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Abstract— Models, with different levels of detail, share similar 
abstractions that can be reused by means of model-driven 
techniques such as transformations. For example, scenarios are a 
well-known technique in requirements engineering to represent 
behavioral flows in a software system. When using UML, 
scenarios are typically represented with activity models in the 
early stages of software development, while sequence models are 
used to describe more detailed object interactions as modeling 
progresses. This paper defines transformation rules to automate 
the migration from activity to sequence models. We present a 
case study illustrating the application of our transformation 
rules. Our preliminary assessment of the impact of the benefits of 
using these transformations points to: (i) a reduction of around 
50% in the effort building sequence models, (ii) increased 
traceability among models, and (iii) error prevention when 
migrating from different scenario notations. 

Keywords – Scenario Modeling, Model Transformations, 
Model-Driven Engineering 

I. INTRODUCTION 
Scenarios [1, 2] are widely used in Requirements 

Engineering (RE) to represent paths of possible behavior 
through a use case which are investigated to elaborate 
requirements. A scenario is “a straight-line sequence of 
(possibly numbered, typically interactive) steps taken by 
independent-acting (presumably intelligent) agents playing 
(system) roles” [1]. Scenarios specify system and user 
interactions, or use cases; they ensure that stakeholders share a 
sufficiently wide view of the system. Scenarios are applicable 
to all types of systems, at any stage of the development life 
cycle (thus, at different levels of abstraction). Approaches 
using UML [3] represent scenarios through activity [4] and 
sequence models [5]. While activity models are mostly used in 
the preliminary stages of analysis and design, sequence models 
tend to be used later, as the design progresses, where more 
detailed descriptions of object interactions become necessary.  

Some behavioral and structural abstractions present in 
activity models can be reused automatically in sequence 
models by means of transformations. This is the fundamental 
motivation of this paper: to study how information contained in 
activity models can be systematically used for constructing 
sequence models, improving the process of moving from 
requirements to design. By using Model-Driven Engineering 
(MDE) [6-8] techniques, such as defining transformations 
between two kinds of models, it is possible to decrease the time 
costs on modeling scenarios, if the transformations used are 

correct and applicable to any problem domain. Additionally, 
we use MDE to support traceability between artifacts of 
different models. 

The remaining of this paper is organized as follows. Section 
2 describes transformation rules to map activity models into 
sequence models, addresses the refinement of the generated 
models and discusses traceability support. Section 3 introduces 
the supporting tool to implement the transformations defined in 
the previous section. Section 4 illustrates the application of our 
approach to an existing scenario of a case study and compares 
the costs of modelling the scenario by hand and by refinements 
of the generated model. Finally, Section 5 concludes the paper 
and provides directions for future work. 

II. MIGRATING FROM ACTIVITY TO SEQUENCE MODELS 
Now we describe both the transformation rules to generate 

sequence models from activity models and the refinements that 
can be applied to the generated model. First of all, we must 
guarantee that the activity models are deterministic. According 
to [3], “the order in which guards are evaluated is undefined 
and the modeler should arrange that each token only be chosen 
to traverse one outgoing edge, otherwise there will be race 
conditions among the outgoing edges”. This means that: 

• Guards should not overlap.  For example, guards such 
as x <0, x = 0, and x > 0 are consistent whereas guards 
such as x <= 0 and x >= 0 overlap thus being inconsistent 
as it is not clear what should happen when x = 0; 

• Guards on decision points must form a complete set. 
For example, guards such as x < 0 and x >0 are not 
complete because it is not clear what happens when x = 0. 

The following two subsections describe how activity model 
elements are mapped into sequence model elements in terms of 
transformation rules, and what kind of refinements can be 
made after the generation process. 

A. Generating Sequence Models 
This section lists transformation rules between activity and 

sequence abstractions. Each sequence model element type 
(Object, Message, Operator) is grouped into a main rule, 
making three in total. Each rule has sub-rules specifying how 
properties of that element type can be derived and in what 
contexts this element should be generated.  

Rule 1: Generating Objects in Sequence Models 
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Our proposal handles four types of objects [9]: actor 
object—external person or entity that interacts with the system; 
boundary or interface object—user interface elements such as 
screens, reports, HTML pages, or emails; control object—the 
glue between interface objects and entity objects, implementing 
the logic required to manage the various objects and their 
interactions; entity object—the information processed by the 
system and typically found at the database level as data. 

Interface and control objects are created by default in 
sequence models with the name of the activity model that 
represents the scenario under study. In activity models, it is 
common to represent access operations (read or write) to 
objects. These operations are represented with flows between 
activities and objects. We map objects found on activity 
models to entity objects in the sequence model. Actor objects 
are generated based on swimlanes representing actors on the 
activity model. 

Rule 2: Generating Messages in Sequence Models 

Each activity in an activity model is mapped into a message 
in the sequence model. Complex and, therefore, decomposable 
messages can then refined into a set of messages. Our approach 
uses sub-rules to identify the source and target object of the 
generated messages, i.e., which object is the caller and which 
is the callee. Four sub-rules are required for this purpose. 

Rule 2.1: Object flows  

The direction of the flow which connects an activity to an 
object indicates if it is a read or a write operation. For write 
operations the direction of the flow is from the activity to the 
object. For read operations the direction is reverse. A write 
operation triggers the creation of a message from the control to 
the entity object with the name of the activity. For a write 
operation, a return message with type void from the entity to 
the control object is created. Figure 1 depicts this rule. 

 

Activ ity1

ObjectX

 

ControlObject ObjectX

Activity1()

 
Figure 1 - Rule based on object flow denoting a write operation 

Read operations require a return message with type not 
void is created from the control to the entity object. The name 
of the returned message is determined by the name of the 
returned object. For example, if a message getX is sent to an 
entity object, the return message to the control object is named 
X. The type of the return object is not generated and should be 
refined by the user. Figure 2 depicts this rule. 

Rule 2.2: Message name  

This is based on the names of the created messages. Some 
message names implicitly give information about the objects’ 
type (interface, control, entity) the target of the message has. 
For example, showMessage() is typically sent to interface 
objects to display messages to the user. On the other hand, 

interfaces only receive messages from controls or actors. 
However, it is not common actors calling an interface’s 
showMessage(). The recurring pattern is that the message is 
sent from a control to an interface object. 

Get X

ObjectY

 

ControlObject ObjectY

getX()

:X

 
Figure 2 - Rule based on Object Flow denoting a read operation 

Rule 2.3: Swimlanes  

When a message is generated from an activity that is inside 
a swimlane representing an actor, the source object of that 
message is of type actor. As actors only access interfaces, the 
pattern is that the source and target of the message are the actor 
and interface objects, respectively. Figure 3 depicts this rule. 

SystemActor User

A ...

 

User Interface

A()

Figure 3 – Swimlanes representing actors (left); corresponding message (right) 

Rule  2.4: Redirecting Messages 

The main goal of interface objects is to redirect messages 
from actor to control objects, and vice-versa. Messages to 
achieve this goal are created automatically. When an actor calls 
an interface, the latter redirects the call to the control. Although 
this is not always desirable (e.g., user editing a form), in most 
cases it is. If this redirected message is not desired, the user 
needs to remove during the refinement phase. The reciprocal 
situation also happens, that is, when a control object makes a 
call to an interface object, the interface object redirects the call 
to the actor object. 

Rule 3: Generating Sequence Model Operators 

Sequence models may use several kinds of operators, such 
as: ALT (or alternative), where only one of multiple fragments 
satisfying the condition is executed; PAR (or parallel), where 
different fragments run in parallel; OPT (optional), where the 
fragment executes only if the condition is true; LOOP, where 
the fragment executes multiple times while the guard condition 
is true. Each of these fragments is generated by sub-rules.  

Rule 3.1: Generating PAR Operators 

A PAR operator is created in the sequence model when a 
pair of fork-join elements is in the activity model. The elements 
between fork and join are included in a PAR fragment. 

Rule 3.2: Generating ALT, OPT and LOOP Operators 

Decision nodes in an activity model require: 
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1. Handling outgoing flows that form a cycle. Algorithms 
for graphs with cycle detection mechanisms can be used 
to detect cycles in an activity model. Activity models can 
be viewed as graphs, where activities and flows between 
activities are seen as nodes and edges, respectively. For 
each cycle detected, a LOOP operator is created with a 
guard condition, respective messages and sub-operators.  

2. Handling the remaining outgoing flows. If the number 
of output flows is 1, an OPT fragment is created with its 
guard condition. If the number of outgoing flows is 
greater than 1, a fragment ALT is created. Within this 
fragment, there should be an alternative for each outgoing 
flow with its guard condition. The elements inside the 
flow of each guard are moved to the respective fragment.  

B. Refining Sequence Models 
After generating the sequence model, the domain analyst 

must refine it. This is needed because sequence models are 
more fine-grained than activity models and, hence, additional 
information should be provided to the generated model. During 
this, the domain analyst should follow these typical 
refinements: 

• Add arguments and types (string, int, etc): complete the 
message specification with arguments and their types. 
Specify the object type for the existing return messages. 

• Decompose a message to a set of messages: as 
mentioned before, the behavior of an activity may be 
complex, and may be decomposed into several messages. 
Another solution is to decompose the complex activity 
using another activity model, for example, and regenerate 
the sequence model. 

• Add return messages: for synchronous calls it is 
necessary to identify messages in which the related return 
message was not automatically generated. By default, the 
return messages are only created when read or write 
operations are identified. 

• Add variables: sometimes, the result of an operation call 
needs to be saved in a variable, to be used later. This 
variable can be used, for example, as part of a guard 
condition. 

• Initialize guards: in some situations, it is necessary to 
initialize the value of a generated guard so that it can be 
evaluated the first time it is used.  

• Delete undesired elements: undesired sequence model 
elements can be generated by the transformation; these 
should be deleted by the domain analyst.  

III. TOOL SUPPORT  
We implemented a plug-in for the Eclipse platform [10] to 

support the transformations described before, and used the 
Eclipse Modelling Framework (EMF) and UML2 plug-in for 
Eclipse1. EMF allows defining metamodels. It also has a code 
generation facility that helps manipulating and reading 
instances of metamodels. The UML2 plug-in is an EMF-based 
implementation of the UML2 metamodel for Eclipse and was 

                                                           
1 www.eclipse.org/uml2/ 

used to access the metamodel and concrete syntax of activity 
models. Since sequence models are not implemented yet on 
the UML2 plug-in, we used EMF to specify our own 
metamodel for sequence models, created based on the UML2 
infrastructure specification2. Finally, we used EMF generated 
Java code to read abstractions from activity models, process 
them, and create sequence model abstractions. One current 
limitation of our tool is that it does not support nested loops 
detection nor compound activities in activity models. The 
graphical user interface is very simple; the user only needs to 
right click in the source model (activity model) and select the 
option to convert into a sequence model. After this generation, 
the user can use the EMF environment to refine the sequence 
model. 

To receive traceability information between activity and 
generated sequence model elements, a defined metamodel is 
used to link abstractions from the activity to sequence models 
(see Figure 4). A user can see how activity elements are 
related with sequence elements through navigation. 

  
Activity - 
Message

Swimlane - 
Actor

Object - 
EntityObject

Activity 
Node

ObjectActivity

Flow

MessageObject

SwimLane

Fragment

Entity Actor

 
Figure 4 - Activities and Sequence Models Unified Metamodel 

This metamodel is composed of activity (left) and sequence 
(right) model elements and then metaclasses are used to link 
activity to sequence abstractions (center). The central 
abstractions unify the concepts present on activity and 
sequence models and reflect the result of the transformation. 
The metamodel element with name Activity-Message allows 
preserving the connection between Activities and the sequence 
model messages that it generated. The element Object–Entity 
connects the objects found on the activity model and the 
generated entity object in the sequence model. Finally, the 
element Swimlane-Actor shows how swimlanes in the activity 
model were the source for the actor objects. 

IV. APPLICATION TO A CASE STUDY 
This section uses the case study Mobile Media [11] to 

illustrate the proposed approach. Mobile Media is a software 
system for mobile devices such as mobile phones, which 
manipulates photo, music and video on mobile devices. The 
user can manipulate data, such as adding and deleting media, 
configure a media file as a favorite, add or delete media 
albums. The user can also access the data on the device. The 
user can list albums, media, view the favorites media or 
eventually play a media file (play a video, see a photo or hear 
a sound). Finally, the user can share the media data with other 
mobile media users, by sending messages. These messages 
can be sent via an SMS or Email protocol. Due to space 
restrictions, we only present one of the scenarios - send media 
via SMS - of this case study. 

                                                           
2 http://www.omg.org/technology/documents/formal/uml.htm 
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A. Activity Model for “Send Media via SMS” 
In Send Media via SMS, the user starts by selecting the 

Send Media via SMS option, then the system asks for media to 
send. The user selects the media to send in the message. Then, 
he specifies the target number of the message. This 
information is enough to send the message to the target mobile 
device (activity Send Message). If the message is sent without 
errors, it is saved locally in the Mobile Media system and 
“Message Sent Successfully” is shown to the user. Figure 5 
depicts this scenario represented through an activity model. 

System "Mobile Media"Actor "User"

Select Send
Media via SMS

Show Message
"Select Media to

Send"

Select Media Get Media

mediaObject: 
MediaShow Message

"Select a
destination
Number"

Select target
number

Send
message Show Message

"Try Again?"

Show Message
"Error sending

message"

Answer retry

Create
message

messageObject: 
Message

Show Message
"Message Sent

Sucessfully"

SendOK

[yes]

[yes]

retry

[no]

[no]

 
Figure 5 - Activity model for Send Media via SMS 

B. Generation of Sequence Model for “Send Media via 
SMS” 

By applying the rules discussed in Section II, we generate 
the sequence model depicted in Figure 6 for the scenario Send 
Media via SMS.  

Table I shows how each numbered element was created and 
which transformation rule was used. 

C. Refining the Sequence Model for “Send Media via SMS” 
After the generation of the candidate sequence model, 

some refinements can be done to obtain a more complete 
sequence model. The following points show some of the 
possible refinements for this example: 
• The message selectMedia() can be completed with an 

argument of type String, denoting the path of the selected 
media. 

• The message selectTargetNumber() can be completed 
with an argument of type integer, denoting the destination 
number of the message. 

• The message sendMessage() can be completed with two 
arguments: the path of the selected media and the 
destination number of the message. The return of that 
message should also be assigned to a variable sendError 
which will be evaluated on the LOOP operator. 

• The variable retry of the loop fragment must be initialized 
to be evaluated on the first iteration of the loop. In this 
case, the value should be retry = yes in order to execute 
the loop the first time. The answerRetry() return value 
should also be assigned to the retry variable. 

Figure 7 illustrates a refined version of the sequence model. 
 

User SendMediaViaSMS sendMediaViaSMS mediaObject:Media messageObject: 
Message

loop 

[sendOK = no && retry = yes]

alt 

[retry = yes]

[retry = no]

opt 

[sendOK = yes] par 

selectSendMediaViaSMS()

selectSendMediaViaSMS()

showMessage ("Select Media to Send")

showMessage ("Select Media to Send")

selectMedia()

selectMedia()

getMedia()

:Media

selectTargetNumber()

selectTargetNumber()

sendMessage()

showMessage ("Error Sending
Message")

showMessage ("Error Sending
Message")

confirmation()

confirmation()

showMessage ("Try Again?")

showMessage ("Try Again?")

answerRetry()

answerRetry()

sendMessage()

showMessage
("Message Sent
Sucessfully")

showMessage
("Message Sent
Sucessfully")

storeMessage()

Figure 6 - Sequence model for the scenario Send Media Via SMS 

TABLE I.  RULES APPLIED FOR SEQUENCE MODEL GENERATION 

Nr. Rule Applied 
1 Rule 2.2. This message was created from the activity 

Select Send Media Via SMS. The source of the message is 
the actor object, since it was the first generated message.

2 Rule 2.4. This message was created using the rule that 
redirects a message from the actor object to the control 
object.

3 Rule 2.3. This message has interface as the target object 
since the message name fits with the pattern ShowMessage

4 Rule 2.1. This message was created with name Media
since the last created message denotes a read operation.

5 Rule 2.2. The name of this message was derived from an 
activity with the same name. This message has the control 
object as source and target, since no other rules were 
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applicable in this situation. 
6 Rule 3.2. This fragment was created as a loop was 

detected in a decision node with an outgoing flow with 
guard [sendOK = no]. Since the cycle includes also the 
outgoing flow with guard [yes] both conditions must be 
true to enter the loop fragment.

7 Rule 3.2. This fragment was created since a decision node 
with two outgoing flows and no loops were detected on the 
activity model. 

8 Rule 2.1. This message was created with type void since 
the previously created message denotes a write operation.

D. Discussion 
We have shown the application of a scenario of the Mobile 

Media case study with positive results. More scenarios have 
been developed and sequence models generated successfully. 
Statistical tests involving a total of 11 scenarios to 
quantitatively evaluate the gain were also applied (not shown 
here due to lack of space) with positive results.  

In order to compare costs between creating a sequence 
model from scratch or use our approach and refine the 
generated model, we can associate each sequence model 
element action with a cost. If we consider that actions made in 
a sequence model such as (i) removal of any kind of element; 
(ii) insertion of a variable/argument name; (iii) insertion of a 
variable/argument type; (iv) insertion of an operator (PAR, 
ALT, etc) and respective guard conditions; (v) insertion of an 
object and its name; (vi) insertion of a message and the 
corresponding procedure call name (if necessary), have one 
unit of time cost (to simplify, we considered all types of action 
as having the same cost), differences in time costs can be 
calculated.  

If we compare the time cost to create the sequence model 
presented previously from scratch (72 additions) and the cost 
needed for refinement over the generated model (30 additions 
+ 2 removals) we can conclude that the cost has decreased 
from 72 to 32 units of time cost, a value that shows a 
significant improvement.  

There is also a limitation with our approach, regarding 
reuse of refinements performed by the user when the sequence 
model is re-generated. The refinements done previously are 
currently lost and must be redone by the domain analyst. We 
are currently working to support reuse of refinement 
information as a future step. 

It is also important to point that our approach is dependent 
on the quality of the activity diagrams, so poor activity 
diagrams will lead to poor sequence diagrams and more effort 
needed in the refinement stage. 

V. RELATED WORK 
Each UML model represents a particular aspect of a 

software system from a particular viewpoint. However, 
overlapping between the different models exists. This overlap 
can be used in the form of semi-automatic transformations 
between notations, to reduce the design time and help 
maintaining consistency between different models. The 
authors of [12-14] define transformations between different 

models or viewpoints in UML or other languages, aiming at 
automating part of the modeling process. 

retry = yes

User sendMediaViaSMS sendMediaViaSMS mediaObject: Media messageObject: Message

loop 

[sendOK = no && retry = yes]

alt 

[answer = yes]

[answer = no]

opt 

[sendOK = yes]

par 

selectSendMediaViaSMS()
selectSendMediaViaSMS()

showMessage("SelectMediatoSend")

showMessage("SelectMediatoSend")

selectMedia()
selectMedia()

getMedia(media_id:
String):media:

Media
selectTargetNumber(numberid:integer
) selectTargetNumber(numberid:integer

)
sendOK= sendMessage(numberid:integer,
media:Media)

showMessage("Error
sending message")

showMessage("Error
sending message")

:
confirmation :

confirmation
showMessage ("Try Again?")

showMessage ("Try Again?")

retry= answerRetry(answer: String)
retry= answerRetry (answer:
String)

sendOK= sendMessage(numberid:integer, media:Media)

showMessage("Message
Sent Sucessful ly")

showMessage("Message
sent Sucessfully")

storeMessage(mediaid:String, numberid:integer)

 
Figure 7 - Refined sequence model for the scenario Send Media Via SMS 

When defining these transformations, new problems arise, 
related to differences in expressivity between models. 
Sometimes, these differences are addressed by extending the 
original notation of a model to enrich its semantic information 
and, thus, facilitate the definition of the transformation rules 
[13]. Other works [12, 14] address those differences at the 
transformation level, maintaining the original notation of the 
models. In this case, the transformations are difficult to 
express if the models have poor overlap between them. This 
section briefly presents and comments some scenario-based 
related work, taking these considerations in mind. We will see 
that the work we present in this paper complements and 
completes the existing work. 

Whittle and Schumann [12] present an algorithm to 
automatically generate UML statecharts from a collection of 
scenarios represented using UML sequence models. In this 
work, they address several issues, such as detecting conflicts 
arising from the merging of independently developed 
sequence models and find behavioural similarities between 
different sequence models. They do this at the algorithm or 
transformation level.  

There are also works that extend the original UML2 
notation to enrich the semantic information needed for a 
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transformation. An example is the work presented in [13], 
where they extend the UML2 Activity Model with process 
goals and performance measures to make them conceptually 
visible. They also provide transformation rules to BPEL 
(Business Process Execution Language) to make the measures 
available for execution and monitoring. In this work, the 
additional notation defined, for the activity models, allow both 
models being semantically closer, which made the definition 
of the transformation rules easier.  

Gutiérrez et al [14] propose to generate automatically, 
through model transformations, an activity model representing 
the use case scenario from a textual template. In this work, we 
observed that the semantic inherent to the abstractions present 
on the template (if-then-else, requirements numeration 
indicating parallelism) and on the activity model were very 
close, which resulted in a relatively trivial set of 
transformation rules. 

Petriu and Sun proposed a way to generate activity models 
from sequence models [15] in a reverse engineering approach, 
where the source model is more fine-grained than the 
generated model. This is useful when handling legacy 
systems. However, in a context where we first model the 
system at higher levels of abstraction and then progressively 
move towards a more fine-grained models, the solution 
proposed in [15] does not help. The work proposed by Dijkman  
and Joosten  [16] is also another example of transforming fine-
grained models (business models) into coarse grained models 
(use case models).  

In our approach, we have not extended the activity and 
sequence models standard notation; we concentrate our effort 
on the definition of transformation rules to facilitate the semi-
automatic generation of sequence models from activity 
models. Both models have different levels of granularity, 
representing different viewpoints, which makes the definition 
of transformation rules more difficult. However, since some 
information between them overlaps, such as, for example, 
conditional behaviour or concurrency, it is possible to 
automate part of the process using model transformations. 

VI. CONCLUSIONS AND FUTURE WORK 
Modelling scenarios with activity and sequence models of 

a system can be semi-automated by using transformation 
techniques, a key concept in MDE. By using transformations, 
it is possible to reuse information which was directly mapped 
from one model to another. This frees the burden of the 
domain analyst from creating similar abstractions which can 
be automatically generated and also avoids modelling errors, 
concentrating the effort on the refinement stage of generated 
artefacts. Transformation rules were defined to generate 
sequence models artefacts from activity models artefacts. Our 
transformational rules support the automation of the creation 
of objects, messages and operators for sequence models from 
the information contained in activity models.  

Our initial validation effort, through the case study 
described in section IV provided encouraging feedback 
concerning the desired effort reduction. Indeed, the number of 
edits required for building a sequence model from the activity 

model decreased by around 55%, when using our semi-
automatic transformation approach. The advantages, from a 
quality point of view, include: (i) a reduction in the effort 
building the sequence model, (ii) increased traceability among 
models (through the semi-automatic translation rules), (iii) 
error prevention when migrating from different scenarios 
notations, and (iv) support for reuse of sequence models 
design best practices, thus providing a good stepping stone for 
high quality scenario modelling. 

 For future work, we plan to fully implement the 
transformation rules described in this paper. Currently, we 
have an initial version3, which is implemented using Eclipse 
[10], EMF and UML2 plug-in. We also plan to apply our 
approach in projects where real case studies are available in 
order to further validate the claim about time costs 
improvement provided by our approach. Finally, we plan to 
extend our approach to support reutilization of refinement 
information. 
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