matulevičius, R., and P. Heymans. 2005. Analysis of KAOS meta-model.
Technical Report, University of Namur, Belgium.

Matulevičius, R., and P. Heymans. 2007. Comparing goal modelling lan-
guages: An Experiment. In Proceedings of the International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’07), June 11-12. Trondheim, Norway: LNCS 4542, Springer-Verlag.

Monteiro, R., J. Araújo, V. Amaral, M. Goulão, and P. Patrício. 2012.
Model-driven development for requirements engineering: The case of goal-
oriented approaches. In Proceedings of the 8th International Conference
on the Quality of Information and Communications Technology (QUATIC
2012), September 3-6. Lisbon, Portugal: IEEE CPS.

Monteiro, R., J. Araújo, V. Amaral, and P. Patrício. 2010. MDGore: Towards
model-driven and goal-oriented requirements engineering. In Proceedings
of the 18th International Conference on Requirements Engineering (RE’10),
September 27-October 1. Sydney, Australia: IEEE Computer Society.

Nan, N., Y. Yu, B. Baixauli, N. Ernst, J. Leite, and J. Mylopoulos. 2009. Aspects
across software life cycle: A goal-driven approach. Transactions on AOSD, vol. VI.

Nielsen, J., and T. K. Landauer. 1993. A mathematical model of the find-
ing of usability problems. In Proceedings of INTERCHI’93, April 24-29.
Amsterdam, Netherlands: ACM.

Nunes, C., J. Araújo, V. Amaral, and C. Silva. 2009. A domain specific
language for the i* framework. In Proceedings of the 11th International
Conference on Enterprise Information Systems (ICEIS’09), May 6-10.
Milan, Italy: LNBIP 24, Springer.

Patrício, P., V. Amaral, J. Araújo, and R. Monteiro. 2011. Towards a
unified goal-oriented language. In Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference
(COMPSAC 2011), July 18-22. Munich, Germany: IEEE Computer Society.

Regev, G., and A. Wegmann. 2005. Where do goals come from: The under-
lying principles of goal-oriented requirements engineering. In Proceedings
of the 13th IEEE International Requirements Engineering Conference
(RE’05), August 29-September 2. Paris, France: IEEE Computer Society.

Richley, J. 2007. GMF: Beyond the wizzards. Available at: http://www.
onjava.com/.

Sánchez, P., A. Moreira, L. Fuentes, J. Araújo, and J. Magno. 2010. Model-
driven development for early aspects. Information & Software Technology
vol. 52, no. 3: Elsevier.

