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Abstract

Component-Oriented Programming has been, for the past few years, an emergent program-
ming paradigm. However, it has been supported mainly by low-level technological solutions.
Traditionally, modularity in object-oriented languages has been based on the notion of class,
and software reuse achieved by either implementation inheritance or object aggregation. On
the one hand, inheritance has proved to become problematic in the context of large-scale soft-
ware systems, as it may hinder evolution and interferes with issues such as dynamic loading.
On the other hand, object aggregation is usually implemented by ad-hoc idioms that manually
build webs of objects.

This dissertation contributes to this field by introducing appropriate programming lan-
guage abstractions and type systems for expressing the assembly, adaptation, and evolution
of software components. Our model is formally expressed by means of a core typed program-
ming language whose first-class values are objects, components, and configurators. Objects are
component instances which aggregate state and functionality in the standard object-oriented
sense. Components are entities that specify the structure and behaviour of objects by means
of a combination and adaptation of smaller components. From a network of elements, which
is specified by a configurator value, only well identified interfaces, that import and export
services, remain visible to be used in further compositions. Configurators are operations that
produce structures by aggregating and connecting components in an implementation inde-
pendent way; they are either defined using canonical composition operations, that insert or
connect elements in a composition, or by a combination of other configurators, thus producing
their joint effect. Configurators are uniformly used to produce components or modify the in-
ternal structure of objects. Thus, this variety of values and language constructs allows for both
the expression of dynamic construction of new components (based on run-time decisions) and
the unanticipated reconfiguration of component instances.

We develop several type systems to ensure the structural soundness of components and
objects, before and after reconfiguration actions. In particular, configurators are typed with
intensional type information, revealing certain aspects of their internal structure which play
an essential role in the typing of composition and reconfiguration actions. We also define a
novel approach to subtyping second-order recursive types, we prove its decidability by de-
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signing a subtyping algorithm and proving its correction. This result is then used to enrich our
component language with recursive types and polymorphism (universal and subsumption-
based), and define a flexible structural subsumption relation between components, instances
and reconfiguration scripts. The decidability of the typing relation and the correction of the
corresponding algorithms are also presented and proved correct. We define and prove type
safety by means of subject reduction properties which imply the intended structural sound-
ness results.

To perform actual experimentation of our programming model, we also developed and
implemented a prototype compiler for a Java-like programming language, componentJ.



Sumário

A Programação Orientada por Componentes tem tido nos últimos anos uma relevância cres-
cente como paradigma de programação. No entanto, tem sido apenas suportada por soluções
tecnológicas de baixo nı́vel. Tradicionalmente, a modularidade em linguagens orientadas por
objectos tem sido baseada na noção de classe e a reutilização de software conseguida através
de mecanismos de herança ou de agregação de objectos. Por um lado, o mecanismo de herança
pode tornar-se problemático no contexto do desenvolvimento de software em larga escala pois
condiciona a evolução dos programas e interfere com outros mecanismos como por exemplo o
do carregamento dinâmico de código. Por outro lado, a agregação de objectos é normalmente
implementada por redes de objectos montadas de uma forma ad-hoc ou seguindo alguns idi-
omas de programação.

A contribuição desta dissertação está na introdução de abstracções adequadas à definição
da montagem, adaptação e evolução de componentes de software ao nı́vel das linguagens de
programação. O nosso modelo é expresso formalmente numa linguagem de programação
cujos valores de primeira classe são objectos, componentes e configuradores. Os objectos são
instâncias de componentes que agregam estado e funcionalidade como é habitual nas lingua-
gens orientadas por objectos. Os componentes são entidades que especificam a estrutura e com-
portamento dos objectos. A sua construção é feita por uma operação da linguagem que, a partir
de um configurador que liga e adapta outros componentes, produz um valor que esconde os
detalhes da sua estrutura interna. Apenas os pontos de ligação explicitamente definidos, de-
nominados portos, ficam visı́veis no componente resultante. Os configuradores são operações
que produzem estruturas por agregação e conexão de componentes independentemente das
suas implementações. Os configuradores são definidos a partir de operações canónicas de
composição que inserem ou ligam elementos, ou por composição de outros configuradores.
Os configuradores são aplicados de uma maneira indiferenciada tanto na produção de com-
ponentes como na modificação da estrutura interna de objectos. Esta panóplia de valores e
abstracções permite a codificação tanto da construção dinâmica de novos componentes (tendo
como base decisões de execução), como a reconfiguração inesperada de instâncias de compo-
nentes.
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São apresentados nesta dissertação vários sistemas de tipos que asseguram a consistência
estrutural de componentes e objectos, antes e depois de acções de reconfiguração. Em parti-
cular é utilizada informação de tipos intensional para descrever os configuradores que revela
aspectos da sua estrutura interna. Esta informação desempenha um papel fundamental na
tipificação de operações de composição e de reconfiguração. Também se define uma relação
inovadora de subtipificação para tipos recursivos de segunda ordem e é apresentada e provada
a correcção do algoritmo correspondente. A linguagem de componentes é então extendida
com tipos recursivos e polimorfismo (paramétrico e de inclusão) utilizando estes resultados. A
decidibilidade da relação de tipificação e a correcção do algoritmo correspondente são também
demonstradas. A segurança de tipos é apresentada e expressa formalmente num resultado de
subject reduction que implica os resultados de consistência estrutural desejados.

Para experimentar o modelo, foi desenvolvido e implementado um protótipo de um com-
pilador para uma linguagem de programação baseada em componentes chamada componentJ,
que tem uma sintaxe semelhante à linguagem de programação Java.



Notation

Expressions e, e0, ei

Labels `, `0, `i

Set of labels L
Variables x, y, z, c, d, f , g, . . .
Set of variables V
Locations l, li, l0

Set of locations Loc

Values s, t, u, v, . . .
Set of values U
Memory heaps S, Si, S0

Ports o, p, q, r, . . .
Records r, r0, ri

Empty instance 0
Types t, s, d, g, a, b, t0, ti

Set of types T
Type variables X, Y, Z, W
Set of type variables Z
Substitution of variables q

Unitary substitution [x e0]
Substitution of type variables Q

Unitary substitution of type variables [X t]
Restriction of a name x in a substitution q\{x}, Q\{X}
Sequences ei

i21..n , e1, . . . , en

Interface types I, J
Object types R, P
Component Types R) P
Resources ` • t, ` � t, ` . t, ` / t

Resource sets K,K0,Ki
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Configurator types K =) K0

Typing environments D, G, P, D0, D i

Restricted typing environment |D|
Well-formed type judgement D ` t ok

Valid typing environment judgement D ` ⇧
Typing judgement D ` e : t

Subtyping judgement D ` t  s

Evaluation judgement e; S # v; S
Configurator application judgement s; e; S + s; S
Matching of an instance to a resource set s//K

Concatenation of records r� r0

Concatenation of interfaces I � J
Concatenation of resource sets K, K0

Disjointness of resource sets K#K0

Disjointness of interfaces I#J
Unsatisfied resources in K or s K�, s�
Available resources in K or s K•, s•
Provided ports in K or s K., s.

Required ports in K or s K/, s/

Narrowing relation on typing environments G v G

Generating function for a subtyping relation S
Greatest fixed point of a function S gfp(S), nS
Tuples of a subtyping relation (D, t, s), t, t0

Similarity relation on tuples t ' t0

Reachability relation on tuples t >> t0

Subexpression relation on types t � t0
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Chapter 1

Introduction

Component-Oriented Programming is an emerging programming paradigm for which appro-
priate programming language support still seems to be lacking. Its main goal, namely to com-
bine prefabricated software components in ways such that reuse is made possible at a global
scale, has been supported mainly by low-level linking mechanisms such as JavaBeans, COM,
and .NET.

1.1 Modularity and Programming Languages

Traditionally, modules have been the usual mechanism provided at the programming language
level for reusing code and taming the structural complexity of software systems. From the
rudimentary support for linking of code fragments in the C programming language [62] to
the sophisticated module language of ML [70], there is a large variety of approaches allowing
programmers to build applications from separately developed and compiled blocks of code.
Modules enforce information hiding at the level of system components. Consistency between
different parts of a software system is then ensured using interfacing information revealing
public module elements. The process of actually building executable systems is usually ex-
pressed by compilation and linking procedures such as makefiles. Nevertheless, some program-
ming environments do allow the assembly of systems to be specified in a high-level composi-
tion language. For example, in ML, modules may be composed using a notion of functor, that
essentially corresponds to a parameterised module. In all cases, the structure of systems must
be fully resolved at compile-link-time and gets fixed once and for all.

Module languages provide compile-time soundness guaranties over the structures they de-
scribe. However, they fail to capture global dependencies between modules, those that end
up implicit in their implementations. An exception can be found in the ML functor language
where functors explicitly indicate inter-module dependencies. Additionally, the majority of
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module systems only support strictly hierarchical dependencies. The theory of modules has
been widely studied by authors such as MacQueen, Harper and others [70, 54, 16, 53, 67,
44, 33, 10]. In particular, Cardelli [24] and Leroy [68] developed some work that describes
and formalises properties of general linking processes. More recently, some type safe ap-
proaches to module composition, usually called Mixin-modules, were studied by several au-
thors [16, 38, 101, 11, 56, 57]. Mixin-module languages separate the definition of modules, using
a base language, from their composition, which is achieved by means of operators on modules.
These operators manipulate the imported and exported names of its operands and in this way
combine their implementations to obtain larger modules. Mixin-modules provide a more flexi-
ble composition mechanism for combining modules than the traditional hierarchical approach,
and to some extent they inspired some of our work. In particular, they allow the definition of
structures with mutually dependent modules.

The structuring mechanisms introduced by object-oriented programming, allowing the pro-
grammer to group related data and functionality using classes, is the commonly accepted way
of modelling application scenarios and, at a small scale, modularise software systems. How-
ever, classes are not just units of modularity, they are also units of inheritance-based code reuse.
It is currently believed that the strongly-coupled structures induced by implementation inheri-
tance do not mix well with the needs of software evolution, even less if combined with dynamic
linking mechanisms such as the ones introduced by modern run-time environments such as
Java and .NET. Inheritance hinders the evolution of class implementations; it is known that
any modification to a class that is not a leaf in the inheritance hierarchy may cause code to
break in other parts of the system. Thus, large scale object-oriented applications are prone to
the so-called fragile base class problem [46, 97].

Alternatively, when one chooses to compose elements by aggregation instead of class exten-
sion, the (client/server) relations between objects are usually represented by references stored
in instance variables. Unless a careful programming discipline is followed, these manually
built object structures, which are commonly hardwired in the source code, are error prone,
hard to maintain, and hard to evolve. Additionally, such programming idioms rely on the ex-
plicit reference to class names to instantiate the different elements of a composed subsystem.
Although programming patterns such as factories can be used to overcome this problem, they
do so at the cost of adding an extra level of complexity to the code.

Despite of the absence of native support for dynamically manipulating the structure of pro-
grams, programmers sometimes take advantage of existing low-level reflection mechanisms
to build systems that can adapt to their execution environment. As an example of this situa-
tion, consider a viewer that may select at run-time an appropriate third-party plug-in in order
to handle different sorts of input data. Unfortunately, existing reflection mechanisms are not
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safe to build new structures although they are certainly useful to manipulate components in an
untyped, and therefore not statically safe, way.

Middleware and component frameworks, such as Sun’s Enterprise JavaBeans [96] and Mi-
crosoft’s COM+ [32] provide infrastructures implementing base services which are typical of
certain application scenarios. In this context, aggregation-based composition, supported by
interconnection standards such as JavaBeans, COM and .NET, settled as the most common
structuring mechanism. This preference reflects a shift of programming style from a pure,
inheritance-based object-oriented style, towards the so-called “Component-Based Program-
ming” idioms, which favour black-box composition [97]. Besides providing dynamic and late
linking mechanisms, these standards also promote the usage of loosely-coupled webs of ob-
jects. Information hiding is here achieved by programming conventions, abstract interface de-
scriptions, subscription based connections (event handling), and object factories, rather than by
programming language mechanisms. Since the construction code for these object structures is
not distinguished at the programming language level from any other code, the difficulties iden-
tified above, regarding the maintenance and evolution of systems, also persist. Static checking
of architectural consistency (of the kind found, for example, in ML functor language or in
mixin-based languages) is not performed at compile-time, and may cause hard to diagnose er-
rors to show up only at run-time. The general problem seems to be that type safety for the code
responsible for the system assemblage cannot be easily obtained from the static type safety of
the underlying programming language.

Mixin and trait-based languages [16, 45, 15, 91, 80] do provide safe forms of loosely-coupled
composition mechanisms for class-like modules. Although some of these core calculi allow the
run-time construction of class structures, the industrial strength programming languages they
inspire, e.g. Scala [76], although allowing some forms of dynamic object composition only deal
with mixins and traits as compile-time values. Other ways of organising and combining classes
in parameterised packages, based on the notion of mixin modules, were introduced in certain
Java-like programming languages [74, 8]. Again, all package combinations are predefined at
compile-time, and no context-aware system assembly may be safely expressed at the program-
ming language level.

Despite being manually defined, the construction of object webs at run-time supports well
an interesting notion of “just-in-time” construction of systems, which is not directly supported
by any of the language-based approaches referred above. Moreover, the ad-hoc object web
approach also allows for the dynamic evolution of structures by introducing new objects and
refactoring the web connections at run-time. Again, these changes to the system structure are
not defined separately from the remaining application code, and thus cannot be easily verified
for static safety properties. The widespread use of mechanisms such as object serialisation,
dynamic loading, and mobile code adds relevance to the general issue of finding expressive
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Figure 1.1: Model ingredients and interactions.

and safe programming language constructs to dynamically build and reconfigure systems by
aggregation and replacement of components and objects.

1.2 A Model for Component-Oriented Programming

The main motivation of this work is therefore to propose and analyse supporting language-
based mechanisms for the Component-Oriented Programming paradigm in the sense described
above. We aim at answering the question: “How can programming idioms for structuring and
maintaining programs, typical of the component-oriented programming style, be safely ex-
pressed at the programming language level?”. We propose a programming model whose main
ingredients and operations directly express component-oriented programming concepts. More
concretely, we introduce a core object-oriented imperative language and extend it with new
language constructs for expressing software composition and reconfiguration.

The main ingredients of our model, which are also first-class values in our programming
language, are objects, components, and configurators. (see Figure 1.1.)

Objects are defined from components (cf. class instantiation). They aggregate state and func-
tionality in the standard object-oriented sense and implement services which are specified by
standard interface types. In opposition to objects in standard class-based programming lan-
guages, which tend to collapse a set of implemented services into one single interface, objects
in our model provide explicitly separate views, distinguished by a name, on the services they
implement. The different views of an object are available at access points called ports.
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Components specify the structure and behaviour of objects by means of combination and
adaptation, through scripting, of other components. At the component level ports also play an
important role. A component declares a set of required ports, which denote external implemen-
tations of services that can be referred inside the component, and a set of provided ports, which
export the services implemented by the component. The internal structure of components is
specified by configurators. Any component establishes a visibility boundary allowing external
access only to its provided and required ports. Additionally, the component border also for-
bids internal elements to refer to any name declared outside. Thus, in our model, component
boundaries provide two-way information hiding. Not only this provides the usual concept of
information hiding, from the outside towards the inside of the component, but it also provides
a notion of information hiding from the inside of the component towards the outside. This
makes components closed values which are usable independently of their evaluation context
and indistinguishable from other components providing and requiring the same set of ser-
vices. This equivalence relation is expressed at the level of typing and is extended to a richer,
subsumption relation.

Configurators are first-class “functional-like” values that combine and adapt components by
aggregation and scripting, in an implementation independent way. Our language defines a set
of basic canonical configurators allowing the programmer to declare new required and pro-
vided ports, to introduce new components, to introduce new scripting blocks, or connect two
existing elements. Configurators are composable in such a way that the resulting configurator
produces the joint sequential effect of their parts. In opposition to components, that may only
be used by connecting their ports, configurators can be combined with other configurators by
referring to any elements they introduce or connect. (cf. “white-box” compatibility in Software
Engineering terminology. We call white-box composition to the combination of configurators
where all architectural elements are visible, in opposition to the hierarchical composition of
components, where components include others but only the declared ports (required and pro-
vided) are visible and available for connection. The latter is called black-box composition.)

Thus, configurators are operations that describe the way in which components are aggre-
gated and adapted; from the perspective of more usual compilation and linking process they
can be compared (by analogy) to makefiles. Configurators can be incrementally built by compo-
sition of configurators of various sorts, and once a consistent network of elements is obtained,
the configurator can then be “compiled” (the code in scripting blocks gets compiled in the con-
text of composition) and “linked” (connections between ports are fixed) to produce a finished
and executable entity, namely a component. Components can then be either used to produce
objects in an application or used as elements of other compositions. Moreover, configurators
can also specify changes in the structure of objects (cf. patch files). It is a distinctive feature of
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our model that both component assembly and object reconfiguration are specified uniformly
using the same concept, the configurator.

The model we have informally described here is incrementally defined, in a precise way, in
the chapters to follow. The programming language that expresses our model is defined by ex-
tending an imperative l-calculus with composition constructs. The obtained language is closed
under abstraction and application at a high-level of generality. Initially, we consider only the
definition of configurators, to construct components and objects, then we extend the language
to allow reconfiguration of objects, and finally we add subtyping and bounded parametric
polymorphism. We follow the programming language design principles described in the next
section, and before defining the language in a precise manner, we illustrate it by means of a
few simple examples.

1.3 Design Principles

In this section, we present some principles that we assume as goals of our model and which
guided the design of our programming language. The first principle states that all inconspic-
uous references between components must be avoided. Secondly, we aim at expressing in our
model the dynamic construction of systems based on run-time decisions. As a complement to
the dynamic construction of systems we also aim at expressing the evolution of objects. The
last described principle concerns the typeful development of the model. We aim at providing
programming language constructs with clear semantics and using a type language capable of
capturing the essential properties of the ingredients and operations. We aim at statically ensur-
ing the absence of run-time and load-time errors such as the lack of needed components, the
call to unimplemented services, or the application of operations to incompatible object struc-
tures.

1.3.1 Explicit Functional Dependencies

The structural complexity of systems built using ad-hoc construction of object webs highly
surpasses that of systems built using standard module mechanisms. But, the increased flex-
ibility given by dynamically interconnecting system components has a negative effect on the
perception one has about the dependencies of components.

In modern object-oriented platforms, the resolution of dependencies between system com-
ponents is delayed to the moment of program loading which is usually performed using a lazy
discipline. Since dependencies between modules are usually fixed, by means of names that
directly refer to implementations, and are not explicitly declared in ways that the programmer
is aware of them, severe problems may arise. Code breaks if a required component ceases to
exist or the available implementation is different from the one known at compile-time. This
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sort of problems is more often found when components are used in contexts different to that of
its definition. Errors of the sort “Method not implemented” or “Component not found” may
happen in unexpected regions of the code where proper handling is not feasible.

We propose, as a fundamental concern in our model, that all functional dependencies are
explicitly expressed and explicitly satisfied. We aim at defining loosely-coupled structures of
components, based on object-oriented interface definitions and aggregation, as opposed to
tightly-coupled inheritance-based hierarchies of classes or modules. Our approach to build
such structures is to use explicit connection operations. The structures we obtain slightly re-
semble architectures of distributed systems defined in the style of classic Architecture Descrip-
tion Languages (ADLs) [49, 71]. In this kind of structures, the elements are viewed as black-
boxes with publicly known connection points (input and output) and the connections between
elements are “point-to-point”, possibly forming structures with mutually dependent compo-
nents.

1.3.2 Dynamic Structuring Mechanisms

The ad-hoc construction of webs of objects not only allows for a flexible aggregation of parts of
a system but also for the resulting structure to depend on information about the surrounding
environment. This is not feasible in statically linked systems where all possible execution sce-
narios have to be considered in advance using a fixed structure of modules. To simulate this
behaviour, the same monolithic program must predict and adapt to different run-time circum-
stances by explicit case analysis. Typically, the maintenance and evolution of this sort of code
is a difficult task; it is mainly based on source editing in sparse locations of the code. Notwith-
standing the already mentioned disadvantages of the ad-hoc aggregation of objects, the notion
of dynamic construction of systems, referred above as “just-in-time”, seems to be unexplored
at the level of programming language design. The assembly of systems at run-time, depending
on run-time environment information, is a way of swiftly adapting and evolving an applica-
tion to handle a large variety of situations, e.g. a web server that adapts its response to different
browser programs, bandwidth conditions and even user preferences.

We believe that the definition of functionality and that of structure should be placed at the
same level, in such a way that the effective structure of a program may depend on compu-
tational results. An adaptable program may start by obtaining information about its running
environment and then configure itself in the most appropriate way. Although allowing the
dynamic construction of components we fix the interface type information of the resulting
components, thus avoid having dependent types in our language and the consequent phase
distinction problems [22, 54].
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1.3.3 Dynamic Reconfiguration of Objects

Software maintenance comprises two major sorts of tasks: error correction and upgrading
of functionality. In general, these tasks require unanticipated changes to applications. The
standard approach for evolving software, by editing the source code and producing new exe-
cutables, inevitability forces the reinitialisation of target applications, which, in some circum-
stances, may cause major disruption in the provided services.

There is some work on evolution of module systems [90, 14, 93, 55, 37] but the native sup-
port at the programming language level for unanticipated modifications seems to be unex-
plored. Approaches to anticipated changes to implementation of objects are described by sev-
eral authors [35, 89] but their motivation is to use reconfiguration as an additional abstraction
mechanism rather than supporting the evolution of software. For instance, in Fickle [35], the
concrete implementation of an object can vary within a set of classes that share a superclass.
Each one of these subclasses represents a different “state” of the object, where different instance
variables and different sets of methods are defined. More recently, [91] introduced a dynamic
substitution mechanism for traits which allows to replace the implementation of a previously
known set of methods.

One goal of our model is to support both the construction of components and the modi-
fication of objects at run-time. The use of language abstractions over composition operations
allows for the definition and modification of components and objects to be uniformly expressed
and controlled. This is achieved by defining small-grain composition operations and by map-
ping the structure of components to the network of elements and connections used to define
objects. Such reconfigurations can be triggered in the course of the computation, and programs
may even receive the reconfiguration scripts from an outer context, e.g. in case of an exception
being raised by an object, the system may search for available correction scripts from a site of
the original component developer, and in this way correct them.

1.3.4 Type Safety

In the historical development of programming languages, type systems revealed to be a fun-
damental tool in any programming language design by anticipating error detection to a phase
prior to execution. Type systems ensure good properties of programs efficiently and without
major user annotations. When modules are involved, a usual goal is to prove that their usage
conforms with the available interface information and also that the code defining the module
can be compiled separately, i.e. by ensuring that the declared interface is indeed implemented
and that its code conforms to the interface of other modules.

The usage of sophisticated programming language constructs to abstract composition oper-
ations improves the expressiveness and readability of programs and also provides ground for
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static verification of semantic properties of objects, components and configurators. Our model
ensures at compile-time that all objects, components, and configurators are well-formed with
relation to their type information. In order to achieve this we describe our ingredients and in
particular configurators with appropriate type information. While objects and components are
typed with information that abstracts their implementation and solely describe their interfaces,
configurators are typed so that their effects are fully described. Configurator types are defined
in such a way that the compositionality of the operations over configurator values results in
the compositionally of their types.

From the internal perspective of a component, type safety implies that all provided services
are indeed implemented based only on the type information about the imported services. From
the outside perspective, besides the correct usage of the provided services, the type system also
verifies that a component is used only when all imported services are indeed available and
connected.

This approach allows us to follow a type-based mechanism to ensure a notion of architec-
tural soundness. In general we consider that components and objects are architecturally sound
when all provided services are implemented and all dependencies between components are
satisfied.

The model also ensures that all reconfigurations performed during the execution of a pro-
gram produce well-formed objects and that posterior use of reconfigured objects is safe. How-
ever, an increased challenge arises from the interaction between the encapsulation mechanisms
of components and objects and the operations needed to change their internal structure. The
solution we found for this problem lies in a combination of dynamic and static typing that stat-
ically ensures that reconfiguration actions can be performed without run-time errors. We show
that our model combines well with standard type abstraction mechanisms and subtyping. We
add bounded parametric polymorphism and a rich subsumption relation for both component
and configurator values.

Having stated these design principles we now informally describe the programming lan-
guage where the concepts of our model are expressed.

1.4 The Programming Language

In this section, we illustrate the fundamental features of our model by means of two examples.
In the first example, we implement the well-known Observer pattern [47]. We define basic
components by composition and adaptation of other components, and define a factory method
to work as a template for assembling the programming pattern from abstracted elements. We
then use a second example, a word processing component, to illustrate how these features can
be used to program software management operations such as automatic updating of code. The
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constructs of our language are used in the examples independently of the order used to present
them in the dissertation; they are defined and explained in detail in the chapters to follow.

For the sake of legibility, we use some type abbreviations and a Java-like notation for vari-
able and function declarations. Function types are written (T)S for functions with a parameter
of type T and return type S; interface types are collections of tagged function types; and the
unitary type void is used with the usual meaning.

1.4.1 Representing the Observer Pattern

In the Observer pattern, there are two sorts of participating roles: there is one object that is the
subject of observation and there is an undetermined number of observer objects. Each observer
explicitly registers itself in the subject object to manifest its interest on receiving notifications
on the occurrence of certain events (e.g. a state change). To that end, the subject keeps a list
of the registered observer objects. The notification is performed by calling some predefined
method on the observer objects and by passing a reference to the subject as argument (to allow
further interaction).

Assuming that we want to observe a service of type ICollection defined as follows:

I C o l l e c t i o n = {add : ( i n t ) void , remove : ( i n t ) void }

We specify the interface types of the objects in the observer pattern as follows:

IObserver = {update : ( I C o l l e c t i o n ) void}
ISub jec t = { r e g i s t e r : ( IObserver ) void ,

u n r e g i s t e r : ( IObserver ) void ,
n o t i f y : ( ) void}

The behaviour of the participating objects is described as follows: an object that implements
IObserver can be subscribed or unsubscribed from the interest of observing a subject by means
of a call to the methods register or unregister, its method update is called as consequence of the
method notify being called on the observed object.

Defining a generic subject We encode the functionality of the subject role in a single compo-
nent, called CSubject, in the next fragment of code. (We assume given a generic list component,
CList; it has a port named list whose methods are obvious from the example. First-class func-
tions (l-abstractions) are defined by expressions of the form fun(x:T ){...} .)

c = ( requires ob jec t : I C o l l e c t i o n ;
provides sub jec t : ISub jec t ;
uses L = CLis t ;
methods m {

void r e g i s t e r ( o : IObserver ) {
L . l i s t . add ( o ) ;
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} ,
void u n r e g i s t e r ( o : IObserver ) {

L . l i s t . remove ( o ) ;
} ,
void n o t i f y ( ) {

f = fun ( o : IObserver ){o . update ( ob jec t ) ; } ;
L . l i s t . i t e r a t e ( f ) ;

}
} ;
plug m into sub jec t ) ;

CSubject = compose ( c ) ;

The compose operation above builds a component whose structure is defined by a configura-
tor passed as argument (c). Configurator c is the result of evaluating a composition operation,
which in this case is a sequence of smaller composition operations. Composition operations
can be either primitive, which add new elements to a configuration or connect two elements of
a configuration, or they can denote the composition of two configurators (�;�). The structure
denoted by a compound configurator contains the elements of both operands and the connec-
tions they introduce may refer to elements on either side of the composition.

The primitive operations used to build the structure of CSubject, are described as follows.
The operation requires introduces a required port object, which provides access to an imported
service of type ICollection . The operation provides declares a provided port to export the sub-
scription/notification functionality. This functionality is implemented in a method block in-
troduced by the operation methods m{...}, where m is the local name denoting this block. The
methods of m are made available at port subject by the plug operation. Notice that the methods
of m rely on an existing component, CList, integrated in the structure of configurator c by the
operation uses L =... where L is the local name by which it is referred to. It holds the references
to all registered observers. Each composition operation introducing elements declares a local
name, by which the new element is accessible, whose scope extends to the composition oper-
ations ahead. Notice, for instance, that the imported service (object) is directly passed to the
observers in the call to method update.

Components are typed according to their required and provided service types and names.
The internal elements declared by configurator c are encapsulated by the compose operation;
only the provided and required ports remain visible in the type of the resulting component. In
this particular case, the type of CSubject is of the form:

{object : ICollection}) {subject:ISubject}. (1.1)

Component types comprise two sets of typed ports, one that enumerates the services upon
which the component’s implementation depends on (the ports on the left hand side), and an-
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other that indicates the services that the component implements (the ports on the right hand
side). Notice that components with the same exact sets of provided and required ports are
indistinguishable from the viewpoint of typing.

Implementing the pattern over a collection Now, consider that there is another component,
CCollection, implementing a collection of integer values, typed by the component type T defined
by:

T , {}) { collection : ICollection} (1.2)

to which we would like to apply the Observer pattern. Notice that this component implements
interface ICollection at a port named collection and that it does not need external services to do
so (its set of required services is empty). Suppose that we want to observe the additions made
to the collection. Then we may define a component that combines CSubject and CCollection as
follows:

CObservableCol lect ion = compose (
provides c o l l e c t i o n : I C o l l e c t i o n ;
provides sub jec t : ISub jec t ;
uses c = CCol lec t ion ;
uses s = CSubject ;
methods m {

void add ( x : i n t ) {
c . c o l l e c t i o n . add ( x ) ;
s . sub jec t . n o t i f y ( ) ;

} ,
void remove ( x : i n t ) {

c . c o l l e c t i o n . remove ( x ) ;
}

} ;
plug m into c o l l e c t i o n ;
plug s . sub jec t into sub jec t ;
plug c . c o l l e c t i o n into s . ob jec t ) ;

Notice that this component preserves the original functionality of the collection component
(at port collection ) as well as the functionality associated with the subject role in the Observer
pattern (at port subject). Both inner components, CSubject and CCollection are introduced in the
structure of CObservableCollection via the composition operations uses s =... and uses c =... . They
are referred by the local names s and c. The scope of these names extends to the composition
operations ahead, which in this case are the method block declaration and the plug expres-
sions. This means that each instance of component CObservableCollection will have one instance
of component CCollection and an instance of component CSubject inside its structure. The two are
then implicitly linked by means of scripting code (method block m) that watches the addition
of elements to the collection and triggers a notification whenever it occurs (by calling method
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notify ). The collection is provided to the inner component s, at port object, thus satisfying the
functional dependency expressed in its type. The reference to a collection object resulting from
this connection is passed on to the observer objects (in method notify of CSubject).

Defining Observers The observer objects can then be implemented as follows: (We assume
given an interface type ILog with a method print accepting a string as argument.)

CCol lect ionObserver = compose (
provides observer : IObserver ;
requires log : ILog ;
methods m {

void update ( c : I C o l l e c t i o n ){
l og . p r i n t ( ” updated ” ) ;

}
} ;
plug m into observer )

In this case, whenever method update is called on port observer, a message is sent to the service
connected to port log. Both components can then be instantiated and put to work as in the
hypothetical sequence of instructions:

co l = new CObservableCol lect ion ;
. . .
o = new CCol lect ionObserver with l og := . . . ;
. . .
co l . sub jec t . r e g i s t e r ( o . observer ) ;
. . .
co l . c o l l e c t i o n . add ( 1 ) ;
. . .

The internal structure of object col is organised according to the structure of its generating com-
ponent, CObservableCollection. The object has two visible provided ports connecting to method
blocks inside its structure that implement the intended functionality. Recall the declaration of
CObservableCollection and verify that, in this case, port collection leads directly to a method block
of type ICollection , and port subject leads to a method block inside an instance of CSubject with
type ISubject.

The instantiation of CCollectionObserver resorts to a more flexible form of instantiation. When
components have unsatisfied required ports, an existing object can be connected to a compo-
nent at instantiation time to implement them. This gives basic support for aliasing and sharing
between objects. In this way different objects can share references to one common resource.
The new object o receives a reference to an object implementing ILog in the with clause of the
new expression. This mechanism can also be seen as a form of configuration of components. By
providing different implementations to required ports of components at instantiation time, the
programmer is influencing the behaviour of the resulting instances in different ways.
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In this short sequence of instructions, we see that the observer object gets registered, by
calling method register of the observable collection object col, and gets warned whenever some
integer is added to the collection. This completes the definition of the Observer pattern us-
ing our composition-based language where the structure of the pattern is clearly expressed by
aggregating two independent components. We now look in more detail to the typing of the
composition operations presented here and we next generalise the assembly of the pattern by
abstracting the role of the collection. Recall the composition operations used above: provides,
to define a provided port; requires, to define a required port; uses to reuse a component in a
composition; methods to define an implementation of a set of methods; plug to connect a service
implementation to a port; and the sequencing of two composition operations to combine the
effect of both.

Typing configurators The composition operations that build CObservableCollection yield first-
class values which can be freely combined. We show here that a programming pattern such
as the Observer pattern can be encoded more generically using a factory function. To explain
this in a typeful way, we first need to describe how configurators are typed. Consider the
composition of two configurators

(provides collection: ICollection ; provides subject:ISubject),

which lead the definition of CObservableCollection yields a configurator whose type is of the form

{} =) { collection . ICollection , collection � ICollection , subject . ISubject, subject � ISubject}. (1.3)

Configurator types consists of a pair of resource sets. Resources are bits of information rep-
resenting the presence of certain conditions in partially built structures; they may be either
required (the set on the left hand side of the long double arrow =)) or provided by a compo-
sition operation (the set on the right hand side). From the type expression above we know that
the configurator transforms a component structure by adding a provided port collection with
type ICollection and a provided port subject with type ISubject (the resources in the set on the right
hand side with a . symbol), it also notes that these ports are not yet implemented (by using the
� symbol).

Now, consider the operation (uses s = CSubject), that introduces an internal component into
the structure of CObservableCollection, it is typed

{} =) {s • { collection : ICollection}, s.subject • ICollection} (1.4)

which means that this operation introduces an internal element s, with type { collection : ICollection},
and that both s and its provided port s.subject are available for further composition operations
(denoted by the • symbol).
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The composition operation plug s.subject into subject, which should, in fact, be written with
type annotations (plug s.subject:ISubject into subject:ISubject), has type:

U , {s.subject • ISubject, subject � ISubject} =) {s.subject • ISubject} (1.5)

meaning that it satisfies the pending implementation of port subject (the resource with the �
symbol). A configurator typed by type U (1.5) “consumes” an open dependency (denoted by
the resource subject � ISubject) while maintaining the available resource used to satisfy it (the
resource s.subject • ISubject). Notice that some of the composition operations used in these ex-
amples are written without type annotations, but they require them in the calculus definition
ahead. This means only that these type annotations could be derived from the expressions
or from the context of utilisation and are in the calculus for the sake of simplicity of the type
system and type checking algorithm.

To complete the typing of primitive composition operations, consider the one that defines
method block m,

methods m {
void add ( x : i n t ) {

c . c o l l e c t i o n . add ( x ) ;
s . sub jec t . n o t i f y ( ) ;

} ,
void remove ( x : i n t ) {

c . c o l l e c t i o n . remove ( x ) ;
}

}

it has the following type S:

S , {c • { collection : ICollection}, s • {subject:ISubject}} =) {m • ICollection , c • . . ., s • . . .}. (1.6)

This type indicates that m depends on two inner components, denoted by the names c and s, i.e.
that it has to be used in a context where c and s are available and have the types indicated by
the resources, and that it introduces a new element m with interface type ICollection . Although
not shown here, the expression introducing a method block is also decorated with extra infor-
mation (as in the case of the plug operation). In this particular case the type decorations are
essential to build the required resource set without resorting to sophisticated inference mecha-
nisms, and thus help typing the method declarations.

Finally, the composition of two configurators yields a configurator whose type is a combi-
nation of the types of its parts. This combination propagates, to the resulting type, the required
and provided resources of its parts and cancels the resources that denote connections between
elements of both parts, e.g. the resource in type 1.3 noted �, that indicates that port subject is not
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yet implemented, is cancelled when combining such a configurator with a configurator of type
U (1.5). The required resource set being empty means that the operation does not depend on
any external element, i.e. it defines a network of elements which does not have a connection
to any external element. In these conditions, and provided that it does not introduce unsatis-
fied resources, the configurator can be used to form a closed component value whose type is
constructed just from the set of its required and provided ports.

Using Dynamic Composition Recall the definition of type S (1.6) of the composition oper-
ation methods m {...} above and T (1.2) which describes the interface of components such as
CCollection. The function make defined next, takes any implementation of a collection (a compo-
nent of type T) and a configurator with type S, that describes how the calls are intersected, and
composes it according to the assembly of the Observer pattern shown here.

make = fun (C: T , M:S) {
r e t u r n compose ( provides c o l l e c t i o n : I C o l l e c t i o n ;

provides sub jec t : ISub jec t ;
uses c = C;
uses s = CSubject ;
M;
plug m into c o l l e c t i o n ;
plug s . sub jec t into sub jec t ;
plug c . c o l l e c t i o n into s . c o l l e c t i o n ) ;

}

The function returns a component defined by a configurator which uses the function param-
eters (C and M) in its definition. The collection component denoted by the formal parameter
C is introduced into the structure of the resulting component, as CCollection was before. Since
the typing of the configurator is performed against the provided and required ports alone, it is
possible to abstract the concrete implementation of the internal components of a composition
and still validate the whole composition.

Additionally, we compose the formal parameter M in the configurator used to produce the
component resulting from calling the function. Every time function make is called, the concrete
elements of the argument instantiating parameter M are used to produce the resulting com-
ponent. According to type S (1.6) of configurator M, the elements it introduces requires the
presence of two inner components, named c and s, and introduces a new method block, named
m. In the composition above, the occurrences of names c and s in the concrete implementa-
tions of M are bound to the elements introduced by the previous operations (uses c = C) and
(uses s = CSubject). Furthermore, the method block it inserts (m) is made available to the plug
operations that follow the composition of configurator M. So, the component resulting from
calling make combines a given collection component C, with the known CSubject component,
both adapted by a customly defined method block (introduced by the configurator M). Func-
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tion make can then be used to extend any implementation of a collection typed by T with the
Observer pattern as in:

addM = methods m {
void add ( x : i n t ) {

c . c o l l e c t i o n . add ( x ) ;
s . sub jec t . n o t i f y ( ) ;

} ,
void remove ( x : i n t ) {

c . c o l l e c t i o n . remove ( x ) ;
}

} ;
CObservableCol lect ion = make( CCol lec t ion , addM ) ;

The essence of programming patterns such as the Observer pattern can be captured in func-
tions such as make above. Patterns which normally involve the assembly of webs of objects
at run-time can be safely expressed in our model by means of factory functions where essen-
tial elements are abstracted. This allows for libraries of reusable patterns to be built and their
correctness ensured prior to concrete utilisations, instead of relying on coding guidelines to
implementing programming patterns.

Notice that the generic assembly of programming patterns illustrated here can benefit from
the extension of this language with type abstraction (parametric polymorphism) and subtyping
(inclusion polymorphism). For instance, by means of subsumption, function make above can
accept any component whose type is a subtype of T. In our model, this means that these
components provide at least the same services as the ones specified in T and require at most
the required services of T (in this case there are none). Additionally, a type abstraction over
the type of the collection can be used to generalise even more the usage of these patterns. (We
assume abstract versions of the type definitions ISubject, T, S, and of component CSubject.)

make = Al l (X I C o l l e c t i o n ) fun (C: T<X>, M:S<X>) {
r e t u r n compose ( provides c o l l e c t i o n :X ;

provides sub jec t : ISub jec t<X>;
uses c = C;
uses s = CSubject<X>;
M;
plug m into c o l l e c t i o n ;
plug s . sub jec t into sub jec t ;
plug c . c o l l e c t i o n into s . c o l l e c t i o n ) ;

}

In this case the type of the ports collection and subject can be instantiated with any subtype of
ICollection . The actual arguments of the function must then carry a component implementing
the correct collection type and the method block that intercepts the methods of X.
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Reconfiguration Remember that, in the example above, only the addition of elements is in
fact logged by the subscribed observer objects (method add). If need arises to change the appli-
cation to also log the removal of elements from a particular collection, which is an instance of
CObservableCollection, and for some reason the system cannot easily be recompiled and restarted,
then a safe reconfiguration mechanism that replaces pieces of objects while running is certainly
useful. Consider the method block introduced by configurator M below, intercepting both calls
of a CCollection component, and using a notification service of a CSubject component:

M = methods m {
void add ( x : i n t ) {

c . c o l l e c t i o n . add ( x ) ;
s . sub jec t . n o t i f y ( ) ;

} ,
void remove ( x : i n t ) {

c . c o l l e c t i o n . remove ( x ) ;
s . sub jec t . n o t i f y ( ) ;

}
}

The type associated to configurator M is S (1.6), thus M can be used as argument to function
make to produce new components implementing the observer pattern. Additionally, in our
model, configurators can also be used to change the internal structure of objects. We define a
language construct, reconfig, which applies a configurator to an object, thus introducing new
elements and connections into its structure. Consider object col defined above as an instance of
component CObservableCollection, it gets reconfigured in the following excerpt of code which first
defines a configurator, using M defined above, and then reconfigures the object:

. . .
r = (M; plug m into c o l l e c t i o n ) ;
. . .
reconfig x = r [ co l ] in . . . else . . .

The configurator r defined above results from a composition of configurator M with a plug op-
eration. It introduces a new method block, locally known by name m, and connects it to a port
named collection . The reconfig expression applies configurator r to the actual structure of a tar-
get object, which in this case is object col. If we depict the inner structure of object col as an
image of the structure of its generating component (CObservableCollection), it contains an object
obtained from CCollection, an object obtained from CSubject, and a method block that adapts the
functionality of both and is connected to port collection . The reconfiguration action, which ap-
plies configurator r to object col, changes the object in place, introduces a new method block
into the structure of the object and replaces the implementation at port collection by the new
functionality. The free occurrences of the names s and c in the expressions of the new method
block m are bound to the elements already in the target object col. All existing references to ob-
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ject col are changed by aliasing. The expression reconfig declares a local name x which is binding
in the in and else branches of the expression. In particular, x is typed in the in branch so that the
all possible additions to the instance type (new provided ports) are visible.

Although configurator types reveal all the elements they introduce or connect, the static
type information of the target objects only reveals the services they implement. Their imple-
mentation details are encapsulated. It is possible that, although providing the same set of
ports, col is not an instance of CObservableCollection and its inner structure is incompatible with
the modifications denoted by configurator r. In order to ensure the type safety of reconfigu-
ration actions, we use a run-time compatibility test between the type of the configurator and
the actual structure of target objects. Localised type information is stored in both object and
configurator values to make this test possible. This allows for the actual modification of the
object’s structure to be performed only if there are guaranties that it will succeed. A success-
ful reconfiguration is followed by the expression in the in branch. The else branch is executed
otherwise. Type safety is ensured at compile-time by correlating the results of the run-time test
with static properties.

This first example illustrates some of the basic features of the language. We now illustrate,
in a second example, an interesting way in which these features can be used to implement
self-updatable applications.

1.4.2 Implementing Automatic Updates

Applications that detect and apply updates automatically have emerged in the recent evolution
of software systems. Although motivated for security reasons at first, this sort of mechanism
rapidly generalised as an usual form of software maintenance and evolution in many non-
critical applications. We show here that the kind of operations it requires can be expressed
safely and explicitly in our model, without the need for restarting the applications.

Take the example of a word processor which may have, at the top level, a File Manager com-
ponent that implements all the functionality related with persistence of data, autosave features,
recovery of files, etc., a Text Manager component which implements basic text functionalities
like insertion of text, searching, indexing, etc., a User Interface component which deals with
the presentation layer, and a Proofing component which includes spell-checking and gram-
mar analysers. Such a component can be defined as follows: (We omit elements, ports, and
connections which are not directly related to the update mechanism we are illustrating.)

WordProcessor = compose (
requires gw: IUpdateGateway ;
. . .
uses fm = Fi leMgr ;
uses tm = TextMgr ;
uses gui = WPGUI;
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uses p r f = Proof ing ;
. . .
methods m {

void checkAl l ( ) {
check ( fm ) ; check ( tm ) ;
check ( gu i ) ; check ( p r f ) ;

}

void check ( o : IUpdatableObject ) {
Key v = o . update In fo . getKey ( ) ;
i f (gw . a v a i l a b l e S c r i p t ( v ) )

gw . g e t S c r i p t ( v ) . update ( o ) ;
}

}
)

To implement a self update mechanism, component WordProcessor depends on an external ser-
vice that provides update scripts for objects given an identification key. This service is specified
by the interface IUpdateGateway as follows:

IUpdateGateway = { a v a i l a b l e S c r i p t : ( Key ) boolean , g e t S c r i p t : ( Key ) IUpdateScr ip t }

Both methods are based on the key value of a particular object, method availableScript indicates
if an update is available and method getScript fetches an update script associated with the given
key. Type Key is of no particular relevance and will remain opaque for the rest of the presenta-
tion. The values that method getScript returns are of type IUpdateScript. Type IUpdateScript declares
a method update and is defined as follows:

IUpdateScr ip t = { update : ( IUpdatableObject ) void }

where IUpdatableObject is an object type with a single port updateInfo with a method getKey,

IUpdatableObject = { update In fo : { getKey : ( ) Key }}

Consider that all the types of inner elements of component WordProcessor, visible in the defi-
nition above, have the common supertype IUpdatableObject. This means that, besides their own
functionality, they all provide a unique identification key on a port updateInfo.

Our word processing application watches for update releases on a set of its inner elements.
It interacts with the directory of update scripts, available at port gw, that maps key values to
components capable of reconfiguring objects that have the same key. When requested, the
instances of these components are retrieved and used in client applications to modify their
inner elements. This process is triggered by a call to method checkAll which selectively calls
method check using one object as argument at a time. Method check works as follows: it gets
the key value of the object by calling getKey at its port updateInfo, accesses the directory service
to find an update script for that particular key by calling method available at port gw, and, if
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there is an update available, fetches an update script of type IUpdateScript, by calling getScript at
port gw, and calls its method update on our target object to make the reconfiguration. A typical
implementation of an update script can be:

S c r i p t = compose (
provides p : IUpda teScr ip t ;
methods m {

r = ( uses x = X; plug x . q into p ) ,
void update ( o : IUpdatableObject ) { r econ f i g r [ o ] ; }

} ;
plug m into p ) ;

Notice that the instances of Script encapsulate primitive reconfiguration operations; they carry
a configurator, in the local variable r of method block m, which defines the modifications to
be made in the target object. In this case, configurator r introduces a new inner element (an
instance of component X) and connects its port q to a port of the reconfigured object (p), thus
hiding the former implementation of p. Notice that the value of component Script includes all
the necessary component values referred in r to reconfigure the target object. The reconfigura-
tion is performed when the method update is called by the client component (in method check

to an instance of Script); r is applied to the target object o provided that there is no mismatch
between the type of the configurator and the actual structure of the object.

Our type system ensures that there is no disruption due to reconfiguration actions, even in
the presence of separate compilation. The run-time test, that guards the reconfiguration action,
ensures that target objects have all the internal elements which are necessary to perform the
changes declared by the configurator value. From the result of this test we can decide whether
to apply the configurator to the object, knowing that it will perform all the changes without
any run-time error, or to not apply it at all, thus avoiding possible run-time errors due to mis-
matches between the operations and the structure of the object. A well-typed reconfiguration
action can therefore be considered as atomic, it terminates in all cases and causes no run-time
errors. Hence, there is no need for performing dynamic tests during the modification of the
object and there is no need to maintain any “undo” information to be used in case of error.
This property is particularly important in software management operation such as the one il-
lustrated in this last example. If systems are to be assembled by using third-party components,
then the update scripts issued for upgrading or correcting objects are more likely to be devel-
oped and compiled in the development context of original component (where their internal
structure is known). Although the structure of these update scripts is unknown at compile-
time, they can be safely accepted and used in the context of a client application.

Furthermore, notice that these update scripts can be dynamically composed to meet the
needs for a particular object. In the example above, a key value representing the available in-
formation about the implementation of an object is passed onto a generic service that manages
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update scripts (typed IUpdateGateway). This information can be taken into account to dynam-
ically produce an update script that brings each particular object up-to-date. For instance,
consecutive versions of update scripts can be composed to obtain a single one, or, depending
on the software licensing a client has, different elements can be introduced into its objects.

The two examples just presented here illustrate the flexibility of our programming model to
represent the dynamic construction and maintenance of component-based systems in a type-
ful way. We now enumerate the contributions of our work and describe the structure of the
remainder dissertation.

1.5 Evolution and Contributions

In this section we briefly describe the sequence of advances that lead to the present stage of our
work and enumerate its main contributions.

An initial proposal of our model, presented in [81], describes a programming language
capturing the essential ingredients of object-oriented component programming styles, such
as explicit context dependence, subtype polymorphism at the level of both components and
objects, late composition, and avoidance of inheritance in favour of composition. A type system
was defined, with types assigned to (first-class) components and objects, ensuring run-time
safety of compositions. However, although in such a model components may be dynamically
composed, the structure of objects gets permanently fixed at instantiation time, thus excluding
any possibility of dynamic reconfiguration.

Our model evolved from a monolithic composition sublanguage to a more flexible one,
presented in [88]. This is basically the language presented throughout this dissertation. We
present a core component-oriented programming language with a minimal set of architectural
primitives which yield configurator values that can be freely manipulated and composed to
build sophisticated structures, we also define the modification of objects using the exact same
set of composition operations. Moreover, we develop a type system that statically enforces,
besides the absence of the usual run-time errors, the consistency of component compositions
and the atomicity of dynamic reconfiguration.

Some intermediate results were described in [85, 83, 84], and a prototype compiler for a
practical language that integrates the fundamental concepts of our model, componentJ, was
also designed and implemented [86].

We proposed, in [87], a definition for a subtyping relation in a class-based language us-
ing the subtyping discipline of kernel-Fun [27] with equi-recursive types, which significantly
improves other approaches [30, 31]. Although the motivation of this work was to find a rich
subtyping relation between component types, this work stands out as an independent result
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which we use to extend our model. This result is here presented in the more general plain
kernel-Fun calculus.

The contributions of our work can therefore be summarised as follows:

• We define a programming model for software composition expressive enough to model
many sophisticated software management operations, typical of component-based sys-
tems, involving dynamic composition, configuration and reconfiguration. We provide
type safe modularisation mechanisms for component-based software development, which
abstract common programming idioms such as the ad-hoc construction of object webs.

• We provide programming language constructs for expressing the reconfiguration of ob-
jects. The preservation of the hierarchical structure of components at the level of objects
allows to uniformly express both the construction of components and the reconfiguration
of objects.

• We instantiate our model on a core programming language, where the structures of com-
ponents and the reconfiguration of objects are type safe. We define a type system that cap-
tures structural as well as computational safety properties of the language and combines,
in a single type safety result, properties of progress, type preservation, and structural
soundness of configurators, components, and objects.

• We integrate our component-based programming model with language features such as
structural subtyping, type recursion, and bounded parametric polymorphism. On doing
this, we tackle the challenging problem of subtyping second-order equi-recursive types
and develop new interesting techniques. We uniformly extend an approximation to first-
order equi-recursive types with explicit management of the binding of type variables and
a similarity relation on subtyping judgements. As a result we obtain a simple coinductive
definition of the subtyping relation and a corresponding coinductive, syntax-directed,
subtyping algorithm.

• We provide a prototype compiler of a Java-like component language which was a first
attempt to integrate the composition-based mechanisms defined in our model in a main-
stream object-oriented programming language.

We next describe the structure of the dissertation.

1.6 Structure of the Dissertation

The remainder of this dissertation is structured to gradually present precise definitions for the
concepts informally addressed in this introductory chapter. At the end of each chapter, we



24 CHAPTER 1. INTRODUCTION

make some remarks about the subjects we think are relevant and relate the presented work
with that of other authors in dedicated sections. The contents of the remaining chapters are as
follows:

• Chapter 2 defines the base language of our model, an imperative l-calculus with mutable
records. This chapter introduces notation and techniques that will be used throughout the
dissertation.

• Chapter 3 presents our basic component-based language. It extends our base language
with composition operations and the corresponding type system. We prove a type safety
result, and as consequence we conclude that all well-typed component expressions pro-
duce well-structured instances and that no run-time errors occur due to lack of imple-
mented services.

• Chapter 4 extends the component language presented in Chapter 3 with run-time recon-
figuration of objects. We extend our language in order to apply composition operations
to the structure of objects, and in this way change their internal structure. We also extend
the type safety result so that the well-formedness property of components and instances
is preserved in reconfigured instances.

• In Chapter 5 we present some fundamental results on subtyping recursive second-order
types. We start by introducing the existing approaches to subtyping of first-order recur-
sive types which we then extend to define a new algorithm for second-order types by
uniformly extending them. We use standard coinductive techniques to show the termi-
nation and correctness of our algorithm and prove correctness results.

• We apply the results of Chapter 5 to our component language and present, in Chapter 6,
a new type system and subtyping relation that allows flexible reuse of component val-
ues. We define a subtyping relation on component and configurator types which satisfies
the principle of safe substitution. We also present a complete typing algorithm for the
component-based language.

• We then draw some conclusions about the proposed programming model and describe
some future directions in Chapter 7.

Finally, towards the end of this dissertation there are two appendixes: Appendix A provides
complementary technical details of the proofs in this dissertation, and Appendix B presents
the componentJ language. We illustrate the features of our model that were implemented in
our prototype compiler by means of small examples. We roughly sketch some basic tools and
gadgets that allow the integration of componentJ with either Java client programs or native Java
components.



Chapter 2

Preliminaries

In this chapter, we introduce basic concepts and techniques that will be used throughout the
dissertation. More concretely, we define an untyped imperative l-calculus with mutable records,
lR, and then its typed version, lt

R. The operational semantics of this calculi are formalised us-
ing a big step operational semantics, and type safety properties are proved using standard
syntax-directed techniques. Our aim is also to lay down the technical foundations upon which
the formalisation of our component-oriented programming model will be developed.

2.1 lR — An Untyped l-calculus with Mutable Records

In this section we define lR, an untyped l-calculus with mutable records, which is the base
language for the component language presented in subsequent sections. We start by defining
the syntax and semantics of the language, but first we need to define notation about basic
elements such as variables, record labels, and memory locations to support the next definitions.

Basic notation

Let L be a set of denumerable labels denoted by symbols `, `0, `i; let V be a set of denumerable
variables denoted by x, y, z; and let Loc be a set of denumerable memory locations noted by
the symbols l, l0, li.

We now define our core lR language. It includes standard abstraction and application,
record construction, selection, and assignment expressions.

Syntax

Definition 2.1 (Terms). The language lR is defined by the abstract syntax in Figure 2.1.

25
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e :: = lR terms
| x variable
| lx.e abstraction
| e(e) application
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| l location
| nil null value

Figure 2.1: Abstract syntax of lR.

v :: = values
| lx.e abstraction
| {`i = li

i21..n} record
| l location
| nil null value

Figure 2.2: Abstract syntax of lR values.

In an abstraction lx.e, variable x is binding in expression e, the record expression associates
labels to expressions in a record value, the selection expression projects a record value to the
field with the given label, and assignment modifies this value. As usual, we consider terms
up-to renaming of bound variables (a-equivalence).

Although defined as such, we do not consider, in practise, locations (l) to be part of the
source language, they should be regarded only as run-time values introduced during evalua-
tion by a specialised allocation operation.

Among these expression forms we define those that define the possible results of evaluating
a lR term as follows::

Definition 2.2 (Values). The set of values UR ✓ lR is defined by the abstract syntax in Figure 2.2.

Notice that record values are those whose fields are already evaluated and stored in the
heap.

We use the standard notation FV(e) to denote the free variables of an expression e, and
FL(e) to denote the set of locations occurring in e.
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Definition 2.3 (Free variables). We define the set FV(e) of free variables of expression e as follows:

FV(x) , {x}
FV(lx.e1) , FV(e1)\{x}
FV(e1(e2)) , FV(e1) [ FV(e2)

FV({`i = ei
i21..n}) , S

i21..n FV(ei)
FV(e1.`) , FV(e1)

FV(e1.` := e2) , FV(e1) [ FV(e2)
FV(l) , ∆

FV(nil) , ∆.

Definition 2.4 (Occurrences of locations). We define the set FL(e) of location occurrences in expres-
sion e as follows:

FL(x) , ∆
FL(lx.e1) , FL(e1)
FL(e1(e2)) , FL(e1) [ FL(e2)

FL({`i = ei
i21..n}) , S

i21..n FL(ei)
FL(e1.`) , FL(e1)

FL(e1.` := e2) , FL(e1) [ FL(e2)
FL(l) , l

FL(nil) , ∆.

We now define capture avoiding substitution on terms in the expected way.

Definition 2.5 (Substitution). A substitution (q) is a finite mapping from variables and labels to ex-
pressions.

We denote by [x  e] (respectively [`  e]) the singleton substitution that maps x (respec-
tively `) to e. Notice that we will not use substitution of labels until section 3.1. We write
Dom(q) to denote the domain of the substitution q and define the codomain of a substitution
q by Img(q) , S{FV(q(x)) | x 2 Dom(q)}. We write q\{x} to restrict the domain of the
substitution q by eliminating the substitution of x.

Definition 2.6 (Application of substitution). The application of a substitution q to an expression e,
written eq is defined in Figure 2.3

Semantics

The semantics of lR is defined with relation to a memory heap representing a global execution
state. Hereafter, we define notions on heaps, locations, and expressions for using in forthcom-
ing language definitions. We define heaps as follows:
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xq , q(x)where x 2 Dom(q)
yq , y where y 62 Dom(q)

(lx.e)q , lx.(eq0) where q0 = q\{x}
(e1(e2))q , (e1q)(e2q)

{`i = ei
i21..n}q , {`i = eiq

i21..n}
(e1.`)q , (e1q).`

(e1.` := e2)q , (e1q).` :=(e2q)
lq , l

nilq , nil

Figure 2.3: Application of subtitutions to terms.

Definition 2.7 (Heap). A heap S is an assignment of values to locations. The heap that assigns vi to
li with i 2 1..n is written {li 7!vi

i21..n}, the empty heap is written ∆.

We use the following notations for operations on heaps: S(l) to denote the value associated
with l in S, S[l 7! v] to denote a heap S updated with a new assignment, and Dom(S) to
denote the domain set of S. We use new(S) to denote a fresh memory location in S, and write
nil(S) to denote the set of locations in S that map to nil. Notice that locations are also values and
therefore chains of locations may occur in a heap: we use derefS(l) to denote the last location
of the chain starting in l. The precise definition of these basic operations is given by:

Definition 2.8 (Operations on heaps). Consider the heap S, the locations l, l1, . . . , ln, and the values
v, v1, . . . , vn. We have:

• Dom({li 7!vi
i21..n}) , {li

i21..n}.

• if S = {. . . , l 7! v, . . .} then S(l) , v otherwise S(l) is undefined.

• if S = {l1 7!v1, . . . , ln 7!vn}, and l 62 Dom(S)
then S[l 7! v] , {l1 7!v1, . . . , ln 7!vn, l 7! v}.

• if S = {l1 7!v1, . . . , ln 7!vn}, and l = lj for some j 2 1..n
then S[l 7! v] , {l1 7! v1, . . . , lj 7! v, . . . , ln 7! vn}.

• new(S) , l where l 2 Loc\Dom(S).

• nil(S) , {l | S(l) = nil}.

• li
i21..n 2 Dom(S) is a S-chain if S(li) = li+1 8i21..n�1

• derefS(l1) , ln when 9li
i21..n 2 Dom(S) such that li

i21..n is a S-chain and S(ln) 62 Loc.

derefS(l) is undefined otherwise.
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The usual notations on sequences apply to these operations, for instance S[li 7!vi
i21..n] denotes

the sequence of updates S[l1 7! v1] . . . [ln 7! vn].
Notice that locations can lead to other locations and therefore cyclic chains of locations

may potentially exist in heaps, leading from a location to itself after a number of indirections
(intuitively, derefS(l) is undefined). We now introduce some terminology on locations which
allows us to characterise them more precisely. We say that a location participating in a cycle is
undefined; we characterise as direct a location that leads to a value which is not a location in
one dereferencing step; in a chain of locations we say that l leads-to l

0 if there are a number
of indirections in the heap leading from one to the other (possibly zero); if at the end of a chain
of location there is a value which is not a location then we say that the location refers-to the
value.

Definition 2.9 (Notation about locations).

• (Direct location) A location l is direct when S(l) 62 Loc and S(l) 6= nil.

• (Leads to) A location l leads-to l

0 in S when derefS(l) = l

0.

• (Refers to) A location l refers-to a value v in S when l leads-to l

0 in S and S(l0) = v.

• (Undefined) A location is undefined when it refers-to no value, i.e. it starts a cyclic chain.

Some of these situations do not arise when evaluating a lR term with relation to an empty heap
but are introduced here for the sake of generality in languages presented ahead.

Operational semantics

We now define the semantics of lR by means of a big-step operational semantics, following a
call-by-value evaluation strategy. The semantics is based on judgements of the form

e; S # v; S0

Such a judgement asserts that the expression e evaluated with relation to heap S yields the
value v and modifies the heap S to obtain S0. Before introducing the evaluation relation of lR,
we establish some useful terminology.
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(Eval Value)

v; S # v; S

(Eval Application)

e1; S # lx.e; S0 e2; S0 # v; S00 e[x v]; S00 # v0; S000

e1(e2); S # v0; S000

(Eval Select)

e; S # l; S0 l

0 = derefS(l)
S0(l0) = {. . . , ` = l

00, . . .}
e.`; S # S0(l00); S0

(Eval Assign)

e1; S # l; S0 l0 = derefS0(l)
S0(l0) = {. . . , ` = l

00, . . .}
e2; S0 # v; S00

e1.` := e2; S # v; S00[l00 7! v]

Figure 2.4: Evaluation rules for lR.

Definition 2.10 (Notation).

• (Closed Heap) We say that a heap S is closed if all locations occurring in the values in S are
elements of Dom(S).

S is closed , 8l 2 Dom(S). 8l0 2 FL(S(l)). l0 2 Dom(S).

• (Closed Expression) Given an expression e and a closed heap S, we say that e is closed in S if
all locations occurring in e are elements of Dom(S).

e is closed in S , FL(e) ✓ Dom(S).

• (Valid Configuration) If an expression e is closed in a heap S we then say that the pair (e; S) is a
valid configuration.

(e; S) is a valid configuration , e is closed in S.

The evaluation rules shown in Figure 2.4 define inductively the evaluation relation of lR as
follows:

Definition 2.11 (Evaluation). Let e 2 lR and a heap S such that (e; S) is a valid configuration. The
evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figure 2.4.

We use the standard evaluation rules for values and application: Rule (Eval Value) and Rule
(Eval Application). Notice that, following the usual call-by-value evaluation strategy, abstrac-
tions are considered atomic until applied to an argument. Side effects on partial evaluations
are represented in the updates of heaps S0, S00, and S000 with relation to heap S. Notice that the
evaluation of records, Rule (Eval Record), builds a new record in the heap, containing locations
where field values get stored. Retrieval and modification of field values are performed in the



2.2. lt
R — A TYPED l-CALCULUS WITH MUTABLE RECORDS 31

heap by Rules (Eval Assign) and (Eval Select). We disallow the direct manipulation of loca-
tions by syntactically imposing the assignment form e.` := e and by implicitly dereferencing
locations to values when selecting a field (Algol-like state instead of ML-like state). Hence, in
this particular operational semantics, all locations resulting from evaluating a record expres-
sion are direct, leading to records in a single dereferencing step. Unless there are chains in the
initial evaluation heap, it is not possible for a lR term to create non-trivial chains in the result-
ing heap, i.e. with length greater than 2. For the sake of later developments in this work, i.e.
in languages using the lR calculus as their base language, we design selection and assignment
operations to be “chain-transparent” by means of the operation deref�(�). This means that, on
evaluating a selection or assignment expression, the record at the end of the resulting chain of
locations is selected and, in the case of assignment, gets modified (see Rules (Eval Select) and
(Eval Assign) in Figure 2.4). Other than this implicit dereferencing behaviour, the semantics
presented here follows standard lines.

Example 2.12. We now illustrate the semantics of lR, by means of a small example. Consider
the following application expression: (lx.(x.` :={}))({` = nil})

The derivation of the evaluation judgement is as follows:
(Eval Value) (lx.(x.` :={})); ∆ # (lx.(x.` :={})); ∆
(Eval Value) nil; ∆ # nil; ∆
(Eval Record) ({` = nil}); ∆ # l0; S0 where S0 = {lo 7! {` = l1}, l1 7! nil}
(Eval Value) l0; S0 # l0; S0 where l0 = derefS(l0) and S0(l0) = {` = l1}
(Eval Record) {}; S0 # l2; S00 where S00 = {lo 7! {` = l1}, l1 7! nil, l2 7! {}}
(Eval Assign) (l0.` :={}; S0 # l2; S000 where S000 = {lo 7! {` = l1}, l1 7! l2, l2 7! {}}
(Eval Application) ((lx.(x.` :={}))({` = nil})); ∆ # l2; S000

Notice that the records are evaluated to locations in the heap (l0 and l2). These locations
lead to record values whose fields are also locations (l1). l1 then leads to the corresponding
field value of the record. The assignment expression is evaluated by changing the contents of
these locations in the heap.

Given this untyped language, we now define its typed version and associated type system.
We next prove type safety of the language.

2.2 lt
R — A Typed l-calculus with Mutable Records

We now present a typed version of lR and a type system to ensure type safety of the language,
that is to say that “well-typed programs do not go wrong”. We use this introductory exer-
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t :: = types
| t ! t function type
| {|`i : ti

i21..n|} record type

Figure 2.5: Abstract syntax of lt
R types.

e :: = lR terms
| x variable
| lx : t.e abstraction
| e(e) application
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| l location value
| nil null value

Figure 2.6: Abstract syntax of lt
R.

cise to modularly explain some basic techniques used throughout the dissertation and avoid
cluttering our presentation of several concepts with basic definitions and technical details.

Types

We start by introducing a language of type expressions following the standard definition for
the typed l-calculus with records [25, 78].

Definition 2.13 (Types). The types TR of lR are defined by the abstract syntax in Figure 2.5.

Syntax

We now use the type language TR to define an explicitly typed version of the lR language,
called lt

R.

Definition 2.14 (Terms). The language lt
R is defined by the abstract syntax in Figure 2.6.

Notice that the only modification with relation to lR is the explicit typing of formal parameters
in abstractions. Values are changed accordingly:

Definition 2.15 (Values). The set of values U t
R ✓ lt

R is defined by the abstract syntax in Figure 2.7.

We now describe the semantics of this new language, lt
R.
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v :: = values
| lx : t.e abstraction
| {`i = li

i21..n} record
| l location value
| nil null value

Figure 2.7: Abstract syntax of lt
R values.

(Eval Value)

v; S # v; S

(Eval Application)t

e1; S # lx : t.e; S0 e2; S0 # v; S00 e[x v]; S00 # v0; S000

e1(e2); S # v0; S000

(Eval Select)

e; S # l; S0 l

0 = derefS0(l)
S0(l0) = {. . . , ` = l

00, . . .}
e.`; S # S(l00); S0

(Eval Assign)

e1; S # l; S0 l0 = derefS0(l)
S0(l0) = {. . . , ` = l

00, . . .}
e2; S0 # v; S00

e1.` := e2; S # v; S00[l00 7! v]

Figure 2.8: Evaluation rules for lt
R.

Operational semantics

For the sake of completeness we present the complete rule system in Figure 2.8. The operational
semantics of lt

R is defined as follows:

Definition 2.16 (Evaluation). Let e 2 lt
R and a heap S such that (e; S) is a valid configuration. The

evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figure 2.8.

It is clear that the operational semantics of lt
R is the same as the one of lR, just a minor change

in the abstract syntax was introduced. Type annotations are needed here to simplify the im-
plementation of the type system defined next. The type system is designed to ensure that all
evaluations of well-typed expressions are free of run-time errors.

Type system

The typing of lt
R expressions is formally defined by a typing judgement of the form D ` e : t

where e is an expression in lt
R, t is a type expression in TR and D is a typing environment.
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D, G :: = typing environments
| f empty environment
| D, x : t type assignment to a variable
| D, l : t type assignment to a location

Figure 2.9: Abstract syntax of typing environments.

(Env Empty)

f ` ⇧

(Env Var)

D ` t ok x 62 Dom(D)
D, x : t ` ⇧

(Env Loc)

D ` t ok l 62 Dom(D)
D, l : t ` ⇧

(Type Fun)

D ` t ok D ` s ok

D ` t ! s ok

(Type Record)

D ` ti ok 8i21..n D ` ⇧
D ` {|`i : ti i21..n|}

Figure 2.10: Validation rules for typing environments.

Definition 2.17 (Typing Environment). For x 2 V , l 2 Loc, and t 2 TR the set D of all typing
environments is defined by the abstract syntax in Figure 2.9.

We write D ` e : t to assert that expression e has type t with relation to environment D.
Our typing environments assign types not only to variables but also to locations. This is used
later on to define a notion of heap typing, needed in the subject reduction (type preservation
under evaluation) proof. With respect to typing environments, we write Dom(D) to denote
the declared variables and locations in D, and define a notion of valid typing environment as
follows:

Definition 2.18 (Valid Typing Environment). A typing environment D is valid if the judgement
D ` ⇧ is derivable by the rules in Figure 2.10.

The validation of typing environments is defined together with a notion of well-formed type
expressions. Here, validity basically ensures that all types used correctly build on basic types
(the empty record type), or use valid type expressions on that typing environment.

We now define the valid type judgements of lt
R by means of a rule system.

Definition 2.19 (Typing relation). The judgement D ` e : t is valid if it is derivable by the rules in
Figure 2.11.

Notice that the nil value is not allowed by typing to appear in expressions.
This rule system provides a type for any (typable) expression with relation to a typing environ-
ment. Variables and locations are typed according to information in the typing environment,
abstractions are typed with function types relating their parameter and result types, the typing



2.2. lt
R — A TYPED l-CALCULUS WITH MUTABLE RECORDS 35

(Val Var)
x : t 2 D

D ` x : t

(Val Location)
l : t 2 D

D ` l : t

(Val Abstraction)

D, x : t ` e : s

D ` lx : t.e : t ! s

(Val Application)

D ` e1 : t ! s D ` e2 : t

D ` e1(e2) : s

(Val Record)

D ` ei : ti 8i 2 1..n
D ` {`i = ei i21..n} : {|`i : ti i21..n|}

(Val Select)

D ` e : {| . . . , ` : t, . . . |}
D ` e.` : t

(Val Assign)

D ` e1 : {| . . . , ` : t, . . . |} D ` e2 : t

D ` e1.` := e2 : t

Figure 2.11: Typing rules for lt
R.

of applications uses a function type, checks the compatibility of the argument type and types
the result accordingly. Records are typed by associating each label to the type of its initialising
expression. Selection and assignment check for the presence of a value with type record and
the correct label. Assignment expressions are also checked for the compatibility between the
type of the record field and the type of the value assigned to it.

Together with the semantics defined before, we now enunciate and prove type safety of the
lt

R language. Type safety implies that the result of evaluating an expression always produces
a value of the expected type, and that the evaluation of well-typed expressions does not get
stuck due to run-time errors.

2.2.1 Type Safety

We show here the property of subject reduction, meaning that the result of evaluating an ex-
pression always yields a value of the expected type. To that end, we extend the operational
semantics with rules to explicitly capture all situations where it is not possible to soundly ap-
ply an evaluation step. These (error trapping) rules yield a distinguished value wrong, and
always halt the evaluation process. As a consequence, we conclude that run-time errors do not
occur during the evaluation of well-typed expressions.

A run-time error is defined to occur whenever an operation is undefined, this includes
conditions such as: application using a value which is not an abstraction, assignment to a value
which is not a location, selection of a field on a value which is not a record or does not possess
the relevant label (notice that this case includes calling a method on a nil reference), and so on.
Essentially, we include all situations in which the operational semantics of Figure 2.8 gets stuck
(yields a finitely failed derivation). To conclude the reasoning we show that the evaluation
derivations of well-typed expressions do not contain error-trapping rules.

Thus, we next define:
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(Wrong Call)

e1; S # v; S0 v 6= lx : t.e
e1(e2); S # wrong; S0

(Wrong Select)

e; S # v; S0 v 62 Loc

e.`; S # wrong; S

(Wrong Select 2)

e; S # l; S0 S0(derefS0(l)) 6= {. . . , ` = l

0, . . .}
e.`; S # wrong; S

(Wrong Assign)

e1; S # v; S0 v 62 Loc

e1.` := e2; S # wrong; S

(Wrong Assign 2)

e1; S # l; S0 S0(derefS0(l)) 6= {. . . , ` = l

0, . . .}
e1.` := e2; S # wrong; S

Figure 2.12: Error trapping rules for lt
R.

Definition 2.20 (Extended Evaluation). Let e 2 lt
R and a heap S such that (e; S) is a valid configu-

ration. The evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively
by the rules in Figures 2.8, and 2.12.

We say that a heap is well-typed with relation to a typing environment if the values referred
by its locations are either nil or have the expected type. We define the typing of heaps as follows:

Definition 2.21 (Typing of Heaps). For any typing environment G and heap S, we say that G types
S if Dom(G) \ Loc ✓ Dom(S) and 8l 2 Dom(S) we have that G ` l : t and

1. l is undefined,

2. l refers-to nil, or

3. l refers-to v and G ` v : t.

We now state our first subject reduction theorem, that captures local invariants of evaluation
judgements with relation to types. These local invariants rely on global typing information
about the heap (kept in the context of the proof). In the proof of subject reduction below we use
two standard properties of any typing relation: weakening and preservation of types under
substitution.

Lemma 2.22 (Weakening). For all typing environments D, D0, all expressions x, e 2 lt
R, and t 2 TR:

If D, D0 ` e : t and x 62 Dom(D, D0) then D, x : t0, D0 ` e : t.

Proof. By induction on the height of the derivations and in the case of the last rule used.

Lemma 2.23 (Substitution). For all typing environments D, D0, all expressions x, e 2 lt
R, and t 2 TR:

If D, x : t, D0 ` e : t0 and D ` v : t then D, D0 ` e[x v] : t0.

Proof. By induction on the height of the derivations and in the case of the last rule used.
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Now, by restricting the use of both locations and nil as source expressions we enunciate
subject reduction as follows:

Theorem 2.24 (Subject Reduction). Let (e; S) be a valid configuration in lt
R\{nil} and let G be a

typing environment typing S and nil(S) = ∆:
If G ` e : t and e; S # v; S0 then:

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, or a location that is either undefined or refers-to a record, and

d) nil(S0) = ∆.

Proof Sketch. We prove this theorem by induction on the length of the evaluation derivation
and in the cases of the last rule used in the evaluation. We show that these rules are never
applicable in the cases which evaluate to wrong. (for the complete proof see appendix A on
page 173).

Notice that, from Theorem 2.24 c), we conclude that no wrong values can be generated as
results of evaluating well-typed expressions.

This concludes our presentation of the base language lt
R. We are now ready to present our

core component calculus.
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Chapter 3

A Core Component Calculus

In this chapter, we introduce the component calculus lc. The lc calculus is obtained by extend-
ing the basic language lR, defined in Chapter 2, with language constructs aiming to capture
typical idioms of the Component-Oriented programming paradigm and the design principles
put forward in the Introduction.

We develop a type system that statically enforces, besides the absence of more usual run-
time errors, consistency of component compositions. The design of lc is semantically moti-
vated by considering a domain of configurators, components, and objects; all such entities are
first-class in our model. Intuitively, configurators correspond (by analogy) to the usual no-
tion of “makefile”. Essentially, each configurator contains a series of instructions (architectural
primitives) about how to assemble a component. Thus, language expressions that evaluate to
configurator values may be seen as counterparts of configuration scripts, the kind of programs
used in software configuration management systems to dynamically generate makefiles. Con-
figurators which do not refer to external entities may generate components, by means of a
compose primitive. Components are linked pieces of code (cf., a class or a module), that may
be further composed with other components and scripting code, in configuration scripts, or
instantiated, by means of a new primitive, to yield objects. Methods can then be called on the
appropriate ports of an object, in order to invoke its services.

Section 3.1 defines an untyped component calculus lc, and Section 3.2 defines its typed
version, lt

c. We then define a type system that ensures a property of type safety of lt
c expres-

sions which implies architectural soundness of configurators, components, and objects. Thus,
we ensure that the evaluation of well-typed lt

c expressions, which may involve both basic and
compositional computations, do not cause any run-time errors.

39
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3.1 lc — An Untyped Component Calculus

In this section, we define an untyped core programming language with a small set of primitive
mechanisms, which we propose as the fundamental ones to support object-oriented component
programming. More concretely, we extend the language lR of Section 3.1 with constructs that
capture the ingredients and operations of our model already discussed in the Introduction.

We define composition operations in the language which evaluate to configurator values: to
introduce new required and provided ports, to introduce new internal components and method
blocks, to connect two ports, or to compose other configurators. We also introduce two spe-
cial operations, one that produces components from configurators (corresponding roughly to a
linking operation) and another that produces objects from components (corresponding roughly
to an instantiation operation as found in class-based object-oriented languages). We use ground
composition operations in configurator and component values to represent these operations at
run-time, and use the basic values of lR, abstractions, mutable records, and locations, to encode
the resulting objects.

The syntax and semantics of the our next language, named lc, are then defined as follows:

Syntax

Definition 3.1 (Terms). The language lc is defined by the abstract syntax in Figure 3.1.

As may be seen in the previous definition, the first seven constructs of lc are the expres-
sions of lR, so that lR is a proper fragment of lc (in fact we will later conclude that lc is
a conservative extension of lR). We now intuitively explain the expression forms that are
added to lR. The compose expression (component creation) and the instantiation expression
new (instantiation), and a set of primitive composition operations, namely the requires expres-
sion, the provides expression, the component introduction expression x[�], the method block
expression x{�}[� = �], the plug expression, and the configurator composition expression
�;�. We also define the run-time representations of configurator and component values as
language terms, respectively conf(�) and comp(�). In addition to locations and nil values, as
in lR, the values of the form conf(�) and comp(�) are not expected to occur in source pro-
grams, typically they occur only as a result of evaluating expressions.

We now describe the intuitive semantics of composition expressions.
Each composition expression may be seen as a primitive configuration script, represented

at run-time by a configurator. Configurators are stateless values intended to produce a specific
structural effect on a component structure. As explained in Chapter 1, general composition op-
erations may be primitive or obtained by composition with (�;�) from two other composition
operations. Primitive composition operations may introduce new elements in an component
structure, adapt (through scripting code represented by method blocks), or simply interconnect
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e :: = lc terms
| x variable
| lx.e abstraction
| e(e) application
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| ` port label
| compose e component creation
| new e with `j := ej

j21..m instantiation
| requires ` required port
| provides ` provided port
| x[e] component introduction
| xL[`i = lxi.ei

i21..n] method block
| plug p into p plug
| e; e configurator composition
| l location
| nil null value
| conf(e) configurator
| comp(e) component

p :: = ` | x | x.` port name

In the (method block) expression, L denotes a finite set of labels.

Figure 3.1: Abstract syntax of lc.

existing elements. In a composition (e1; e2), we let any element of the structure introduced by the
configurator yield by e1 to be referred and connected to elements introduced by the configu-
rator yield by e2, thus producing more elaborate component structures. We may say that this
kind of composition is “white-box”, reusing software engineering terminology. The primitive
operations which are basic for defining composition are the following:

• The expression requires ` declares a named port in the current composition context to
import a service from the external context;

• The expression provides ` declares a named port to export a service to the external context;

• The expression xL[`i = lxi.ei
i21..n], introduces a basic scripting block containing method

implementations. Such a method block is referred by the name x which is binding in
the expressions ei, and local to the composition context. The elements of the surrounding
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component structure, which are named in the set of labels L, may be referred in the bodies
of these abstractions;

• The component introduction expression y[e] introduces an internal component in the
composition context. Such a component results from evaluating e. Again, such an el-
ement may be referred in the composition context by the name y, which is local to the
composition context. The provided and required ports of the introduced component be-
come available through the name y.

• The expression plug is used to establish connections between elements. The various ele-
ments introduced by a configurator can be interconnected by plug p1 into p2 expressions.
Such a plug expression declares that method invocations at port p2 should be redirected
to port p1. Plug sources (p1) can be either required ports of the current composition con-
text (`), representing imported functionality, provided ports of components in the same
composition context (x.`), or locally defined method blocks (x).

On the other hand, the targets of these connections (p2) can be either provided ports of
the current composition context (`) that get “implemented”, or required ports of internal
components (x.`), whose requirements get “satisfied”.

As motivated in the Introduction, a completed composition context establishes a visibility
boundary allowing external access only to its provided and required ports. Additionally, the
component border also forbids internal elements to refer to any name declared outside, thus
providing two-way information hiding.

The evaluation of composition operations, discussed above, produce configurator values.
Configurators are the key elements of the expressions compose and new, described next.

Given an expression e denoting a configurator, compose e yields a component value which
“freezes” the configurator’s structure inside a component value in such a way that it can only
be further composed using its provided and required ports as connection points, by means of
a composition operation x[�]. In more usual terms, the compose operation can be interpreted
as a process that links modules to produce other modules, possibly changing representations,
although in our model this operation is captured abstractly. Notice that the compose operation
only makes sense if applied to configurators whose architecture is consistent in a precise sense,
i.e. where all elements are correctly interconnected, if all provided ports have implementations
assigned to them, and if all requirements of internal components are satisfied by some internal
connection. This and other properties are ensured by the type system defined below. The result
of a compose operation is always a component value.

Component values can be instantiated, with the new expression, to yield objects. Objects
must have all their required ports linked to compatible implementations. Such open depen-
dencies may get satisfied by means of assignments in the with clause of the new expression,



3.1. lc — AN UNTYPED COMPONENT CALCULUS 43

v :: = values
| lx.e abstraction
| {`i = li

i21..n} record
| l location
| nil null value
| conf(c) configurator
| comp(c) component

c :: = ground composition operations
| requires ` required port
| provides ` provided port
| x[v] component introduction
| xL[`i = lx.ei

i21..n] method block
| plug p into p plug
| c; c composition

p :: = ` | x | x.` port name

Figure 3.2: Abstract syntax of lc values.

hereafter referred as plug-assignments. In this way, it is possible to complete and configure ex-
isting components at instantiation time by linking the newly created object with others already
present in the system. These features seem fundamental to define an imperative language with
dynamic construction and manipulation of components, with aliasing and sharing of stateful
objects. In a degenerate setting, with construction of new compositions is the only mechanism
to satisfy required ports, the border of a component would have to be extended (by composi-
tion) until it includes all needed functionality. However, such a scenario will probably turn out
unrealistic in a resource based model like the ones found in most object-oriented languages,
where the state of the underlying platform is shared between all objects (for instance, for the
purpose of input/output).

From the above discussion, it becomes clear that composition expressions have a double
role. On one hand, in a computational context, they evaluate to stateless configurator values
and represent first-class configuration scripts. On the other hand, when used in a composi-
tion context, they are applied in order to cause effects on a ongoing component composition.
(in Chapter 4 our model will be extended so that configurators are also used to reconfigure
component instances.)

After having defined and discussed the language of lc we single out the values that may
result from evaluation of expressions:

Definition 3.2 (Values). The set of values Uc ✓ lc is defined by the abstract syntax in Figure 3.2.
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Notice that, besides the values of lR, the results of lc include components and configurators,
of the form comp(c) and conf(c) where c is a fully evaluated composition operation, referred
here as a ground composition operation. Objects are defined using record values.

A configurator value, which is the run-time representation of a composition operation, is
represented in our model simply by the corresponding composition operation itself. An ac-
tual implementation may choose a more adequate or useful representation for configurators.
On the other hand, the representation of a component value is represented by enclosing with
the constructor comp the instructions for the construction of component instances. Although
syntactically similar, configurator values and component values actually denote quite differ-
ent semantic entities. In the case of a component value the internal composition operation c
represents the structure of a finished (fully linked) component. In the case of a configurator
value the internal composition operation c represents a mapping from component structures to
component structures, thus being more a functional value than a first-order value (see Chap-
ter 1). In particular, a configurator value does not in general define a complete (instantiable)
component structure.

Both components and configurators are intended to be pure values in the sense that they
do not possess active state. This means that both components and configurators may be freely
copied and possibly transmitted on communication channels in a possible extension of this
model with concurrency and distribution. Although in the untyped calculus lc this property
is not necessarily ensured, that will be the case in the typed version developed in the next sec-
tion. Objects, on the other hand, are stateful entities constructed as specified by their generating
component. Constructor comp(�) is an annotation that distinguishes a component structure
as complete, which can only be composed without accessing its internal elements (in x[�] op-
erations) and can also be used to produce instances (in new expressions). Configurators, on the
other hand, typically denote incomplete structures that are to be composed with others in a flat
structure (by �;� operations), by referring their internal elements (using their local names).

In the language lc, we define labels as language expressions to allow the use of port names
in expressions, more concretely, in method blocks. Thus, we need to use the notion of substitu-
tion (Definition 2.5) of labels by expressions.

We extend the application of a substitution to expressions as follows:

Definition 3.3 (Application of substitution). The application of a substitution q to an expression e
of lc, written eq, is defined in Figure 3.3.

Notice that application of a substitution to the field initialiser expressions of method blocks is
restricted on the names that are intended to be be interpreted only in the composition context
as discussed in Section 3.1.1 below. For the sake of simplicity, we also use the notation e[r]
where r is a record {`i = ei

i21..n} to denote the substitution [`i  ei
i21..n].

We are now ready to define the operational semantics of lc.
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xq , q(x)
yq , y where y 62 Dom(q)

(lx.e)q , lx.(eq0) where q0 = q\{x}
(e1(e2))q , (e1q)(e2q)

{`i = ei
i21..n}q , {`i = eiq

i21..n}
(e1.`)q , (e1q).`

(e1.` := e2)q , (e1q).` :=(e2q)
`q , q(`)
`q , ` where ` 62 Dom(q)

(compose e)q , compose (eq)
(new e with `j := ej

j21..m)q , new eq with `j := eiq
j21..m

(requires `)q , requires `
(provides `)q , provides `

(x[e])q , x[eq]
xL[`i = lxi.ei

i21..n]q , xL[`i = (lxi.ei)q0 i21..n] where L = `0i
i21..m and q0 = q\{x, `0i

i21..m}
(plug p1 into p2)q , plug p1 into p2

(e1; e2)q , e1q; e2q
lq , l

nilq , nil

(conf(e))q , conf(eq)
(comp(e))q , comp(eq)

Figure 3.3: Application of substitutions to terms.

Operational semantics

The operational semantics of lc is defined by a big-step evaluation semantics that maps lc

expressions to lc values. The semantics is based on two evaluation judgements, a judgement
to compute the value of computational expressions and a judgement to compute the effect of
composition operations.

More precisely, we write
e; S # v; S0

to mean that expression e when evaluated in heap S yields a value v and heap S0. We also write

s; c; S + s0; S0

to mean that composition operation c is applied to a partially built object s with relation to
a heap S and yields the partially built object s0 with respect to heap S0. In such a judgement
we refer the partially built object s as the composition context. Thus, the effects of composition
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(Eval Requires)

requires `; S # conf(requires `); S

(Eval Provides)

provides `; S # conf(provides `); S

(Eval Plug)

plug p1 into p2; S # conf(plug p1 into p2); S

(Eval Sequence)

e1; S # conf(c1); S0 e2; S # conf(c2); S0

(e1; e2); S # conf(c1; c2); S0

(Eval Uses)

e; S # v; S0

x[e]; S # conf(x[v]); S0

(Eval Method Block)

xL[`i = lx.ei
i21..n]; S # conf(xL[`i = lx.ei

i21..n]); S

(Eval Compose)

e; S # conf(c); S0

compose e; S # comp(c); S0

(Eval New) (s = (r, e, p), r = {`i 7!li
i21..n}, l = new(S))

e; S # comp(c); S0 0; c; Sn + s; Sn+1 ei; Si�1 # vi; Si 8i21..n

new e with `i := ei i21..n; S # l; Sn+1[l 7! s][li 7!vi i21..n]

Figure 3.4: Evaluation rules for lc.

operations are characterised in the semantics by incremental modifications of a composition
context.

The semantics is defined by the rule system in Figures 2.4, 3.4, and 3.5 as follows:

Definition 3.4 (Evaluation). Let e 2 lc and S be heap such that (e; S) is a valid configuration. The
evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figure 2.4, 3.4, and 3.5.

We now prove that our evaluation relation is well-defined by proving that all evaluation
judgements produce well-formed heaps, well-formed values, and that the resulting values are
closed in the resulting heaps.

Lemma 3.5.

1. For all expressions e and heaps S that form a valid configuration (e; S), if e; S # v; S0 then v is a
value, S0 is a heap, and (v; S0) is a valid configuration.

2. For all records s, expressions c, and heaps S that form valid configurations (s; S) and (c; S),
If s; c; S + s0; S0 for some expression c, then s0 is a record, S0 is a heap, and (s0; S0) is a valid
configuration.

Proof. By mutual induction on the height of the derivations of the judgements e; S # v; S0 and
s; c; S + s0; S0 and by case analysis on the last rule used.

Notice that we refer to the rules of the base language, lR (Figure 2.4), and introduce new
rules for the remaining expressions (Figures 3.4 and 3.5). The judgement form e; S # v; S0,
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(App Sequence)

s; c1; S + s0; S0 s0; c2; S0 + s00; S00

s; (c1; c2); S + s00; S00

(App Requires) (l = new(S))

(r, e, p); (requires `); S + (r� {` = l}, e, p); S[l 7! nil]

(App Provides) (l = new(S))

(r, e, p); (provides `); S + (r, e, p� {` = l}); S[l 7! nil]

(App Uses)

new v; S # l; S0

(r, e, p); x[v]; S + (r, e� {x = l}, p); S0

(App Method Block) (l, li
i21..n = new(S), v0i = vi[(r, e, p)][x l])

(r, e, p); xL[`i = vi
i21..n]; S + (r, e� {x = l}, p); S[l 7! {`i = li

i21..n}][li 7!v0i
i21..n]

(App Plug)

s; plug p1 into p2; S + s; S[selectS(s, p2) 7! selectS(s, p1)]

Figure 3.5: Application rules for composition operations in lc.

defining the evaluation of an expression e with relation to a memory heap S, depends on the
judgement form s; c; S + s0; S0, in rule (Eval New), to define the application of a composition
operation c to a composition context. We use 0 to denote an empty object. A composition
context is a partially built instance s where the effects of the operations are accumulated. In the
end, this composition context is taken as the resulting instance.

The basic composition operations provides, requires, and plug, are interpreted as themselves
as described above, and thus directly stored in configurator values since they are closed expres-
sions, Rules (Eval Requires), (Eval Provides), (Eval Plug). The fields of method blocks (which
are abstractions) are also, by definition, values of the language. So, they may be also directly
stored in configurator values, as indicated in Rule (Eval Method Block).

In Rule (Eval Uses), the case of the introduction of an internal component (x[e]), the result-
ing value depends on the evaluation of the expression e to a component value v. Then, the
ground composition operation (x[v]) gets stored in the resulting configurator value.

Finally, evaluating a composition, in Rule (Eval Sequence), produces a configurator con-
taining the composition of the two configurators resulting from evaluating its two operands.

The evaluation of a compose e expression (Rule (Eval Compose)), evaluates expression e
to yield a configurator value. This value is expected to be well-formed, but it might be not,
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because the configurator may not ensure the construction of a complete component. This is
an example of a situation that will be taken care of by the type system presented in the next
section, to ensure that the coercion, in Rule (Eval Compose), from conf(c) to comp(c) is sound.

The evaluation of new e uses the composition operation stored in the component value yield
by expression e as the building instructions for the new object. Rule (Eval New) expresses that
the subexpression e evaluates to a component, and that its internal composition operations are
applied to an empty object instance. This is expressed by the premise 0; c; S + s; S0 where s
is the resulting object. The instance construction produces an object with possibly unsatisfied
required ports, which are then satisfied by plug-assignments. The connections are directly
performed in the heap by using the locations corresponding to the required ports.

The second judgement s; c; S + s0; S0, defines the application of composition operations to
composition contexts as defined by the rules in Figure 3.5. This construction is achieved by
manipulating the records r, e, and p that make up the splitted view of the object, s = (r, e, p).

In order to bring explicit the role of composition operations in the semantic rules we find
convenient to introduce an alternative representation of objects where, for convenience we
group separately required ports, provided ports, and internal elements. We define the splitted
view of an object as follows:

Definition 3.6 (Splitted View). Given an object s = {`i = li
i21..n}, its splitted representation is a

tuple of records (r, e, p) such that r, e, and p are disjoint and contain all the labels in s.

This notion of splitted object is such that r represents the required ports, e the internal elements,
and p the provided ports of the object. We use one representation or the other interchangeably
whenever convenient and use ��� to denote the concatenation of the records. For the sake
of simplicity we assume that the labels that are common to both records take the value of the
second record in the concatenation.

As expected, Rule (App Sequence) sequentially applies the two parts of the operation thus
causing the combined effect of both. For the ports, Rules (App Requires) and (App Provides)
both create empty placeholders in the heap and make the correspondence with local names in
the records r or p.

The introduction of an internal component corresponds, at the instance level, to the intro-
duction of an instance of that component inside the object currently being built. So, the inte-
gration proceeds by instantiating the internal component and introducing the resulting object
as an internal element of the instance, in record e, as specified by Rule (App Uses). Remember
that the application of a configurator is only performed with ground composition operations
(taken from a configurator value) and therefore their internal expression are values. In this case
this value is expected to be a component. Similarly, (App Method Block) takes the field values,
builds a record associated with the declared local name, and links it into the composition con-
text. In Rule (App Method Block), vi[(r, e, p)] denotes the substitution of the object’s labels by
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their locations and therefore give access to the elements already in the instance (see page 44).
The substitution [x l] introduces the “self” reference of the method block. Notice that the
application of substitutions to method block expressions disallows the replacement of these
names. Thus, they remain bound until applied to a particular composition context.

Finally, the application of a plug expression connects source to target ports by simply form-
ing a chain between the two locations, Rule (App Plug). We use the function selectS(o, p) to
denote the location corresponding to port p. In the case of an undefined location for p2 the we
consider that the heap is not changed, it corresponds to trying to connect an implementation to
a place where it is not needed. If p1 is undefined then a run-time error would occur, but this is
trapped by our type system as we show in our subject reduction result.

The internal elements of an object may be method blocks and ports whose names are re-
ferred directly and there are ports of internal elements that are only accessible by dereferencing
a local name. To abbreviate the writing of the rules that connect ports inside an object, we use
an auxiliary operation select�(�,�) to locate the placeholder (the location) of a port in an ob-
ject, given its name (simple or compound). The operation select�(�,�) is defined as follows:

Definition 3.7 (Port selection). Given any closed heap S, any object o, and a port name p

selectS(o, p) ,

8

>

<

>

:

l if o = {x = l, . . .} and p = x
l

0 if o = {x = l, . . .}, p = x.`, and S(l) = {` = l

0, . . .}
unde f ined otherwise

selectS(o, p) denotes the location of port p in the context of object o with relation to S. This
concludes our presentation of the operational semantics of the untyped component calculus
lc.

Notice that objects are represented by linked structures constituted of ports, other objects,
and records containing variables and methods.

3.1.1 Remarks

We now discuss some issues related to our language that are worth noting. Notice that the
structures denoted by configurators, besides being the raw material and result of lc compu-
tations, are mapped onto the structures of component instances. The elements of these webs
of objects are interconnected by chains of memory locations, leading from a provided port of
an instance, to an actual record containing methods. The intermediate redirections in the heap
represent nested layers of internal elements. By using a “chain-transparent” selection opera-
tion, we are able to access methods via these chains of locations without explicitly referring
them. In a optimised implementation, deref�(�) can be suppressed by collapsing the chains
at instantiation time thus allowing for a direct access to methods.
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Notice that the provided ports of an object may lead directly to implementations outside
the current object, if explicitly connected to one of its required ports. Although apparently
not necessary from a small scale programming perspective, this pattern is, for sure, interesting
from a component construction perspective, where elements are chosen according to run-time
demands.

We require, in the syntax of method blocks, fields to be initialised using values which in our
case must be abstractions, thus disallowing the usage of arbitrary unevaluated expressions.
Method blocks are configurators denoting declarations whose initial values are yield by ex-
pressions with bound occurrences of variables. The intended scope of those variables is a com-
position context yet to be defined by composition with other configurators. Evidence of this
scoping mechanism appears in the definition of the application of substitutions to expressions,
Definition 3.3 in the case of method blocks xL[...] where the name of the method block (x) and
the variables declared in set (L) are not replaced. It is also visible in Rule (App Method Block)
when local names of the partially built objects get replaced in method bodies. The evaluation
of these field initialiser expressions is delayed until the composition context gets well-formed,
that will happen only after the instantiation of the component, when all names get bound to
the concrete appropriate elements of that object. This mechanism can be seen as a kind of disci-
plined dynamic scoping which is safe with relation to the typing relation defined in the typed
version of the component calculus. The syntactic restriction imposed by our design, to use only
closed values as initialiser expressions, greatly simplifies the definition of the semantics in this
regard.

Notice also that the evaluation relation for computational expressions (e; S # v; S) depends
on the evaluation relation for application of configurators (s; c; S + s; S), but not conversely (the
dependency through new is not essential). In particular it is not possible to embed computa-
tions yielding values in the middle of computations assembling or linking objects. This is a
necessary condition to avoid undefined computations such as calling on a port which is not, at
that stage, connected to an appropriate resource. This closely relates to the phase distinction
studied in [22], as we need to separate the evaluation of configurator values (run-time phase),
from the instantiation of components (compile-link-time phase), from the execution of methods
(run-time phase again).

3.1.2 An Example

In order to give some preliminary evidence of the expressiveness of our language, we now
show how it can emulate standard object-oriented language mechanisms such as implementa-
tion inheritance and mixins. We use standard notation for let constructions and l abstractions
(fun x ! ... ).
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Example 3.8. In this example, we illustrate the encoding of classes and mixins using compo-
nents with explicit dependencies. We use a required port on a component to represent the ref-
erence to self in the definition of a mixin-like component. Consider component c implementing
methods m1 and m2 which are available at a provided port self , and based on a required port
super,

l e t c = compose ( requires super ;
provides s e l f ;
m[m1 = fun x! x+1 , m2 = fun x! 2⇤super .m1( x ) ] ;
plug m into s e l f ) in . . .

Notice that m2 depends on another method, m1, but that this is called on an “open” self refer-
ence, available at the required port super. Component c can be seen as a “mixin” which we can
“close” by means of an extra composition layer to produce a “class” component C:

l e t C = compose ( provides s e l f ;
x [ c ] ;
plug x . s e l f into x . super ;
plug x . s e l f into s e l f ) in . . .

We instantiate component C,

l e t o = new C in o . s e l f .m2( 1 )

to obtain an object where method m2 refers to method m1 in the same object. We consider that
component c is a “mixin” and that its closed version, component C, is a “class”. Now, to extend
c in order to log the calls to its methods, we define a “mixin” component log (for the sake of
simplicity consider the existence of a primitive function print ):

l e t l og = compose ( requires super ;
provides s e l f ;
m[m1 = fun x ! ( p r i n t ( ”m1 ” ) ; super .m1( x ) ) ,

m2 = fun x ! ( p r i n t ( ”m2 ” ) ; super .m2( x ) ) ] ;
plug m into s e l f ) in . . .

and apply the extension log to c in the following composition

l e t logc = compose ( requires super ;
provides s e l f ;
log [ log ] ; c [ c ] ;
plug super into c . super ;
plug c . s e l f into l og . super ;
plug l og . s e l f into s e l f ) in . . .

which again creates a “mixin”, and by a simple composition operation we obtain a “class”

l e t Log = compose ( provides s e l f ;
x [ logc ] ;
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plug x . s e l f into x . super ;
plug x . s e l f into s e l f ) in . . .

which gets instantiated as follows:

l e t o = new Log in o . s e l f .m2( 1 )

The calls made at port self are directed to log and then to c, e.g. the call o. self .m2(1) is directed to
log, which prints the string ”m2” in the console, and follows to m2 in c, which in turn calls m1 in
log, thus printing ”m1” and, from c, returns 2, and from m2 returns 4.

Although requiring some syntactic sugar, to close all mixin components into classes, this ex-
ample shows that our component language is expressive enough to encode classes and mixins.

To complete our first language proposal, we next describe a type system that ensures the
consistency of all these operations at compile-time.

3.2 lt
c — A Typed Component Calculus

The language lc defined in the previous section supports a clear definition of the architecture of
a system, which would otherwise be encoded in non-specific construction code. Furthermore,
by treating architectural building blocks, components and configurators, as first-class values,
our language allows us to express the construction of systems in a dynamic and computation-
driven way (instead of the traditional static linking mechanism of module languages).

In a typeful programming setting, the usage of composition abstractions should also allow
for the automatic verification of architectural properties. Our approach is to assign static type
information to configurators, components and objects and type each composition operation ac-
cordingly. Besides the extensional type information of components and objects, which specify
their interfaces, we use intensional type information about the internal structure of configura-
tors. We refer this information as intensional because it talks about the internal structure of
components rather than about their functionality.

Our type system ensures, not only the type safety for computations, as expected from an
extension of the typed version of the base language (lR), but also for compositions. Intuitively,
we say that a composition is well-typed only if all the declared services are indeed imple-
mented and if all dependencies of its internal elements are properly satisfied. In particular, no
“null reference errors” may occur due to the absence of properly linked resources. Once this
basic property is recursively ensured throughout the hierarchy of components we know that
no execution error will occur because of a badly assembled component.

In this section we define, by extension of the type system of lt
R, a type system to ensure

this architectural soundness. To that end, we first define a type language that captures the se-
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t :: = types
| t ! t function type
| {|`i : ti

i21..n|} record type
| {`i : ti

i21..n} interface type
| t ) t component type
| {ri

i21..n} =) {ri
i21..m} configurator type

r :: = resources
| p � t unsatisfied resource
| p • t available resource
| p . t provided resource
| p / t required resource

Figure 3.6: Abstract syntax of lt
c types.

mantics of the new language constructs, and then extend lc with type annotations, and define
a typing relation for the language expressions. Type safety is finally proven in a subject reduc-
tion theorem that correlates the semantics of the language, using both evaluation judgements,
and the typing information statically assigned to the expressions.

Types

We first define a type language by extending the types of lc, TR (Definition 2.13), with new
types for configurators, components, objects, and ports.

Definition 3.9 (Types). The types Tc of lt
c are defined by the abstract syntax in Figure 3.6.

Besides the types of the base language lt
R, the type language Tc includes new type forms for

ports, objects, components and configurators. While record types in TR follow the usual defi-
nition for typing mutable records, a distinctive annotation, interface types, is used here to type
records when encapsulation of objects and ports is intended: interfaces provide a read-only
perspective on record values. Port and object values are both encoded with records, and they
should be protected from external modification, hence we type them using interface types.

Port types follow the standard definition of interface types in object-oriented programming
languages as collections of methods: names are associated with function types.

Object types, which are collections of named port types, are also encoded by interface types.
They describe the public interface of component instances, as well as the provided and required
ports of component values.

Component types, of the form t ) s, characterise component values with the object type
t specifying the names and types of the required ports, whereas the object type s specifies
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the provided ports. The target type s is the object type assigned to the instances that such
components produce.

Configurator types carry information about the effects of configurators on compositions.
This is expressed in the form of required and provided resources (do not confuse with required
and provided service ports). A resource is represented by a combination of a tag, a name, and
a type. The possible tags are: � (open), meaning that the resource is unsatisfied, for instance,
that a provided port is not connected; •, meaning that the resource is available for connection,
for instance a certain method block or internal component is present; . denotes that a provided
port is present, and / denotes that a required port is present. Typically, at the level of typing, a
composition operation rewrites a bag of resources into another bag of resources, reflecting the
internal change that takes place in the component architecture.

Notation 3.10. In general, we use the symbol K to denote resource sets. We also define K⇤ to
be the resource set containing all resources tagged with the mark ⇤ in K where ⇤ may be �, •,
., or /. For example, K• is {pi : ti

i21..n} where pi • ti for i = 1..n are all the •-tagged elements
in K. In appropriate situations where, in all resources pi ⇤ ti, pi are labels `i, we use K⇤ as an
interface type assigning types ti to labels `i. We use I, J for interface types and R, P for object
types, i.e. interfaces of the form {`i : Ii

i21..n}. We denote by ��� the concatenation operation
on disjoint interfaces, and by �#� the disjointness predicate for interfaces and resource sets.
When convenient, we abbreviate ` • t, K for the set of resources {` • t} [ K.

These notions are formally defined as follows:

Definition 3.11 (Operations on interfaces and resource sets).

• If K = {pi • ti
i21..n1 , p0i � t0i

i21..n2 , p00i . t00i
i21..n3 , p000i / t000i

i21..n4} then

– K• , {pi : ti
i21..n1}

– K� , {p0i : t0i
i21..n2}

– K. , {p00i : t00i
i21..n3}

– K/ , {p000i : t000i
i21..n4}

• {`i : ti
i21..n}� {`0j : t0j

j21..m} , {`i : ti
i21..n, `0j : t0j

j21..m}

• {`i : ti
i21..n} # {`0j : t0j

j21..m} if `i 6= `0j 8i21..n 8j21..m

• {`i ⇤ ti
i21..n} # {`0j ⇤⇤t0j j21..m} if `i 6= `0j 8i21..n 8j21..m and ⇤, ⇤⇤ 2 {•, �, /, .}

• {`i : ti
i21..n} ✓ {`i : ti

i21..n, `0j : t0j
j21..m}

Notice that, in Tc, not all expressions denote meaningful types, for instance, in a component
type of the form t ) s, t and s are expected to be object types, expressing the required
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e :: = terms
| x variable
| lx : t.e abstraction
| e(e) application
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| ` port label
| compose e component creation
| new e with `j := ej

j21..m instantiation
| requires ` : t required port
| provides ` : t provided port
| x[e : t] component introduction
| xI [`i : ti = lx : t.ei

i21..n] method block
| plug p : t into p : t plug
| e; e configurator composition
| l location value
| nil null value
| conf(e) configurator
| comp(e) component

p :: = ` | x | x.` port name

Figure 3.7: Abstract syntax of lt
c.

and provided services of the component: the type system will only accept meaningful type
expressions.

Given this type language we now define the typed component calculus.

Syntax

We extend our untyped component calculus (lc) with type annotations as follows:

Definition 3.12 (Terms). The language lt
c is defined by the abstract syntax in Figure 3.7.

Port declarations, in the expressions requires ` : t and provides ` : t, are decorated with type
annotations to specify the type of the corresponding port — remember that the type of a com-
ponent is built from its port names and types.

The introduction of an internal component, x[e : t], also statically declares its type.
The declaration of a method block, xI [`i : ti = lx : t.ei

i21..n], mentions, besides the names,
the types of the expected elements in the composition context where it is introduced (I). It
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v :: = values
| lx : t.e abstraction
| {`i = li

i21..n} record
| l location value
| nil null value
| conf(c) configurator
| comp(c) component

c :: = ground composition operations
| requires ` : t required port
| provides ` : t provided port
| x[v : t] component introduction
| xI [`i : ti = lxi : ti.ei

i21..n] method block
| plug p : t into p : t plug
| c; c composition

p :: = ` | x | x.` port name

Figure 3.8: Abstract syntax of lt
c values.

also explicitly types its fields (ti). This explicit typing of fields makes it simpler typing method
blocks as recursive definitions (the local name x may occur in each ei). The inference of such
types is not a difficult task, but for the sake of simplicity we choose to add explicit type anno-
tations. Whenever possible, to avoid cluttering the presentation with heavy notation we omit
the index I on method block when the imported names are clear from context. The ports in
plug expressions are also annotated with the expected types for the connecting ports.

Given the language syntax, the evaluation results of lt
c are defined as expected, again defin-

ing configurator and component values on ground composition operations as in Definition 3.1.

Definition 3.13 (Values). The set U t
c ✓ lt

c is defined by the abstract syntax in Figure 3.8.

We now formally define the operational semantics of lt
c.

Operational semantics

As in lt
R, for the sake of completeness we now present the rule system that defines the op-

erational semantics of lt
c in Figures 3.9, and 3.10 and refer to the rules in Figure 2.8 for the

remaining constructs. The operational semantics of lt
c is defined as follows:

Definition 3.14 (Evaluation). Let e 2 lt
c and a heap S such that (e; S) is a valid configuration. The

evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figures 2.8, 3.9, and 3.10.
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(Eval Compose)

e; S # conf(c); S0

compose e; S # comp(c); S0

(Eval New) (s = (r, e, p), r = {`j 7!lj
j21..m}, l = new(S))

e; S # comp(c); S0 0; c; Sn + s; Sn+1 ei; Si�1 # vi; Si 8i21..n

new e with `i := ei i21..n; S # l; Sn+1[l 7! s][li 7!vi i21..n]

(Eval Requires)t

requires `:t; S # conf(requires `:t); S

(Eval Provides)t

provides `:t; S # conf(provides `:t); S

(Eval Plug)t

plug p1:t1 into p2:t2; S # conf(plug p1:t1 into p2:t2); S

(Eval Sequence)

e1; S # conf(c1); S0 e2; S # conf(c2); S0

(e1; e2); S # conf(c1; c2); S0

(Eval Uses)t

e; S # v; S0

x[e:t]; S # conf(x[v:t]); S0

(Eval Method Block)t

xI [`i:ti = vi
i21..n]; S # conf(xI [`i:ti = vi

i21..n]); S

Figure 3.9: Evaluation rules for lt
c.

Notice that the operational semantics of lt
c is the same as the one of lc, just a minor change

in the abstract syntax was introduced. Type annotations were introduced in order to guide the
type system presented in the next section and do not play any role in the evaluation relation.
Thus, the results that assert that the evaluation relation is well-defined (Lemma 3.5) still apply
to the current context without modifications.

Type System

We now present a type system for lt
c. This is done by extending the type system of lt

R with
rules for typing the computational expressions compose e and new e, rules for typing the com-
position expressions requires e, provides e, x[�], x�[� = �], plug p into p, and �;�, as well as
rules for typing the configurator and component values. We also adapt judgements D ` ⇧ and
D ` t ok to address the new type forms for interfaces, configurator and component types. The
appropriate definition for a valid typing environment is therefore defined by:

Definition 3.15 (Valid Typing Environment). A typing environment D is valid if the judgement
D ` ⇧ is derivable by the rules in Figures 2.10 and 3.11.

Notation 3.16. In Rule (Type Conf) we write (` : t) 2 K to denote ` ⇤ t 2 K where ⇤ is one of
the possible resource tags: �, •, /, or ..

Our type system enforces encapsulation (information hiding) of objects and components
in the sense already discussed. Namely, port names and types in a component border are the
only information exported to the outside, thus defining a visibility boundary ensuring that
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(App Requires)t (l = new(S))

(r, e, p); (requires ` : t); S + (r� {` = l}, e, p); S[l 7! nil]

(App Provides)t (l = new(S))

(r, e, p); (provides ` : t); S + (r, e, p� {` = l}); S[l 7! nil]

(App Uses)t

new v; S # l; S0

(r, e, p); x[v : t]; S + (r, e� {x = l}, p); S0

(App Sequence)

s; c1; S + s0; S0 s0; c2; S0 + s00; S00

s; (c1; c2); S + s00; S00

(App Method Block)t (l, li
i21..n = new(S), v0i = vi[(r, e, p)][x l])

(r, e, p); xI [`i : ti = vi
i21..n]; S + (r, e� {x = l}, p); S[l 7! {`i = li

i21..n}][li 7!v0i
i21..n]

(App Plug)t

s; plug p1 : t1 into p2 : t2; S + s; S[selectS(s, p2) 7! selectS(s, p1)]

Figure 3.10: Application rules for composition operations in lt
c.

(Type Interface)

D ` ti ok 8i21..n

D ` {`i : ti i21..n} ok

(Type Comp)

D ` t ok D ` s ok

D ` t ) s ok

(Type Conf)

D ` t ok 8t.(` : t) 2 K [ K0

D ` K ) K0 ok

Figure 3.11: Validation rules for typing environments in lt
c.

components and configurators resulting from evaluation are pure values. To that end, we
restrict the typing environment in the typing of subexpressions of the method blocks, Rule
(Comp Method Block), by explicitly disallowing any reference to imperative values. External
references are only allowed for declarative stateless values, i.e. only configurators and compo-
nents can be referred in the definition of other configurators or components. Such restriction
on typing environments is defined as follows:

Definition 3.17 (Restricted Typing Environment). Let D be a typing environment, |D| is the typing
environment containing the elements of D with component or configurator types:

|D| , {x : t | x : t 2 D and t = (s) s0) or t = (K =) K0)}

We can now define the typing relation as follows:

Definition 3.18 (Typing relation). The judgement D ` e : t is valid if it is derivable by the rules in
Figures 2.11, 3.12 and 3.13.

In our type system, we extend the typing relation of lt
R, defined by the rules in Figure 2.11 with

typing rules for the new constructs. We also define an additional typing for record values using
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(Val Interface) (m  n)

D ` e : {|`i : ti
i21..n|}

D ` e : {`i : ti i21..m}

(Val Select Interface)

D ` e : {. . . , ` : t, . . .}
D ` e.` : t

(Val Compose) (K� = ∆)

D ` e : ∆ =) K
D ` compose e : K/ ) K.

(Val New)

D ` e : {`i : ti
i21..n}) s D ` ei : ti 8i21..n

D ` new e with `i := ei i21..n : s

(Val Composition Value)

D ` compose c : t ) s

D ` comp(c) : t ) s

(Val Configurator Value)

D ` c : K =) K0

D ` conf(c) : K =) K0

Figure 3.12: Typing rules for lt
c.

interface types. Namely, we introduce Rule (Val Interface) that realises a type coercion from a
record type to an interface type. This is a restricted form of subsumption relating records and
interfaces.

We then define a selection rule based on interfaces, Rule (Val Select Interface). The com-
bination of these two rules enforces the read-only perspective that interface types provide on
record values. For instance, method blocks evaluate to record values, are typed as records in-
side their methods, but are typed as interfaces when used by other elements or exported by
objects. We disallow assignments on values typed as ports, and in this way encapsulate state.
The side condition of this rule (m  n) also allows some fields of a record to be hidden.

The expressions, compose e and new e, are typed together with composition expressions, to
ensure the soundness of components, configurators and objects. We next describe in detail the
typing rules of the language, which, besides manipulating the extensional type information of
components and objects, also relies on configurator types that carry intensional type informa-
tion, describing the effects that configurators produce. This information is then combined in
the typing of configurator composition. The overall result is that well-typed configurators al-
ways produce well-formed structures of objects in the sense that all dependencies and specified
provided services are implemented, that is the architectures resulting from the evaluation pro-
cess are sound as discussed in Section 1.3.4. In particular, this soundness requires the absence
of broken chains of locations in the heap.

The type system defines three levels of information hiding and three levels of architectural
soundness for the three different sorts of values.



60 CHAPTER 3. A CORE COMPONENT CALCULUS

(Comp Requires)

D ` (requires ` : t) : ∆ =) {` • t, ` / t}
(Comp Provides)

D ` (provides ` : t) : ∆ =) {` � t, ` . t}

(Comp Plug)

D ` plug (p1 : t) into (p2 : t) : ({p2 � t, p1 • t} =) {p1 • t})

(Comp Sequence) (K0#K00, K0#K000)

D ` e1 : K =) K0, Kc D ` e2 : Kc, K00 =) K000

D ` (e1; e2) : K, K00 =) K0, K000

(Comp Uses) (t = {`r
i : ti

i21..n}, s = {`p
j : sj

j21..m})

D ` e : t ) s

D ` x[e : t ) s] : ∆ =)
n

x • s, x.`r
i � ti

i21..n, x.`p
j • sj

j21..m
o

(Comp Method Block) (I = {`0i : t0i
i21..m}, K = {`0i • t0i

i21..n})
|D|, `0i : t0i

i21..m, x : {|`i : ti
i21..n|} ` ei : ti 8i21..n

D ` xI [`i : ti = ei
i21..n] : K =) K, {x • {`i : ti

i21..n}}

Figure 3.13: Typing rules for lt
c.

Configurators are typed so that their composition is statically verifiable, i.e. their structure is
made sufficiently visible in the given type, and the type of the resulting configurator is obtained
by composition of the two given types.

Components are typed to allow the static verification of black-box compositions. The usage
of components on an introduction operation of the form x[�] inside other compositions only
makes available for further use their required and provided ports.

Finally, objects are typed in the perspective of direct utilisation, where only the provided
ports are disclosed so that ports and methods are accessed properly. These points are visible in
the typing rules of Figures 3.12 and 3.13, which we now explain in more detail.

Rule (Val Compose) ensures that components are only produced given completed architec-
tures, i.e. from configurators that do not depend on any existing resource (∆ =) K) and does
not introduce unsatisfied resources (K� = ∆). These conditions, in combination with the typing
of component and configurator values are important to ensure the soundness of architectures,
thus preventing run-time errors from occurring. The resulting component type, K/ ) K.,
reveals only the required and provided services, while hiding the remaining (intensional) in-
formation about the internal structure of the component.

Rule (Val New) types a new instance with the object type containing the provided ports of
its generator component and checks for the proper satisfaction of all required ports, if there are
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any. Notice that, once again, some type information gets erased: here, the existing required
ports are not included in the instance type. Hence, the type system does not distinguish in-
stances that provide the same services, as expected. We now turn to composition operations.

Our type system assigns a type of the form K =) K0 to each composition operation, in order
to denote the transformation of a set of required resources (K) into a set of provided resources
(K0). These typings of configurators are the base for the operations that generate components
and objects, typed by Rules (Val Compose) and (Val New). Basic composition operations get
natural configurator types, which are then elaborated by means of composition.

In Rule (Comp Provides), the type of (provides ` : t) indicates that an unsatisfied resource
of the form (` � t) is provided, i.e. a resource that must be satisfied before this configurator is
used to make a component, and of a new provided port (` . t).

The symmetrical Rule (Comp Requires), (requires ` : t) adds a new required port (` / t) and
an available resource (` • t) to a composition context.

The typing of the introduction operation of an internal component (x[e : t]), described in
Rule (Comp Uses), indicates that it provides available resources corresponding to an instance
of the internal component (x • {`p

j : sj
j21..m}) and its provided ports (x.`p

j • sj
j21..m), and unsat-

isfied resources that denote the internally required ports (x.`r
i � ti

i21..n).
Similar type information is associated with method blocks introduced by (xI [`i : ti = ei

i21..n]),
in Rule (Comp Method Block), but using the required set of resources obtained from I as a pre-
condition to its application. In this case, the method block itself is provided as an available
resource (x • {`i : ti

i21..n}).
Rule (Comp Sequence) combines the effect of two expressions. This rule depicts the propa-

gation of resources (Kc) from e1 to e2, meaning that e2 handles these resources either by keeping
them in K000 or by consuming them.

Notice that, on the typing of method blocks, each field is typed in a context where the
corresponding method block is typed as record — and used as the self reference — but the
method block itself is introduced in the composition context typed by an interface. Thus, fields
are only modifiable from within the method block itself, and are read-only towards the rest of
the elements in the component and consequently to the outer context.

As observed before, for a sequence of composition operations to be accepted in a compose

expression it must denote a complete architecture, in particular the set of unsatisfied resources
must be empty (K� = ∆). The elimination of these resources from the configurator types is
captured by the typing of plug operations: they are typed with a required resource (p2 � t) that
is not propagated to the set of provided resources, as made explicit in Rule (Comp Plug). This
denotes the satisfaction of internal dependencies in a composition. When used in sequence
with other operations, the unsatisfied resources are either eliminated, i.e. the dependency gets
satisfied, or they are propagated to the required resources of the composition. The one-time-
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usage of an unsatisfied resource is the operation behind the intuition of the name “resource”
given to the basic elements of configurator types.

Given this description of the type system, we next illustrate its use in typing a composition
expression.

Example 3.19. Given the type abbreviations > = {}, s = > ! >, and t = {m : s}, consider
the following lt

c expression that defines a component that redirects all method calls from a
required to a provided port, and instantiates it:

let c = compose (provides p : t; requires q : t; plug q : t into p : t) in

let o = new c with q :={m = lx :>.x} in o.p.m({})

This means that all calls on port p are in fact dealt by the record plugged to port q. The typing
for the composition expression ((provides p : t; requires q : t); plug q : t into p : t) is obtained by
the following derivation:

(Comp Provides) ` (provides p : t):∆ =) {p � t, p . t}
(Comp Requires) ` (requires q : t):∆ =) {q • t, q / t}
(Comp Sequence) ` (provides p : t; requires q : t) : ∆ =) {q / t, p . t, p � t, q • t}
(Comp Plug) ` (plug q : t into p : t):{p � t, q • t} =) {q • t}
(Comp Sequence) ` ((provides p : t; requires q : t); plug q : t into p : t) : ∆ =) {q / t, p . t, q • t}

Notice that the unsatisfied resource p � t is eliminated from the provided resources by the plug
expression. The second application of Rule (Comp Sequence) has Kc = {p � t, q • t} as the
common set of resources whereas the provided resource set is only {q • t}. So, the result of the
type combination is given by the provided resources {q / t, p . t, q • t}.

Using this configurator in the compose expression is valid since the side conditions of Rule
(Val Compose) are satisfied by ∆ =) {q / t, p . t, q • t}. It has no required resources and adds
no unsatisfied resources. This produces a component c with type {q : t}) {p : t}. So, we have
the following typing derivation for the remainder of the expression:

(Val Var) c : {q : t}) {p : t} ` c : {q : t}) {p : t}
(Val Var) c : {q : t}) {p : t}, x :> ` x :>
(Val Abstraction) c : {q : t}) {p : t} ` lx :>.x : s

(Val Record) c : {q : t}) {p : t} ` {m = lx :>.x} : t

(Val New) c : {q : t}) {p : t} ` new c with q :={m = lx :>.x} : {p : t}



3.2. lt
c — A TYPED COMPONENT CALCULUS 63

which assigns type {p : t} to o. Notice that the typing for new derives the object type from the
type of the generating component, and that the requirements are verified. We now conclude
that:

(Val Var) c : {q : t}) {p : t}, o : {p : t} ` o : {p : t}
(Val Select) c : {q : t}) {p : t}, o : {p : t} ` o.p : t

(Val Select) c : {q : t}) {p : t}, o : {p : t} ` o.p.m :> ! >
(Val Record) c : {q : t}) {p : t}, o : {p : t} ` {} :>
(Val Application) c : {q : t}) {p : t}, o : {p : t} ` o.p.m({}) :>

Notice that we have omitted the typing of the let expressions which are not part of our language
but are easily encoded in the standard way.

This example illustrates our type system while validating compositions. Notice that the typing
configurator composition is accomplished by the composition of the types of the parts. The
result is then used to build the types of components and objects. We now combine the type
system with the semantics of the language to prove type safety for lt

c.

3.2.1 Type Safety

In this section, we state, characterise, and prove type safety in lt
c. Type safety is a corollary of

a subject reduction theorem that ensures the architectural soundness of configurators, compo-
nents and instances as a side effect of the traditional progress and type preservation properties.
By analogy with type safety result in lt

R, we extend of the operational semantics with a dis-
tinguished value wrong, to which an expression evaluates whenever a run-time error occurs.
Thus, the operational semantics of Definition 3.14 is extended with the error trapping rules in
Figures 2.12 and 3.14.

Definition 3.20 (Extended Evaluation). Let e 2 lc and a heap S such that (e; S) is a valid configu-
ration. The evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively
by the rules in Figures 2.8, 2.12, 3.9, 3.10, and 3.14.

Besides the run-time errors trapped by the rules of Figure 2.12, which correspond to lR expres-
sions, we extend the operational semantics to trap the following errors: attempting to use a
value, which is not a configurator, to build a component; attempting to instantiate some value
which is not a component; or attempting to compose two values (using �;�) which are not
configurators.

Some technical challenges arise in the proof of subject reduction related to typing transient
states of an instance, which need to be considered during a composition. More precisely, during
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(Wrong Compose)

e; S # v; S0 v 6= conf(c)
compose e; S # wrong; S

(Wrong New)

e; S # v; S v 6= comp(c)
new e with rj := ej

j21..m; S # wrong; S

(Wrong Sequence)

e1; S # v; S0 v 6= conf(c)
(e1; e2); S # wrong; S0

(Wrong Sequence 2)

e1; S # conf(c1); S0 e2; S # v; S0 v 6= conf(c)
(e1; e2); S # wrong; S0

(Wrong Plug)

selectS(s, p1) is undefined
s; plug p1 into p2; S + wrong; S

(Wrong Uses)

v 6= comp(c)
s; x[v : t]; S + wrong; S

Figure 3.14: Error trapping rules for lt
c.

the process of constructing an object, that is the need to consider architecturally inconsistent
values, so we need to consider a more flexible invariant. Thus, in order to keep such global
type information in the proof, we define an auxiliary type annotation, of the form [[t ) s]], to
keep track, during the building process of an instance, of its unsatisfied required ports (t) on
one hand, and of the declared provided ports on the other hand (s). The final type of the object
to be built is then s. The type t is used just to verify the satisfaction of the required ports when
a component is instantiated, or used in a composition.

Definition 3.21 (Partially Linked Object Type). A partially linked object type is an expression of the
form [[R) P]] where R and P are object types of the form R = {`r

i : tr
i

i21..n} and P = {`p
i : t

p
i

i21..m}.

We then relate partially linked object types to objects, as follows:

Definition 3.22. A partially linked object type of the form [[R ) P]], where R = {`r
i : tr

i
i21..n} and

P = {`p
i : t

p
i

i21..m}, types an object (r, e, p) with relation to a typing environment G and a heap
S, if:

• R consists of its requirements with G(r.`r
i ) = tr

i 8i 2 1..n, and

• P declares its provided ports with G(p.`p
i ) = t

p
i 8i 2 1..m.

Notice that the partially linked object type [[R) P]] indicates not only that the object type is P
but also that it depends on the services indicated in R.

We now define a notion of architectural conformance between partially built instances and
resource sets, in order to specify an invariant property of the application of configurators to
instances during the composition process.
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Definition 3.23 (Architectural conformance). Let s = (r, e, p) be an object and G a typing environ-
ment such that

• its required ports r = {`r
i = l

r
i

i21..nr} are typed G(lr
i ) = tr

i
i21..nr ,

• its internal elements e = {`c
i = l

c
i

i21..nc , `m
i = l

m
i

i21..nm} are typed
G(lc

i ) = [[{`ri
h : di

h
h21..nc

i } ) {`pi
h : gi

h
h21..mc

i }]] i21..nc for internal component instances, and
G(lm

i ) = tm
i

i21..nm for method blocks, and

• its provided ports p = {`p
i = l

p
i

i21..np} are typed G(lp
i ) = t

p
i

i21..np .

Then, we say that s conforms with a resource list K (with relation to G) if

• K� ✓ {`p
i : t

p
i

i21..np} [ {`c
j .`

rj
h : d

j
h

j21..nc h21..nc
j }

• K• ✓ {`r
i : tr

i
i21..nr} [ {`m

i : tm
i

i21..nm} [ {`c
j .`

pj
h : g

j
h

j21..nc h21..mc
j , `c

i : {`pi
h : gi

h
h21..mc

i }i21..nc}

• K/ ✓ {`r
i : tr

i
i21..nr}

• K. ✓ {`p
i : t

p
i

i21..np}.

In this definition we see that: all the unsatisfied resources (K�) must be either provided ports
of the current object (`p

i ) or required ports of an internal element (`c
j .`

rj
h ); all available resources

(K•) are either required ports of the current object (`r
i ), internal components (`c

j ), provided ports

of internal components (`c
j .`

pj
h ), or method blocks (`m

j ); and, that all the expected required and
provided ports must be a subset of the object’s ports. (Refer to Definition 3.11 for the subset
relation on interface types.) So, given a set of resources, we say that an instance conforms to it
if its resources are among the instance’s elements in the right category (required ports, internal
elements, or provided ports), and have equivalent types. Our subject reduction ensures that
on each step of the application of a configurator, the composition context conforms with the
expected effect (expressed in the configurator’s type).

As before, the usual properties of weakening and preservation of types under substitution
of variables are essential to prove type safety.

Lemma 3.24 (Weakening). For all typing environments D, D0, all expressions x, e 2 lt
c, and types

t 2 Tc: If D, D0 ` e : t and x 62 Dom(D0) then D, x : t0, D0 ` e : t.

Proof. By induction on the height of the derivation and by case analysis of the last rule used.

To prove the preservation of types under substitution of variables we need a partial result
which asserts what kind of free names and locations may occur in component and configura-
tor values. We prove that all configurator and component values only use names typed with
component or configurator types.
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Lemma 3.25. For all typing environments D, values v, and types t. If D ` v : t with t a component or
configurator type then |D| ` v : t.

Proof. According to our definition of values for lt
c (Definition 3.13), and the typing rules for

values (Figures 2.11 and 3.12) there are three kinds of values that may be typed by configu-
rator or component types. Value v is either a location, a component, or a configurator. (In
practise, locations typed by configurator and component types will not result from evaluating
expressions, they are nevertheless present in the heap.)

Case: v = l

By Rule (Val Location) we have that l : t 2 D, and by Definition 3.17 (Restricted typing envi-
ronment) we know that l : t 2 |D| and therefore |D| ` v : t.

Case: v = conf(c)

By Rule (Val Configurator Value), we have that D ` c : K =) K0. We then have to analyse the
cases for composition operation c.

Subcase: provides ` : s, requires ` : s, and plug p1 : t1 into p2 : t2

The typing of these expressions does not depend on the typing environment. For instance, if
c = provides ` : s then the type is the same for all typing environments |D| ` (provides ` : s) : t.
The same reasoning applies to the other two expressions in this case.

Subcase: x[v : t ) s]

In this case, by Rule (Comp Uses), we know that D ` v : t ) s. By induction hypothesis we
have that |D| ` v : t ) s and therefore |D| ` x[v : t ) s] : t.

Subcase: xI [`i : ti = ei
i21..n]

We have that, |D|, `0i : t0i
i21..m, x : {|`i : ti

i21..n|} ` ei : ti for all i 2 1..n which immediately sup-
ports |D| ` xI [`i : ti = ei

i21..n] : t by Rule (Comp Uses).

Subcase: c1; c2

By induction hypothesis on the premises of Rule (Comp Sequence).

Case: v = comp(c)

We have D ` compose c : t which implies D ` c : K =) K0 such that t = K/ =) K.. The cases
to be analysed for the composition operation c are the same as in the previous case and lead to
the conclusion that |D| ` v : t.

The property that component and configurator values are stateless values follows from
Lemma 3.25 in conjunction with a property about the representation of state. Remember that
we define the notion of state variables by means of (mutable) records (by disallowing free ma-
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nipulation of locations). Thus, stateful values resulting from evaluating language expressions
must refer to the heap through a record, i.e. locations occurring in such values must be typed
by record or interface types.

Definition 3.26 (record-based expressions). For all expressions e and typing environments G we say
that e is record-based with relation to G if for all l 2 FL(e), G ` l : t with t a record or interface
type.

Moreover, this property on expressions, and in particular on values, must be preserved by
the operations that manipulate state, e.g. select and assign. We define a property on heaps that
defines this. All records in a heap (state variables) are assigned either stateless values (with no
locations) or stateful values whose locations lead to records.

Definition 3.27 (record-based heaps). For all heaps S and typing environments G typing S we say
that S is record-based with relation to G if for all l 2 Dom(S) such that S(l) = {`i = li

i21..n} we
have S(li) = nil or S(li) is record-based with relation to G.

We now prove the preservation of types under substitution. We simultaneously assert the
preservation of the record-based property on expressions.

Lemma 3.28 (Substitution). For all typing environments D, D0, all expressions x, e 2 lt
c, and types

t 2 Tc: If D, x : t, D0 ` e : t0 and D ` v : t then D, D0 ` e[x  v] : t0. Moreover, if e and v are
record-based then e[x v] is also record-based.

Proof. By induction on the height of the derivation and by case analysis of the last rule used.
We here address the most interesting cases, all the others follow by simple induction on the
premises of the corresponding rules.

Case: (Val Var)

We have that D, x : t, D0 ` y : s and D ` v : t. There are two possible cases, either the variable
is replaced or not. If x = y then we have that t = s and that, by Lemma 3.24 (weakening)
we obtain that D, D0 ` v : t and if the locations occurring in v are only typed using record and
interface types they are the only ones in the resulting expression. If the variables are the same
then the substitution is not performed. The resulting expression is y and there are no locations
in y to be typed.

Case: (Val Location)

We have that D, x : t, D0 ` l : s because l : s 2 D, x : t, D0 and therefore l : s 2 D, D0 and thus
D, D0 ` l : s and x does not get replaced in l. If the location is typed by a record or interface
type then its typing is kept in the conditions of the lemma.

Case: (Val Abstraction)
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In this case we have that e = ly : s.e0. Assuming that the replaced variable is not captured
by the abstraction we have, D, x : t, D0, y : s ` e : s0. By induction hypothesis, we have that
D, D0, y : s ` e[x  v] : s0 and therefore D, D0 ` (ly : s.e0)[x  v] : s ! s0. Observe that the
locations in the resulting expression are typed by record and interface types if they are typed
this way in the original expression e and value v.

Subcase: (Comp Provides), (Comp Requires), and (Comp Plug)

The typing of the operations is the same no matter what the typing environment declares. Thus,
the lemma holds.

Case: (Comp Uses)

We now that D, x : t, D0 ` y[e : t ) s] : ∆ =) K that is supported by D, x : t, D0 ` e : t ) s. By
induction hypothesis we obtain D, D0 ` e[x v] : t ) s and therefore D, D0 ` y[e : t ) s][x v].
The properties on the locations occurring in the value v and expression e hold in e[x v].

Case: (Comp Method Block)

If e = yI [`i : ti = ei
i21..n] we have D, x : t, D0 ` yI [`i : ti = ei

i21..n] : K =) K, {y • {`i : ti
i21..n}}.

By Rule (Comp Method Block) we have |D, x : t, D0|, `0i : t0i
i21..m, y : {|`i : ti

i21..n|} ` ei : ti for all
i 2 1..n.

Then, we have two possible cases for the shape of t. Either type t is a component or
configurator type, or it is not.

Subcase: t = R) P or t = K =) K0

In this case the type assignment x : t persists in the typing environment of the premise.
|D|, x : t, |D0|, `0i : t0i

i21..m, y : {|`i : ti
i21..n|} ` ei : ti. Notice that the names `i and y operation are

bound in the expressions ei. This is visible in Definition 3.3. By induction hypothesis we have
that |D, D0|, `0i : t0i

i21..m, y : {|`i : ti
i21..n|} ` ei[x v] : ti in the case x is not captured by either the

method block name or the imported labels, or |D, D0|, `0i : t0i
i21..m, y : {|`i : ti

i21..n|} ` ei : ti if it is
captured. We then have that D, D0 ` yI [`i : ti = ei

i21..n][x v] : K =) K, {y • {`i : ti
i21..n}}.

Subcase: t has another shape

If t is not a component or configurator type then |D, x : t, D0| = |D, D0| and the result follows
naturally.

We now enunciate a general lemma which asserts subject reduction considering simultane-
ously the evaluation of expressions and the application of composition operations. The lemma
brings explicit the invariants of type preservation and absence of nil references in the evaluation
judgements on well-typed expressions. In the configurator application evaluation judgement,
we prove an invariant that implies the conformance between the configurator type and the
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structure of the instance. It also ensures that the nil references that exist in the heap correspond
to uninitialised ports of instances. In the cases where the evaluation judgement uses the appli-
cation judgement, these nil values get eliminated from the heap (cf. the plug-assignments in the
new e expression).

Lemma 3.29 (Subject Reduction).

1. Let (e; S) be a valid configuration in lt
c\{nil} such that nil(S) = ∆ and let G be a typing envi-

ronment typing S such that e and S are record-based with relation to G.

If G ` e : t and (e; S # v; S0) then:

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.

2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S.

Let s be a partially linked object s such that it conforms with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If s; c; S + s0; S0 then

a) there is G0 typing S0 and extending G,

b) s0 is a partially linked object that extends s and conforms with K0. Its partially linked object
type is [[R� K0/ ) P� K0.]],

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.

Proof Sketch. For the sake of legibility we only show a sketch of the proof. The complete proof
can be found in appendix A on page 176. The proof is carried out by induction in both cases of
the lemma. On the first case, we prove it by induction on the size of the evaluation derivations
and by analysis of the last rule used. We use the second case when necessary.

In the cases where the last rule in the derivation is one of the rules of lt
R ((Eval Value),

(Eval Application), (Eval Record), (Eval Assign), and (Eval Select)), and also in the case where
the last rule is (Eval Compose) the proof is obtained by direct application of the induction



70 CHAPTER 3. A CORE COMPONENT CALCULUS

hypothesis and using Definition 2.21 to assert the type of the values in the heap. In the case of
Rule (Eval New), the proof is as follows:

Case: (Eval New)

The hypothesis G ` new e with `r
j := ej

j21..n : {`p
i : si

i21..n} is obtained by Rule (Val New) with
the premises G ` e : t with t = {`r

j : tj
j21..m} ) {`p

i : si
i21..n}. new is evaluated by Rule

(Eval New), thus, if new e with `r
j := ej

j21..m; S # (r, e, p); S0, then we must have e; S # comp(c); S0.
By induction hypothesis we have that there is a G0 extending G such that G0 ` comp(c) : t and
nil(S0) = ∆.

Now, notice that the order of the premises does not reflect the real dependence between
them. For technical reasons, the plug-assignments must be considered first in this proof. By
iteratively applying Lemma 3.28 (substitution), the induction hypothesis, and Lemma 3.24
(weakening) on the typing and evaluation judgements of each plug-assignment expression,
(G ` ei : ti) and (ei; Si�1 # vi; Si), we obtain that for all i 2 1..n we have Gi extending Gi�1 and
typing Si such that Gi ` vi : ti and nil(Si) = ∆.

By Lemma 3.24 (weakening) on the typing of comp(c) and Rule (Val Composition Value) we
have Gn ` c : ∆ =) K and K� = ∆, with type t = K/ ) K. thus K/ = {`j : tj

j21..m}. Notice that
the judgement above applies c to the empty instance (0; c; Sn + s; Sn+1), and that nil(Sn) = ∆
meets the conditions of the second part of the lemma with X = ∆. In this case, 0 conforms
with the resource list ∆ and has type [[{} ) {}]]. By induction hypothesis on the second case
of the lemma, we have that there is a Gn+1 extending Gn and the resulting instance s conforms
with K with the partial type [[K/ ) K.]]. We know that the locations of the required ports are
{li

i21..n} = {selectS0(s, `) | (` : t) 2 K/} and that nil(S0) ✓ {selectS0(s, `) | (` : t) 2 K/}.
Gn+1 types Sn+1 and the locations in s/ = {`i 7!li

i21..n} are in Sn. From the conformance
of s with K and Rule (Val Record) we know that Gn+1 ` s : {| . . . , `p

j : sj
j21..m|} where K. =

{`p
j : sj

j21..m} and by Rule (Val Interface), we have a G0 = Gn+1, l : K., extending G, and typing
Sn+1[l 7! s][li 7!vi

i21..n]. We finally have that l is a location that refers-to an object, which is
a record, such that G0 ` l : K. with K. = {`p

j : sj
j21..m}. Finally, since vi 6= nil for all i 2 1..n we

have that nil(Sn+1[l 7! s][lj 7!vj
j21..m]) = ∆ with s being the newly created instance. Observe

that d) holds.

For the composition expressions, when evaluated in a computational context, the proof
follows by direct application of Rule (Val Configurator Value). An exception is made for the
operations with internal expressions (the introduction of an internal component) whose proof
is as follows:

Case: (App Uses)

The expression x[v : t ) s] where t = {`r
i : ti

i21..n} and s = {`p
j : sj

j21..m} is typed by a
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judgement G ` x[v : t ) s] : ∆ =) K with K = {x • s, x.`r
i � t0i

i21..n, x.`p
j • s0j

j21..m}. By Rule
(Comp Uses) we have that G ` v : t ) s. Rule (Val Composition Value) is the only one that
types a component value and therefore we have v = comp(c) with G ` c : ∆ =) K0 with
K0� = ∆ and (t ) s) = (K0/ ) K0.).

From the application judgement, s; x[v : t ) s]; S + s0; S0, we know that (new v); S # l; S0.
Since v only evaluates to itself with no changes to the heap, and there are no plug-assignments,
the evaluation of this new expression depends solely on 0; c; S + s; S00 with S0 = S00[l 7! s].

Since G ` x[v : t ) s] : ∆ =) K, where the set of demanded resources is empty, we
know that there is a set X such that nil(S) ✓ X. By induction hypothesis on the height of
the evaluation derivation we have that there is a G0 that types S00 and that the resulting value
s = (r0, e0, p0) conforms with K0 with the partially linked object type [[K0/ =) K0.]] with relation
to G00. We know that s0 = (r, e � {x 7! l}, p) and the store S0 are typed by G00 = G0, l :
K0.. Notice that the instance type corresponding to [[t ) s]] is K0.. More, the instance s0

conforms, according to Definition 3.23, with the resource set K. By the induction hypothesis
we also know that nil(S00) ✓ {selectS00(s, `) | (` : t) 2 K0/} [ X with K0/ = {`r

i : ti
i21..n}. We

then conclude that, in the context of the containing instance, nil(S0) ✓ {selectS00(s0, p) | (p :
t) 2 {x.`r

i : ti
i21..n}} [ X. The partial type of the resulting object remains unchanged since no

required or provided ports are added to the instance.

To complete the proof, with a reasoning analogous to the one used in Theorem 2.24, we
prove that a well-typed expression never evaluates to the value wrong and consequently that
there are no run-time errors due to nil values. (for the complete proof see appendix A on
page 176).

Notice that Lemma 3.29 asserts that the relevant part of the heap which is still “unlinked”
(nil(S0)) is appropriately characterised by the set K0 mentioned in the type of the configurator.
In particular, if K0� is empty as is the case in the type of an instantiable component, only the
required ports of the generated instance still need to be satisfied.

The main result of this chapter then follows as a corollary of lemma 3.29. The subject reduc-
tion theorem yields type safety for the language lt

c as follows:
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Theorem 3.30 (Subject Reduction). Let (e; S) be a valid configuration in lt
c\{nil} such that nil(S) =

∆ and let G be a typing environment typing S such that e and S are record-based with relation to G.
If G ` e : t and e; S # v; S0 then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined or
refers-to a record,

d) If v is a component or configurator value then FL(v) = ∆, and

e) nil(S0) = ∆.

Proof. This theorem results directly from the first case of Lemma 3.29. In d) we use Lemma 3.25
that states that, for configurator and component values, G ` v : t implies that |G| ` v : t which,
together with the result of Lemma 3.29 d), out rules the possibility of any locations occurring
in v. Remember that locations typed as record and interface types declared in G, which are the
only ones that may occur in the language results, are eliminated in |G| and therefore may not
occur in v.

Notice that architectural soundness, is ensured by Lemma 3.29, and consequently by Theo-
rem 3.30. Remember the definition of the typing of heaps (Definition 2.21) which ensures that,
in well-typed heaps, all locations either lead to values of the expected type, lead to nil, or are
undefined. Thus, in a well-typed heap with no nil values, as it is the case of the heaps result-
ing from evaluating a well-typed expression, all ports of instances, which are locations in the
heap, are linked. Ports may be linked to a value of the expected type, i.e. a record containing
the expected set of methods, or they may be undefined, which means that any call to such a
port would not terminate. These cycles are only introduced if explicitly programmed. A quick
analysis of the invariant imposed in the second part of Lemma 3.29 shows that the nil values
introduced during the construction of an instance, are in the end replaced by meaningful val-
ues. This is particularly visible in the cases (Eval New) and (App Uses) of the type safety proof
above.

Notice also that Theorem 3.30 d) makes precise the claim that configurators and compo-
nents, resulting from evaluating well-typed programs, are pure stateless values (independent
of the heap).
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3.3 Remarks

In this chapter we have defined a core component calculus that follows the design principles
enunciated in the Introduction. Its first-class values consisting of configurators, components
and objects and its operations are designed so that the structures of components can be defined
dynamically and type safely. We now discuss some issues about the language that we think are
worth noticing.

As already mentioned in Section 3.1.1, our semantics provides a clear notion of phase dis-
tinction. Our evaluation relation imposes a separation between the computation of the struc-
tures of components and configurators and its actual assembly (which in our case happens at
instantiation-time). In particular, the computation of the effect of configurators (composition
operations fully evaluated) only manipulates components and configurators, and terminates
in all cases. Our type system reinforces this separation by preventing run-time errors such
as the attempting of using a value which is not a component as an internal component in a
composition.

Furthermore, the type system enforces type safety, which in our setting implies, not only
the absence of null dereferencing errors and “method not implemented” errors, but also the
architectural consistency of dynamic composition processes, i.e. the absence of “service not
implemented” errors, which are fairly common run-time errors found in component-oriented
programming.

Another issue ensured by our type system concerns the stateless character of component
and configurator values. This feature is important in a setting of component-based software
development where it is common the reuse of third-party components, either stored in compo-
nent libraries or transmitted across the Internet.

One issue that is also important mentioned here are the design options of our language lt
c.

In particular, the set of composition operations in our language, which seems to capture the
definition of components providing and requiring services and built by aggregation and adap-
tation of other components. The basic operations to construct a component: two operations
that declare required (imported) and provided (implemented) services (requires and provides),
one operation that introduces an internal component (x[�]), and one operation that connects
two ports (plug), and therefore binds a concrete implementation of a service to a declared need
for that service.

These operations only allow the structuring of components from other components. It is
not possible, using these operations, to define the base functionality of a component, nor to
adapt the functionality of an internal component. This can be obtained either by allowing
some form of base component declaration, or the more flexible approach we have chosen. Our
approach is to define another kind of architectural block, method blocks (x�[� = �]). Method
blocks implement services and have free access to the elements of the component structures
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they are inserted in. They define, in-place, the implementation and adaptation of services.
We finally use an operation for composing two configurators. We have chosen what it seems
to be the minimal set of operations that allows the definition of component structures, in a
declarative style, and at the same time allows the typing of such constructions in such a way
that architectural soundness can be ensured statically.

Additionally, the design of some expressions was influenced by the design of the type sys-
tem. In particular, the type annotations in expressions such as the expressions for the introduc-
tion of method block (xI [� = �]) and the plug expressions (plug p : t into p : t) could have
been omitted at the expense of defining some type inference mechanism. We chose to decorate
the expressions with extra type expressions and keep the type system design simpler. The type
annotation in the expression for the introduction of internal components is already present in
the syntax of lt

c for the sake of uniformity with languages defined in subsequent chapters. In
particular, it is essential when dealing with subsumption of component values.

Finally, notice that Example 3.8 defined in the untyped calculus lc can be trivially extended
to the typed calculus lt

c, thus lt
c encodes object-oriented mechanisms such as implementation

inheritance and mixin application in a typeful way.
Now, that we have presented our programming language with dynamic composition and

configuration of components, we compare and contrast our approach with that of other au-
thors.

3.4 Related Work

At first glance, the language design of lc resembles that of an architecture description lan-
guage like Darwin [65, 66, 71, 72]. Although the composition operations of our calculus may
have similar interpretations in ADLs, the application domain and the techniques used are quite
different. ADLs target the specification and verification, at a high level of abstraction, of coor-
dination levels for distributed systems. We on the other hand, use the notion of architecture to
structure programs, potentiate separate development, and maximise reuse of code at a more
detailed level, the programming language level. Unlike the ADLs, our approach targets the de-
velopment of tools for static checking the actual code, in particular of type systems, instead of
generating coordination code from a high level specification to be completed afterwards with
computational code.

A more profound insight relates our work more closely to those on programming languages
and in particular with languages providing sophisticated module mechanisms [16, 44, 101, 11,
56, 57] or with object-oriented language reuse mechanisms like mixins [16, 15, 43] and traits
[80, 91]. Among others we distinguish the earlier works of Bracha [17] which adds the use
of well defined operators on modules, and that of Flatt and Felleisen [44] which introduces
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mutually recursive and first-class module construction at the programming language level. In
this section, we compare our work in more detail with the approaches of Flatt et al. [44, 74, 79]
and that of Ancona and Zucca [11], a calculus derived from the initial concepts of Bracha’s
Jigsaw language [16]. We next relate our work with other component based languages, which,
to the best of our knowledge, followed an approach similar to ours but were developed with
slight different focuses [4, 92, 103].

Units and Jiazzi The work of Flatt and Felleisen [44, 43] introduces the modularity mech-
anisms at the programming language level. In their approach, basic module entities, called
Units, are first-class sets of declarations from which some names may be exported and where
imported names can occur; each Unit also has an initialisation expression. They define pro-
gramming language abstractions capable of expressing the creation and invocation of a Unit,
thus evaluating the initialisation expression, and the creation of Compound Units, based on
other existing units. Compound units can only be used as values once rewritten to a ground
flat unit expression.

Some similarities and differences between our calculus, lt
c, and the language of Units are

worth mentioning here. First, instead of being a means of producing a complete program
source from separate declarations, components in lt

c assume a role of generating entities for
objects; Although the structure of an object is flattened in terms of memory references, the
hierarchy of name bindings defined in the structure of components remains intact within their
instances. This ensures a much simpler instantiation of compound components (without the
need for renaming operations) and allows, in a later stage, for reconfiguration actions to be
defined in terms of the structure of the originating component (Chapter 4); It also allows for
the elements of an object’s structure to be treated as black-boxes.

One feature that is not covered by our component language is the Units’ import and ex-
port mechanism for types. Apart from the definition of abstract types, the unification of type
variables between internal components can be coded in our language with parametric poly-
morphism which we present ahead in Chapter 6.

Our basic structure of component types resembles that of units. However, we support
typing of composition and instantiation operations using a single type form for configurators
which does not seem to be doable with the types of Units. Although we can extend Units with
imperative object-oriented language constructs, the composition of object producing units does
not extend to compound units which produce the composition of their element’s instances. Un-
like this, lt

c provides primitive structuring mechanisms which are uniform in both components
and objects. When a lt

c component is instantiated, the instances of its internal elements are in-
terconnected in a stateful way, i.e. within the state of each instance, and a wrapping instance is
created. To emulate our instantiation process one would have to add some custom “construc-
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tor Units” to produce the wrapping instances. For the purpose of composition, the required
and provided ports can be made in the way of Units’ imports and exports. Another necessary
add-on to Units is some kind of renaming mechanisms for import and export names, which
already appears in some extent in a tag mechanism in a subsequent work [43].

In special cases of lc expressions, as it is the case of the language presented in [81], it
is possible to find an encoding of lc operations in the language of Units to produce similar
objects: (Consider the same base language with functions and records)

c = compose ( provides p ;
m[ f =fun x! x + 1 ] ;
plug m into p )

M = unit export m
val m = { f = fun x! x+1} in m

P = unit import m export p
val p = m in p

Ctor = unit import p in {p=p}

c = compound export p
l i nk M provides m
and P with m provides p
and Ctor with p

We defined a unit for each composition operation in the component declaration. Notice that
the names in the example were chosen to avoid conflicts because, in the language of units, they
are connected by capturing the names in the context of the compound. The last element of the
compound (Ctor) is here introduced to export, in an object (encoded as a mutable record), all
the exported ports. A component with required ports and its composition with c above can be
encoded in the following way:

d = compose ( requires p ;
provides q ;
m[ f =fun x! p . f ( x ) ] ;
plug m into q )

e = compose ( provides q ;
provides p ;
c [ c ] ; d [ d ] ;
plug c . p into d . p ;
plug d . q into q ;
plug c . p into p )

M2 = unit import p export m
val m = { f = fun x! p . f ( x )} in m

Q2 = unit import m export q
val q = m in q

Ctor2 = unit import q in {q=q}

d = compound import p export q
l i nk M2 provides m
and Q2 with m provides q
and Ctor2 with q

Ctor3 = unit import p , q in {p=p , q=q}

e = compound export p , q
l i nk c provides p
and d with p provides q
and con with p , q
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Although this translation is type preserving with relation to the type system presented in [81],
it is not clear that the same thing can be made to lt

c expressions, namely with relation to the
composition of configurators.

The opposite encoding is also possible with no real restrictions and following a simple con-
vention regarding the resulting value, making it available at port o. A Unit can be encoded by
a single component as follows:

unit import a export b
val b = e
in o

compose ( requires a ; provides b ; provides o ;
methods m {b=e [m. b / b ] , o=o [m. b / b ] } ;
plug m into b ;
plug m into o )

Notice that we require the name of the method block to be used in the method bodies and there-
fore proceed to an explicit substitution. A compound Unit can also be encoded by a component
as follows:

compound import q export r
l i nk u1 wi th q , r provides p
and u2 wi th p provides r

compose ( requires q ; provides r ; provides o ;
u1 [ u1 ] ;
u2 [ u2 ] ;
plug q into u1 . q ;
plug u1 . p into u2 . p ;
plug u2 . r into u1 . r ;
plug u2 . r into r ;
provides u2 . o into o )

Notice that we explicitly link the names in lt
c in opposition to the implicit name resolution in

compound units. Notice also the convention of providing o for the initialiser expression.
In conclusion, the main difference to the language of Units is that in our case, we treat the

operations as first-class values instead of the whole components. The type information that we
use to characterise configurators is not encodable in the types of Units.

Jiazzi [74] is the application of the notion of Units to an object-oriented like Java. Jiazzi
defines blueprints, which are groups of class declarations with imported and exported class
names. It allows for class usage across component boundaries (including inheritance) and the
definition of mutually recursive class structures. However, all constructions are resolved at
compilation-time. In opposition to this, our calculus and in particular componentJ (The con-
crete language derived from lc and presented in Section 6.6), defines components as first-class
and provide tools for developing applications without the usage of class abstraction and imple-
mentation inheritance. Although composition is at the programming language level we leave
implementation inheritance to be used inside native Java components, typically in particular
situations of fine-grain programming where it is more useful. Jiazzi also provides a primitive
mixin mechanisms for Java, which is also proposed by Jam [7]. Although we can encode this
using our language (as shown in Example 3.8) it is not present in componentJ.
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Module calculi The initial study of Bracha [16, 17] on inheritance mechanisms in object-
oriented languages introduced a notion of module, resulting from the simplification of the
concept of a class, and a set of operators on modules which can be used to describe the usual
object-oriented constructions. Then, a series of calculus emerged, using the so-called mixin-
modules as basic structure [38, 11, 101, 56, 57, 41], which strongly resembles our initial notion of
component [81]. All agree on the definition of a module as set of mutually recursive definitions
with output components (distinguished by a name) whose implementation may be defined in
a core language or based on deferred input components.

To illustrate these module calculi we take the calculus of Ancona and Zucca, CMS [11]. It al-
lows the creation of modules from basic components defined in a core language. Evaluation of
module and core expressions happen in different levels. CMS operations allow the merging of
two modules, and the renaming and hiding of existing names. As in the general case, renaming
may link module’s components by capturing the input component names and replacing them
by output component names. As we show next, it is possible, by merging modules, rewriting
and hiding names, to combine modules in an interesting way.

We now intuitively illustrate the usage of CMS by adapting an example from [41]. Capital
letters are used for component names, lowercase letters are used for variables. For the sake
of simplicity, we use integer literals and operations to illustrate computations in the core lan-
guage. A module is written [i; o; r] where i is a mapping from variables to component names
(not bound to any implementation), o maps component names (visible in the outer context)
to expressions and r maps variables to expressions. The scope of the declared variables is the
module expression itself. So, i declares input components, o defines the exported components
of the module and r defines its local components (expressions of the core language).

Consider the module expression e1 defined by,
e1 , [; X 7! 1 + 2; ]

with no deferred input component names and no local components. X is an output component
denoting the core expression 1 + 2. Then, consider a module e2 defined by:

e2 , [x 7! Z; Y 7! x + y; y 7! 2]
where x maps to an outer component Z and the definition of Y depends on both the input
component linked to x and a local component y. One basic operation on modules is sum, which
merges two modules together. Applied to the modules defined above, we write e3 , e1 + e2 to
obtain the result:

e3 = [x 7! Z; Y 7! x + y, X 7! 1 + 2; y 7! 2].
Although not visible in this example, a precondition to sum is that the two sets of names of
output components are disjoint. a-renaming of local component names is performed to avoid
conflicts of names and common input component names are merged together. Another oper-
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ation is freeze which renames input components names capturing output component names.
For instance, the expression e4 , freezeZ 7!X(e3) results in:

e4 = [; Y 7! x + y, X 7! 1 + 2; y 7! 2, x 7! 1 + 2]
In this case, the input component Z was resolved using the implementation of X. A third
operation is reduct which manipulates the output and input component names. For instance
e5 , 7!W| e4|Y 7!V results in

e5 = [w 7!W; V 7! x + y; y 7! 2, x 7! 1 + 2]
where w is fresh, Y is renamed to V and X is eliminated. CMS then provides a selection primi-
tive to extract a component to be executed. e5#V reduces to 1 + 2 + 2. Free variables of the core
expression are closed by using the substitutions available within the module.

A typed version of CMS is presented in [11] which relates with the basic type system we
presented in [81]. It ensures, as we do, that a module is only used once its implementation is
complete, i.e. it has no pending input components. However, the basic building block is the
module construction as a whole. Our types for composition expressions, on the other hand,
capture more than the extensional information of input and output components. An analogy
with the operations of CMS, it would be as if sum, freeze, reduct were first-class values which
could be freely combined at run-time. Similarly to Wells and Vestergaard’s m-calculus [101]
and more recently in Fagorzi and Zucca’s R-calculus [41, 42], we also treat our module entities
(components) as first-class values.

The composition mechanism used in CMS (sum), can be seen as “black-box” because it
only manipulates the output and input components of modules. Local component names get
a-renamed in sum operations so that name conflicts are avoided and that the implementation
of output components is not changed. We, on the other hand, introduce “white-box” compo-
sition of basic composition operations (configurators) and “black-box” composition of closed
components values. We use an operation, compose, that abstracts the implementation details
of architectures which are well-formed. We ensure by typing that the results of such operation
are closed component values. Hence, we know that all component instances are structurally
well-formed independently of their internal structure.

Furthermore, by presenting a calculus that integrates an imperative language with com-
position operations, we explore the interactions between computational and meta-level oper-
ations on component architectures and object structures, notably we explore the influence of
computation and state on dynamic composition of new components and, further ahead, of
reconfiguration of running instances.

Component based languages ArchJava [4] and ACOEL [92] are two Java like languages
which also define composition as a structuring mechanism at the programming language level.
These languages support some composition constructs and allow for the verification of archi-
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tectures, however they do not provide a clear separation between adaptation and composition
code in programs.

A component in ArchJava is an instance of a so-called component class, which, besides hold-
ing state variables and implementing methods like a regular class, defines communication
ports with declared provided and required methods. Component classes can then be included
in the definition of other component classes (composite components), where their ports are ex-
plicitly connected. Internal components are used as regular instance variables in the methods
of the enclosing component class.

ArchJava allows for dynamic construction of structures within pre-established connection
patterns. We, on the other hand, treat components as first-class values thus allowing compu-
tations over the structure of programs and a verification based on types. Although scripting
and composition are expressed at the same level, ArchJava does not present any mechanism for
satisfying requirements of internal components via the component class itself. In our calculus
it is possible to connect local methods to a internal component’s required port and, in this way,
configure its behaviour. It is also possible, in our calculus to export a internal component’s
functionality, by directly connection of its ports, which seems to be impossible in ArchJava.

ACOEL [92] defines components as instantiable entities which can import external class and
export internal class implementations which are explicitly connected to output ports. Internal
classes can be directly defined inside the component declaration or by mixin application. We,
on the other hand, do not use any inheritance or extension mechanism other than composition.

Another work using composition at the programming language level is Zenger’s compo-
nent calculus [103], built as an extension of Featherweight Java [59]. Unlike us, their approach
is driven by an operational view of evolution and extension of components rather than taking
a declarative approach to architecture definitions.

Traits and mixins in object-oriented languages Mixins [16, 15] and traits [80, 91] are forms
of reuse that closely relate to composition. Both provide loose coupling between the base func-
tionality and the resulting extensions by means of well-defined expected interfaces and an
application operation independent from the definitions of classes, mixins, or traits. Traits differ
from the notion of mixin because they only carry code and provide a more flexible composition
mechanism, e.g. in Chai [91] more than one trait can be applied to a class in a single extension
operation and they can be applied to other traits to produce richer traits. This composition
works independently of the standard inheritance mechanism. Mixins, on the other hand, are
supported in the inheritance mechanism of object-oriented languages and therefore are less
flexible. However, they are able to declare new instance variables and therefore can encode
more sophisticated extensions.
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Meta-programming The fundamental work of Taha and Sheard [98] and Ancona and Moggi
[9] on meta-programming and staged programming languages also appears to bear some rela-
tion to our development here. However, our focus is on isolating first-class semantic entities
related to software assembly, rather than on how to express and type source (meta)-level pro-
gram manipulations.
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Chapter 4

Dynamic Reconfiguration

In this chapter, we focus on the issue of dynamic reconfiguration of objects. We extend our
core component calculus so that the architecture of objects can be changed at run-time in a
computation dependent and type safe way.

Our approach is to express dynamic reconfiguration actions by generalising the usage of
configurators as reconfiguration scripts. Remember that configurator values are first-class values
that can be created and freely combined using the mechanisms of base language. In our case,
the base mechanisms are abstraction and application. Moreover, since configurators are closed
values, heap independent, they can be used independently from the context of declaration.

We capture reconfiguration actions in a new language primitive, reconfig c[o] in ... , that trig-
gers a modification described by a configuration script (a configurator yield by c) and a target
object (o). This allows for reconfigurations to be programmed in ways impossible to predict in
the development process.

The relation between configurators, components, and objects, with respect to the opera-
tions of composition, instantiation and reconfiguration is illustrated in Figure 4.1. The diagram
shows that an object obtained from instantiating a component constructed from a configurator
c and afterwards reconfigured by the configurator c0, is structurally indistinguishable from an
object instantiated from a component built from the composition of configurators c; c0. This
observation accounts for the uniformity of our approach to dynamic reconfiguration.

We define a language with dynamic reconfiguration of objects, lr, based on the expressions
of lt

c. We also define a type system to ensure, besides the architectural soundness of compo-
nents and objects, the preservation of the soundness of reconfigured instances. We showed, in
Chapter 3, that static type information is sufficient to ensure type safety of the composition of
configurators, the creation of components from configurators, instantiation of components to
objects, and of the access to methods in instances. However, in a setting with a strong notion
of information hiding on objects such as ours, a general purpose reconfiguration mechanism
is not easily verified by static type checking techniques. Remember that the structure of ob-
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c c; c0

C C0

o o0

compose

new

�; c0

reconfig c0[o] in ...

compose

new

Figure 4.1: Combination of reconfiguration with composition.

jects and components is not known at compile-time. It is therefore important to explore the
language design space involving combinations of static and dynamic checking. We believe to
have isolated in this chapter such an interesting combination.

We rely on a run-time test that checks if each configuration script is applicable to its target
instance prior to its application. This makes reconfiguration a safe operation without need for
explicit error handling and resolution procedures. The test is based on the inspection of the
object’s structure and on a limited amount of run-time type information on both configurators
and objects.

Our reconfiguration primitive follows the spirit of the early dynamic typing mechanisms in
programming languages (e.g. unions in Algol68 and variant records in Pascal), later introduced
in Modula3 [26] and formalised in the typecase construct introduced by Abadi et al. [2] to cor-
rectly deal with untyped chunks of persistent data. In these approaches to dynamic typing, the
typing for the input value is assured in separate branches of the expression, the control choice
over the branches depends on a run-time test on the value itself to determine the actual type
(and which branch to execute next). A mechanism for the run-time inspection of types can be
found, for instance, in the instanceof expression of the Java programming language.

The expression we introduce is of the form reconfig x = c[o] in ... else ... where expression
c yields a configurator and expression o yields an object. The in and else branches specify the
continuation in the two possible scenarios resulting from a run-time test between the values of
configurator c and object o. Variable x is binding in both branches. This separation allows type
checking both branches and thus make reconfiguration type safe.

In order to complement the examples given in Chapter 1, we illustrate the definition and
application of reconfiguration actions by using a simple example where a script is used to up-
grade an object. We then formally present our extended language in Section 4.2: its syntax,
operational semantics, type system, and corresponding type safety result. We discuss, in Sec-
tion 4.4, some details of the programming language development, and close the chapter by
comparing our approach to dynamic reconfiguration with those of other authors.
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4.1 Reconfiguration of a Counter Object

In this section we use a very simple example of a component implementing a counter to illus-
trate the features of our language and in particular emphasise the reconfiguration of objects.
Let ICounter be the interface type { tick : int! int}, declaring a method tick , and consider the fol-
lowing definition of a component Counter:

l e t Counter = compose (
provides p : ICounter ;
x [ s : i n t =0 ,

t i c k : ( i n t ! i n t ) = fun y : i n t ! x . s := x . s+y ] ;
plug x into p ) in . . .

As argument of the compose operation, we find a configuration expression, namely a sequence
of operations each of which introduces a particular element of Counter: a provided port named
p, a block of methods named x (implementing the method tick and a state variable s), and finally
a connection between the two, using a plug operation. Hence, object instances of component
Counter will implement a port p conforming to the interface type ICounter, and the type of Counter

is the component type {}){p:ICounter}, meaning that it has no required services to be instan-
tiated, and that their instances implement, at port p, the interface ICounter. Component Counter

can then be instantiated, yielding an object o, and used as in:

l e t o = new Counter in ( o . p . t i c k ( 1 ) ; o . p . t i c k ( 1 ) )

Component Counter may also be used as an element of other compositions, to define other com-
ponents, for example, a ZeroCounter component, whose instances count all calls to tick performed
with zero as argument. It is defined as follows:

l e t ZeroCounter = compose (
provides p : ICounter ;
c [ Counter :{}){p : ICounter } ] ;
x [ t i c k : i n t ! i n t = fun y! i f y=0 then c . p . t i c k ( 1 ) else 0 ] ;
plug x into p ) in . . .

Here, component Counter is introduced in the structure of the configurator under the name c (in
c [... ]), and used in the method block (in c.p. tick (1)).

Now, suppose that a ZeroCounter object, named zc, is running on a server application, and the
need arises of extending it with a new service, to reset the counter, without shutting it down:
clearly, this is a situation calling for a dynamic reconfiguration facility. Consider the following
(re)configuration script: (We use a while expression with the usual meaning.)

l e t AddReset = provides r :{ rese t : u n i t ! u n i t } ;
y [ rese t : u n i t ! u n i t = wh i le ( c . p . t i c k (0) >0) c . p . t i c k ( �1) ] ;
plug y into r ) in . . .
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Configurator AddReset adds a provided port r, to expose the new reset method, implemented by
the method block y. Notice that the composition operations used in the definition of AddReset

refer to elements (e.g., c) which are not declared in the static context of its definition. However,
the context of use is captured at the type level, with configurator AddReset being given the
configurator type:

{c•{p : ICounter }}=){c•{p : ICounter } , r.{ rese t : u n i t ! u n i t } , y•{ rese t : u n i t ! u n i t }}

Remember from the definition of lt
c types, Definition 2.13, that the type of AddReset states that

the configurator may be applied in every context where an element c of (object) type {p:ICounter}
is present (the • resource on the left hand side). It also says that, after application, c remains
available, alongside with a (new) provided port r and a (new) method block y. This type states
also that AddReset may not be used to form a component, since it requires the presence of some
resources in order to be applied, see Rule (Val Compose) in Figure 3.12.

Nevertheless, this configurator is fit to reconfigure objects that have an internal element
named c with a compatible type. For instance, it can be used to reconfigure object zc, an instance
of ZeroCounter as follows:

reconfig zcr = AddReset [ zc ] in ... zcr.r.reset() ... else ... use of zc ...

The expression has the effect of actually reconfiguring object zc, returning a properly typed
reference zcr to the updated object that implements the reset service at a new port r. Object zc

is modified in place, and therefore the behaviour of the system is changed via aliasing. Nev-
ertheless, the known interface of the object is not changed and the execution of the remaining
expressions referring zc is still type safe. The in branch of the reconfig expression is nevertheless
typed with zcr having the new port r, thus its usage is type safe.

In general, a reconfiguration may not be possible, due to a mismatch between the internal
architecture of the object to be reconfigured (which is not visible to the type system) and the
precondition of the configurator (which is). In any case, the type system ensures that either the
reconfiguration is fully applied as specified by the configurator, and the resulting object is well
defined (in branch), or the application is not performed at all and the object is not modified
(else branch). Moreover, because new provided ports may be added, new plug-assignments
may also be necessary to satisfy newly introduced required ports. For this we use a with clause
in the reconfig expression similar to that of new.

In summary, soundness of reconfigured instance is ensured by a direct consequence of static
typing, at the level of configurator values, and of a simple and efficient test performed at re-
configuration time and based on type information recorded on objects and configurators.
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4.2 lr — A Component Calculus with Dynamic Reconfiguration

In this section we present lr, a core component calculus with dynamic reconfiguration of com-
ponent instances. We implement reconfiguration actions by basically applying the composition
operations to the target objects. To ensure that a configurator can be applied to an object we
guard the actual modification of objects by a run-time test, written s//K, which matches the
run-time structure of the object s with a set of demanded resources K, a precondition for the
application of the configuration script. Based on the run-time information that the object s is in-
deed fit to be reconfigured by a configurator whose type is K =) K0, for some K0, we statically
ensure the correctness and atomicity of the reconfiguration action.

We now define the precise syntax and semantics of lr, followed by its type system.

Syntax

Definition 4.1 (Terms). The language lr is defined by the abstract syntax in Figure 4.2.

We keep essentially all expressions of lt
c and introduce the new expression form reconfig, which

abstracts the application of a reconfiguration script to an object. We also add a new repre-
sentation for objects, and replace the existing representation of configurator values to include
manifest type information.

The reconfiguration expression reconfig x = e1[e2] with `i := e0i
i21..n

in e3 else e4, expresses
the guarded application of a configurator, yield by e1, to an object, yield by e2. The distin-
guished occurrence of x is binding, in both expression e3 and expression e4, denoting the target
object. The reference x to the target object in e3 is properly typed to reflect the changes to its
interface that may occur in the reconfiguration action. In e4 it is simply a reference to the un-
changed object. Since the configurator e1 may add new required ports to the instance, new
values must be assigned to them by means of plug-assignments (`i := e0i

i21..n).
In lt

c we encode objects using records, and for the sake of proving type safety, we dis-
tinguish record labels of required ports, provided ports, and inner elements. The role of this
distinction is not semantically relevant in lt

c. However, in the present language, lr, we attach
run-time type information to objects which is, in fact, essential in the semantics. Hence, we
introduce a new syntactic form for object values. So, an object value is now represented by a
triple of records of the form (r, e, p)G where the labels in r refer to its required ports, the labels
in e refer to its inner elements, and the labels in p to their provided ports. Additionally G is a
local typing environment assigning types to the internal elements of the object (Definition 2.17).
Despite this distinction, and for the sake of simplicity, we sometimes refer to an object value s
by the single record obtained by concatenating the three records r, e and p.

A configurator value, of the form conf(t, e), consists of the run-time representation of a se-
quence of instructions to construct or change the internal structure of an object and a configu-
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e :: = lr terms
| x variable
| lx : t.e abstraction
| e(e) application
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| ` port label
| compose e component creation
| new e with `j := ej

j21..m instantiation
| reconfig x = e[e] with `i := ei

i21..n
in e else e reconfiguration

| requires ` : t required port
| provides ` : t provided port
| x[e : t] component introduction
| xI [`i : ti = lx : t.ei

i21..n] method block
| plug p : t into p : t plug
| e; e configurator composition
| l location value
| nil null value
| (e, e, e)G object
| comp(e) component
| conf(t, e) configurator

p :: = ` | x | x.` port name

Figure 4.2: Abstract syntax of lr.

rator type t that specifies the precondition on its application. Thus, configurators also embed
some type information at run-time, to be used in a dynamic check, during the evaluation of
reconfiguration expressions, against type information in object values.

Before introducing the operational semantics we need to define some additional notation.
Let s = (r, e, p)G be an object, then we write, in uniformity with the notation on interfaces and
resource sets: r� r0 to denote the concatenation of the records r and r0; s/ to denote the record r
containing the required ports in s, s• to denote the available resources in record e, s. to denote
the provided ports in record p, and Gs to denote the typing environment in s. We also write
G(s..`) = t whenever s. = {. . . , ` = l, . . .} and G(l) = t.
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v :: = values
| lx : t.e abstraction
| {`i = li

i21..n} record
| l location value
| nil null value
| (r, r, r)G object
| conf(t, c) configurator
| comp(c) component

r :: = {`i = li
i21..n} record

c :: = ground composition operations
| requires ` : t required port
| provides ` : t provided port
| x[v : t] inner component
| xI [`i : ti = lxi.ei

i21..n] method block
| plug p : t into p : t plug
| c; c composition

p :: = ` | x | x.` port name

Figure 4.3: Abstract syntax of lr values.

Definition 4.2 (Notation).

• Given the records {`i = li
i21..n, `0i = l

00
i

i21..k} and {`0j = lj
j21..m} with k  m we have

{`i = li
i21..n, `0i = l

00
i

i21..k}� {`0j = lj
j21..m} , {`i = li

i21..n, `0j = lj
j21..m}.

• If s = (r, e, p)G then

– s/ , r.

– s. , p.

– s• , r� e.

– Gs , G

– G(s..`) = t if s. = {. . . , ` = l, . . .} and G(l) = t.

We now define the expressions which may result from evaluating an expression of lr.

Definition 4.3 (Values). The set of values Ur ✓ lr is defined by the abstract syntax in Figure 4.3.

The values of lr differ from the values of lt
c in the representation for objects and configurators.

Notice that c refers to the same set of ground composition operations as it does in lt
c.
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(Match Provides)

Gs(s..`) = t s//K
s//` . t, K

(Match Requires)

Gs(s/.`) = t s//K
s//` / t, K

(Match Element)

Gs((s/ � s•).`) = t s//K
s//` • t, K

(Match Element Port)

S(s•.x) = s0 Gs0(s0..`) = t s//K
s//x.` • t, K

(Match Unsatisfied)

Gs(s..`) = t s//K
s//` � t, K

(Match Unsatisfied Port)

S(s•.x) = s0 Gs0(s0/.`) = t s//K
s//x.` � t, K

Figure 4.4: Matching rules for lr.

Operational Semantics

We now define the operational semantics of lr with the elements necessary for the evaluation
of reconfiguration expressions. As explained above, type safety of dynamic reconfiguration
relies on a run-time check which is here formalised by a matching test relation.

We thus define the matching test, which checks whether a configurator is compatible with
the structure of a given instance, and therefore applicable. We use the term “applicable” in-
formally to mean that the application of the configurator does not disrupt the structure of the
target instance. In formal terms, we specify that a configurator with precondition type K is
applicable to s if the matching test s//K, defined next, holds. Our type safety result will show
that this informal and formal definitions are two sides of the same coin.

Definition 4.4 (Matching). Given an object s defined with relation to a heap S we say that s matches
a set of resources K, if s//K is derivable by the rules in Figure 4.4.

Intuitively, an instance s = (r, e, p)G matches a set of resources K if each one of the resources in
K can be found, with compatible types, in one particular record: r, e, or p. Notice in particular
that:

• The presence of a compatible resource denoting a provided port ` . t is checked in record
s., Rule (Match Provides);

• The presence of a compatible resource denoting a required port ` / t is checked in record
s/, Rule (Match Requires);

• An available element denoted by a label ` is looked for in either the required ports or the
internal elements (denoting a scripting block), Rule (Match Element);
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(Eval Requires)r

requires ` : t; S # conf(∆ =) {` • t, ` / t},requires ` : t); S

(Eval Provides)r

provides ` : t; S # conf(∆ =) {` � t, ` . t},provides ` : t); S

(Eval Plug)r

plug p1 : t into p2 : t; S # conf({p2 � t, p1 • t} =) {p1 • t},plug p1 : t into p2 : t); S

(Eval Sequence)r

e1; S # conf(K =) K0, Kc ; c1); S0 e2; S # conf(Kc, K00 =) K000 ; c2); S0

(e1; e2); S # conf(K, K00 =) K0, K000 ; (c1; c2)); S0

(Eval Uses)r (t = {`r
i : ti

i21..k}) {`p
j : sj

j21..m})

e; S # v; S0

x[e : t]; S # conf(∆ =) {x • s, x.`r
i � ti i21..n, x.`p

j • sj
j21..m}, x[v : t]); S0

(Eval Method Block)r (I = {`0i : t0i
i21..n}, K = {`0i • t0i

i21..n})
xI [`i : ti = vi

i21..n]; S # conf(K =) K, {x • {`i : ti
i21..n}} ; xI [`i : ti = vi

i21..n]); S

Figure 4.5: Evaluation rules for lr.

• Available resources with compound names (x.` • t) can only be related to provided ports
of inner elements, Rule (Match Element Port)

• Simple port names tagged as unsatisfied (` � t) can only refer to provided ports (from the
inside perspective of a composition), Rule (Match Unsatisfied);

• and unsatisfied compound port names (x.` � t) can only be required ports of inner com-
ponents, Rule (Match Unsatisfied Port).

Notice also that the heap referred in the rules in Figure 4.4 is derived from the evaluation
context. We avoid tagging every rule with the heap, to make notation lighter without loss of
clarity. We prove later that the run-time success of this test implies the notion of architectural
conformance, between an object and a resource set, which is used in Section 3.2 to prove subject
reduction of lt

c (Definition 3.23).
Having defined this essential part of the semantics, the evaluation of lr expressions is now

defined in the following way:

Definition 4.5 (Evaluation). Let e 2 lr and a heap S such that (e; S) is a valid configuration. The
evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figures 2.8, 4.4, 4.5, 4.6, and 4.7.
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(Eval Compose)r

e; S # conf(t, c); S0

compose e; S # comp(c); S0

(Eval New) (s = (r, e, p), r = {`i = li
i21..n}, l = new(S))

e; S # comp(c); S0 0; c; Sn + s; Sn+1 ei; Si�1 # vi; Si 8i21..n

new e with `i := ei i21..n; S # l; Sn+1[l 7! s][li 7!vi i21..n]

(Eval Reconfig) (s0/ = s/ � {`i = li
i21..n})

e1; S # conf(K =) K0, c); S0

e2; S0 # l; S0 s = S0(l) s//K
s; c; Sn + s0; Sn+1

fi; Si�1 # vi; Si 8i21..n

e3[x l

0]; Sn+1[l0 7! s0][li 7!vi
i21..n] # v; S0000

reconfig x = e1[e2] with `i := fi i21..n
in e3 else e4; S # v; S000

(Eval Reconfig Else)

e1; S # conf(K =) K0, c); S0

e2; S0 # l; S00 s = S00(l) ¬s//K
e4[x l]; S00 # v; S000

reconfig x = e1[e2] with `i := fi i21..n
in e3 else e4; S # v; S000

Figure 4.6: Evaluation rules for lr (part 2).

We define the operational semantics of lr given the evaluation rules for lR expressions and
the rule for new expressions in lt

c. We modify the evaluation of the compose e expression, to
accommodate the syntactic changes made to configurator values, and change the evaluation of
composition operations to compute the necessary run-time type information. We also change
the application of configurators to composition contexts to accommodate these changes. We
finally define the evaluation of reconfig r[o] in . . . else . . . expressions.

Rule (Eval Compose)r constructs component values from configurators by “forgetting” the
run-time type information they enclose and copying their composition operation.

The evaluation of composition expressions is defined in such a way that it incrementally
builds configurators with a manifest type expression and a ground composition operation (Fig-
ure 4.5). The manifest type information that we represent here by a type expression, miming the
typing process already defined in lt

c (Definition 3.18), is confined to the values themselves and
can be seen in analogy with signature or hash mechanisms usually incorporated in main-stream
middleware frameworks that dynamically manipulate data and code. e.g. Stream Unique Iden-
tifiers (SUID) in Java (i.e. an hash of the class name, interface class names, methods, and fields),
globally unique identifiers (GUID) in COM and .NET.

Notice the compositional construction of such information in Rule (Eval Sequence): a two
part composition gets the type information obtained from blindly composing the two corre-
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(App Requires)r (l = new(S))

(r, e, p)G; (requires ` : t); S + (r� {` = l}, e, p)G,l:t; S[l 7! nil]

(App Provides)r (l = new(S))

(r, e, p)G; (provides ` : t); S + (r, e, p� {` = l})G,l:t; S[l 7! nil]

(App Uses)r

new v; S # l; S0

(r, e, p)G; x[v : t ) s]; S + (r, e� {x = l}, p)G,l:s; S0

(App Sequence)r

s; c1; S + s0; S0 s0; c2; S0 + s00; S00

s; (c1; c2); S + s00; S00

(App Method Block)r (l, li
i21..n = new(S), v0i = vi[(r, e, p)G][x l], G0 = G, l : {|`i : ti

i21..n|})
(r, e, p)G; xI [`i:ti = vi

i21..n]; S + (r, e� {x = l}, p)G0 ; S[l 7! {`i 7!li
i21..n}][li 7!v0i

i21..n]

(App Plug)r

s; plug p1:t1 into p2:t2; S + s; S[selectS(s, p2) 7! selectS(s, p1)]

Figure 4.7: Application rules for composition operations in lr.

sponding run-time type information pieces. No code inspection occurs in the composition
process. This can be seen as a low-level composition of the two manifest type information bits.

Notice that this composition mechanism trusts that the implementation of the base elements
indeed corresponds to their type description. Testing the actual code against these manifest
information is dependent on the actual run-time representation of composition operations. In
this case, where we store the ground composition operations inside configurator values, the
certification process is defined simply by replaying the typing process at load-time. In other
cases where the composition operation may be “compiled” in some way, an approach based
on works on proof carrying code [75] can be followed. The certification of configurator values
can orthogonally added to the loading mechanisms of such a system, provided that there is a
composition mechanism for the proofs (the types) as well as the code itself.

As explained before, a reconfiguration operation depends on a run-time test to check that
a configurator is in fact compatible with the structure of a given instance. The evaluation of a
reconfig expression is thus defined by two rules to cover the two possible outcomes of a match-
ing test, (Eval Reconfig) and (Eval Reconfig Else). The former is applicable whenever the test
s//K succeeds, where s is the target instance and K the precondition present in the type of
the configurator. The composition operation c, taken from the configurator yield by e1 is then
applied to s, the instance obtained from e2. The final result comes from evaluating e3. Rule
(Eval Reconfig Else) is applicable otherwise, it follows by evaluating the else branch. Notice
that only the required resources in the configurator’s run-time type information (the precon-
dition) are used to test the instance. Nevertheless, the added resources (the postcondition of
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(Val Reconfig)
�

K0� = ∆, K0.#I, K0/ = {`i : si
i21..n}

�

D ` e1 : K =) K0 D ` e2 : I D ` e0i : si 8i21..n

D, x : I � K0. ` e3 : d D, x : I ` e4 : d

D ` reconfig x = e1[e2] with `i := e0i i21..n
in e3 else e4 : d

(Val Object)

s. = {`i = li
i21..n} G(li) = ti D(li) = ti 8i21..n

D ` s : {`i : ti i21..n}

(Val Configurator Value)r

D ` c : K =) K0

D ` conf(K =) K0, c) : K =) K0

Figure 4.8: Typing rules for lr.

the configurator) are important in the process of building the type information. Notice, in
Rule (Eval Sequence) in Figure 4.5, that the set of resources Kc, which is a provided resource set
of the first configurator is essential to compute the resulting configurator type.

Moreover, the application of configurators to composition contexts is also modified with
relation to lt

c in order to build the necessary run-time type information in the resulting object.
Notice that this information is also confined to the instance, and is only used in the matching
test. Again, this results from a context free, mechanical process that gathers type annotations
from the composition expressions and accumulates them in the typing environment in the ob-
ject value.

We next define a type system for lr that, despite the dynamic character of reconfiguration,
ensures the soundness of components and objects. This soundness properties also hold in the
case of reconfigured objects.

Type System

We uniformly extend the typing relation of lt
c with the Rules in Figure 4.8. Rule (Val Reconfig)

to type reconfig expressions and Rules (Val Object) and (Val Configurator Value)r to type object
and configurator values.

Definition 4.6 (Typing relation). The judgement D ` e : t is valid if it is derivable by the rules in
Figures 2.11, 3.12, 3.13 and 4.8.

Despite the dependence of reconfiguration actions on a run-time check, some basic confor-
mance between the configurator type (K =) K0) and the type of the target object (t) is tested
statically in Rule (Val Reconfig). We use K0 to ensure that the continuations of reconfiguration
actions are well-typed, and, in particular, ensure, at the level of the reconfigured instance, that:

• no dependencies are left open after the application (K0� = ∆),

• the configurator does not override the object’s provided ports (K0.#I), and
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• all new required ports must be satisfied by plug-assignments, (K0/ = {`i : si
i21..n}).

Rule (Val Object) and Rule (Val Configurator Value)r assert that the corresponding values
are well-formed. We define object and configurator values to be well-formed with relation to a
typing environment if they carry the expected type information. In particular, we see here that
well-typed programs always produce configurators whose composition operation conforms
with the run-time type information.

We illustrate the typing and evaluation relations in a simple example of a reconfiguration:

Example 4.7. Consider the types t, I = { f1 : t ! t}, and I0 = { f2 : t ! t⇥ t}, and the values
v1 and v2 with type t, in the expressions to follow. We also use standard forms for product
types and value constructors. Consider the following expression:

(1)
let c = compose (provides p : I; m1[ f1 : (t ! t) = lx : t.x]; plug m into p) in

let o = new c in

o.p. f1(v1).

Here, c has type {}) {p : I} and o has type {p : I}. The expression o.p. f1(v) representing here
the regular use of object o has type t.

Now, suppose the implementation of m1 is faulty and we want to replace it in o by a method
block that replaces m1 and, at the same time, implements the functionality for a new port. We
may apply the following reconfiguration script to the object o:

(2)

let r = (m2[ f1 : (t ! t) = lx : t.v2,
f2 : (t ! t ⇥ t) = lx : t.(x, x)];

plug m2 into p;
provides q : I0;
plug m2 into q) in

reconfig x = r[o] in x.q. f2(v1) else (v1, v2).

In this case the type of the reconfiguration script r is {p � I, m1 • I} =) {m2 • I, q . I0}. This
expression is successfully typed with relation to the typing environment D = c : {}) {p : I}, o :
{p : I}, r : {p � I, m1 • I} =) {m2 • I, q . I0} by the following derivation:
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(Val Var) D ` r : {p � I, m1 • I} =) {m2 • I, q . I0}
(Val Var) D ` o : {p : I}
(Val Var) D, x : {p : I, q : I0} ` x : {p : I, q : I0}
(Val Select) D, x : {p : I, q : I0} ` x.q : I0

(Val Select) D, x : {p : I, q : I0} ` x.q. f2 : t ! t ⇥ t

. . . D, x : {p : I, q : I0} ` v1 : t

(Val Application) D, x : {p : I, q : I0} ` x.q. f2(v1) : t ⇥ t

. . . D, x : {p : I} ` (v1, v2) : t ⇥ t

({m2 • I, q . I0}� = ∆, {m2 • I, q . I0}/ = ∆, {m2 • I, q . I0}.#{p : I} = ∆)
(Val Reconfig) D ` reconfig x = r[o] in x.q. f2(v1) else (v1, v2) : t ⇥ t

In fact, if we simulate the evaluation of expression (1) we obtain that o denotes a location l2 in
the heap:

S = {l0 7! { f1 = lx : t.x},
l1 7! l0

l2 7! ({}, {m1 = l0}, {p = l1})l0:I,l1:I}.

In this case, the test S(l2)//{p � I} succeeds, and when r is in fact applied to o, the resulting
location x = l5 denotes an instance in the heap

S = {l0 7! { f1 = lx : t.x},
l1 7! l3

l2 7! ({}, {m1 = l0}, {p = l1})l0:I,l1:I

l3 7! { f1 = lx : t.v2, f2 = lx : t.(x, x)},
l4 7! l3,
l5 7! ({}, {m1 = l0, m2 = l3}, {p = l1, q = l4})

l1:I,l2:I0,l3:I,l4:I0}.

In (2) x.q is mapped to the record referred by l3 and the call x.q. f2(v1) succeeds in accessing f2 in
method block m2. Notice that the location l0 is no longer referred by any provided port, thus
being inaccessible unless references exist outside the instance or some other reconfiguration
operation reconnects it to a provided port.

Having illustrated the interaction between typing and evaluation we now formally connect
the two relations and prove type safety in a subject reduction theorem.

4.2.1 Type Safety

In this section we prove that, besides the construction properties ensured in lt
c by Theo-

rem 3.30, the typing relation of lr, also ensures the soundness of newly reconfigured instances
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(Wrong Reconfig)

e1; S # v; S0 v 6= conf(t, c)
reconfig x = e1[e2] with ri := e0i i21..n

then e3 else e4; S # wrong; S000

(Wrong Reconfig 2)

e1; S # conf(t, c); S0 e2; S0 # v; S00 v 62 Loc

reconfig x = e1[e2] with ri := e0i i21..n
then e3 else e4; S # wrong; S000

(Wrong Reconfig 3)

e1; S # conf(t, c); S0 e2; S0 # l; S00 S(l) 6= (r, e, p)G

reconfig x = e1[e2] with ri := e0i i21..n
then e3 else e4; S # wrong; S000

Figure 4.9: Error trapping rules for lr.

with relation to its operational semantics. We follow the same technique used in Sections 2.2.1
and 3.2.1 to prove subject reduction. We enunciate a theorem that asserts the preservation of
types throughout the evaluation and the absence of run-time errors on well-typed expressions
that may be caused by ill-formed architectures. The soundness of reconfigured instances fol-
lows as logic consequence of the subject reduction.

Again, for proving type safety in lr we consider the extended operational semantics with a
distinguished value, wrong, to which expressions evaluate whenever a run-time error occurs.

The extended operational semantics is defined as follows, based on the rules in Figure 4.9.

Definition 4.8 (Extended Evaluation). Let e 2 lr and a heap S such that (e; S) is a valid configura-
tion. The evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively
by the rules in Figures 2.8, 2.12, 4.4, 4.5, 4.6, 4.7, 3.14, and 4.9.

Recall our definition of architecture conformance from lt
c, Definition 3.23. It asserts that

an object is partially described by a particular resource set. Remember that this is central in
the invariant of the induction in the subject reduction proof, stating that, at all times, the par-
tially built instances conform with the type information statically assigned to the construction
operations. We now correlate the architectural conformance property it with the matching test
used in the operational semantics, Definition 4.4. We then use this correlation as the starting
point for the application of a configurator to a running instance in Rule (Eval Reconfig). This
property is expressed in the following lemma:

Lemma 4.9. For all instances s and resource sets K, if s//K then s conforms with K.

Proof. The proof is done by induction on the height of the derivations of s//K with s = (r, e, p)G

and by case analysis on the last rule used. (for the complete proof see appendix A on page 185).
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As before, we state the usual properties of weakening and preservation of types under
substitution of variables are essential to prove type safety.

Lemma 4.10 (Weakening). For all typing environments D, D0, all expressions e 2 lr, and t 2 Tc:
If D, D0 ` e : t and x 62 Dom(D0) then D, x : t0, D0 ` e : t.

Proof. By induction on the height of the derivations and in the cases of the last rule used.

Lemma 4.11 (Substitution). For all typing environments D, D0, all expressions e 2 lr, and t 2 Tc:
If D, x : t, D0 ` e : t0 and D ` v : t then D, D0 ` e[x v] : t0.

Proof. By induction on the height of the derivations and in the cases of the last rule used.

We are now ready to enunciate the general lemma that asserts subject reduction considering
simultaneously the evaluation of expressions and the application of composition operations.

Lemma 4.12 (Subject Reduction).

1. Let (e; S) be a valid configuration in lr\{nil} such that nil(S) = ∆ and let G be a typing envi-
ronment typing S such that e and S are record-based with relation to G.:

If G ` e : t and (e; S # v; S0) then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.

2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S.

Let s be a partially linked object s such that it conforms with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If s; c; S + s0; S0 then

a) there is G0 typing S0 and extending G,

b) s0 is a partially linked object that extends s and conforms with K0. Its partially linked object
type is [[R� K0/ ) P� K0.]], and

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.
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Proof Sketch. This lemma is proven by induction on the height of the evaluation derivations and
by case analysis on the last rule used. The cases of interest in this proof are (Eval Reconfig) and
(Eval Reconfig Else), all other cases follow by induction on the size of the evaluation deriva-
tions, just like in the proof of Lemma 3.29 for lt

c. They are only different in handling the
manipulation of the manifest type information in objects and configurators.

Case: (Eval Reconfig)

If the last rule used is (Eval Reconfig) then we must have
a) reconfig x = e1[e2] with `i := fi

i21..n
in e3 else e4; S # v; S000

and
b) G ` reconfig x = e1[e2] with `i := e0i

i21..n
in e3 else e4 : d.

From b), by Rule (Val Reconfig), we have that G ` e1 : K =) K0 and from a), by Rule
(Eval Reconfig), we have e1; S # conf(t0, c); S0. By induction hypothesis, we conclude that
there is a G0 that extends G and types S0 such that G0 ` conf(t0, c) : K =) K0, which, by
Rule (Val Configurator Value), leads to t0 = K =) K0 and G0 ` c : t0. From b), by Rule
(Val Reconfig), we also have that G ` e2 : t. By Lemma 4.10 (weakening) we obtain G0 ` e2 : t,
and e2; S0 # l; S0 with S0(l) = s. By induction hypothesis we conclude that there is a G00 which
extends G0 and types S0 such that G00 ` l : t.

Again, from a), by Rule (Eval Reconfig), we now know that s//K and therefore, by Lemma 4.9,
we know that s conforms with K and should have a partial linked object type [[s) t]] for some
object type s.

The evaluation follows on the plug assignment expressions. By iterating Lemma 4.10 (weak-
ening) and the induction hypothesis for all the expressions ei, typed by Gi ` ei : si, we obtain
that for each i there is a Gi that extends Gi�1, with G0 = G00 typing each Si such that Gi ` vi : si.

Then, we have that s; c; Sn + s0; S00. By induction hypothesis on the second part of the lemma
(the application of a configurator) we have that there is a G000 which extends G00 and that the
resulting instance, s0, conforms with K0 and has the partial type [[K0/ � s ) K0. � t]] and its
object type is K0. � t.

Let G0000 = G000, l0 : (t� K0.). Again, from b), by Rule (Val Reconfig) and Lemma 4.10 (weak-
ening), we obtain G0000, x : (t�K0.) ` e3 : d and by Lemma 4.11 (substitution) with the side condi-
tion G0000 ` l

0 : (t�K0.). We conclude c) G0000 ` e3[x l

0] : d. So, from a), by Rule (Eval Reconfig),
we have e3[x l

0]; Sn+1[l0 7! s0][li 7!vi
i21..n] # v; S0000, and with c), by induction hypothesis,

we obtain the final result that there is a G0000 such that G0000 ` v : d with G0000 extending G000 types
S0000.

Finally, the occurrence of nil values in the heap follows the reasoning used in the instantia-
tion process. In the first case, all nil values introduced by the new required ports are replaced
by non-nil values, so we prove that nil(S0000) = ∆. The new values introduced in the heap are all
record-based (by induction hypothesis) and so it is the result of evaluating e3.
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Case: (Eval Reconfig Else)

The second evaluation possibility for a reconfiguration follows without applying the config-
urator to the instance and therefore the typing of the resulting value v results by induction
hypothesis on the typing derivation of e4.

To complete the proof of type safety we must analyse the cases where the result of evaluat-
ing an expression may be a wrong value, and prove that it does never occur when evaluating a
well-typed expressions. For this we analyse the rules in Figures 2.12, 3.14, and 4.9 and conclude
that they are not applicable. (for the complete proof see appendix A on page 186).

Finally, the main result of this chapter follows as a corollary of lemma 4.12. The subject
reduction theorem yields type safety for the language lr as follows:

Theorem 4.13 (Subject Reduction). Let (e; S) be a valid configuration in lt
c\{nil} such that nil(S) =

∆ and let G be a typing environment typing S such that e and S are record-based with relation to G.
If G ` e : t and e; S # v; S0 then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t0,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined or
refers-to a record,

d) If v is a component or configurator value then FL(v) = ∆, and

e) nil(S0) = ∆.

Proof. This theorem results directly from the first case of Lemma 4.12 and Lemma 3.25.

This theorem ensures that after a reconfiguration, the target instance has a sound architec-
ture, i.e. that all provided ports of instances actually lead to a record containing the expected
set of methods, and also that all references to external functionality are indeed fulfilled and so,
that all expressions declared inside method blocks do not fail due to ill-formed architectures.

From the proof of Lemma 4.12 we can also extract a the following result about the applica-
tion of configurators.

Theorem 4.14 (Atomicity). For all ground composition expressions c, all typing environments G, all
heaps S, and all objects s, if G ` c : K =) K0, G types S, and s conforms with K then there is a derivation
of s; c; S + s0; S0.

Proof. The proof of this theorem follows from the cases of the proof of Lemma 4.12. In particular
it follows from the fact that the Rules (Wrong Plug) and (Wrong Uses) are never applicable.
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Combining this with the safety result of Theorem 4.13 we conclude that a configuration
process once started is never interrupted due to some run-time error. This result makes precise
want we mean by “atomicity” of reconfiguration. Notice that the same result already holds for
the language lt

c of Chapter 3.
This concludes the presentation of our core component calculus with dynamic reconfig-

uration of objects. Type safety is supported by a combination of dynamic and static typing
mechanisms, and ensures at compile-time the atomicity of well-typed reconfiguration actions.

We now present a possible extension of the presented language in order to cope with recon-
figuration of objects at an arbitrary depth in a system.

4.3 Reconfiguration at an Arbitrary Depth

The language constructs presented so far address only one level of reconfiguration, i.e. only the
top level of an object can be changed in a reconfiguration action. This is due to the uniformity
between the expressiveness of reconfiguration and composition using the same composition
operations. Compositions are also defined one layer at a time.

However, one may think of adding extra expressive power to our model by adding oper-
ations that allow the definition of reconfiguration scripts changing objects more deeply. Take
the following example where an example of a new reconfiguration operation, patch r [o], is used
to apply a reconfiguration script r to an inner instance of an object o, in a composition context
instead of a computational context. (We omitted the majority of the usual type annotations to
avoid cluttering the example with unnecessary type expressions.)

l e t C = compose ( provides p : I ;
m1[ g=fun x! x ] ;
m2[ f =fun x! m1. g ( x ) + 1 ] ;
plug m2 into p ) in

l e t D = compose ( provides p : I ;
c [C ] ;
plug c . p into o ) in

l e t o = new D in . . .

Notice that component D wraps the component C and therefore a lr reconfiguration script,
when applied to an instance of D, can only change the implementation of the internal compo-
nent c by replacing it completely.

Consider that the semantics of the composition operation patch r [o] is to take a configurator
r and applying it to an internal component o. Then, consider the following definition of two
configurator values and the corresponding application to an instance of component D, object o

in the usual way,

l e t rC = ( provides q ; plug m2 into q ) in
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l e t rD = ( provides q ; patch rC [ c ] ; plug c . q into q ) in

reconfig x = rD [ o ] in x . q .m1( 1 ) . . .

Configurator rC, when applied to an instance of C, declares a new provided port q and imple-
ments it with the already existent block m2.
We first define configurator rC whose type is

{m2 • I} =) {m2 • I, q . I}
we then define a configurator rD which takes an inner element of the target object, named c,
and applies rC to it using the new operation patch. The patch operation works in a similar way
to expression reconfig r[o] but it is a composition operation which is evaluated in the context of
a composition. So, when configurator rD is applied to object o, it declares a new provided port
named q, reconfigures the internal component c, and connects its newly introduced port q to
the new port q in object o.

The resource-based language we use to type configurators can be extended to cross the
borders of internal components (by allowing resource names with more than 2 levels) and refer
to inner elements at any determined depth. According to this idea, the type of rD is

{c.m2 • I} =) {c.m2 • I, c.q . I, q . I}.
One interesting aspect of this reconfiguration operation is that a top-level run-time test can

still verify the presence of the referred resources and therefore ensure the atomicity of all recon-
figuration levels. The semantics presented in this chapter to support dynamic reconfiguration
of objects can be extended simply by making the matching test to recursively follow the struc-
ture of the names in the hierarchy. Our formulation of the type system and type safety results
are expected to hold in this extended reconfiguration language.

4.4 Remarks

In lr we define a minimal set of composition operations and a type system suitable for cap-
turing properties of both dynamic composition of components and dynamic reconfiguration
of objects. We deal with the problem of dynamically discovering the architecture of black-box
objects by a structural matching test at run-time that closely relates to a statically ensured prop-
erty, architectural compliance (Lemma 4.9). The input data for this test is a localised run-time
type information in configurator and objects.

However, our approach to reconfiguration is based on some basic assumptions which we
argue do not destroy the essence of our model. Here, we informally present these assumptions
and explain the implications they have and discuss their orthogonality with relation to the key
aspects we have included in our model. Treating these assumptions in full in our core language
would clutter the presentation with irrelevant details. It could also, in some cases, compromise
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the language generality and even the formal soundness proofs as they are written (as it is the
case of nil references being part of the source language).

The first assumption made by our model is the unnecessary usage of an explicit deletion
operation. An implicit garbage collection discipline, designed to eliminate the elements no
longer referred by a provided port, would solve the problem of deleting the “forgotten” ele-
ments without disrupting the system’s execution. It is possible, in our model, to freely manip-
ulate references to inner elements, exporting them outside the original component boundaries.
The inclusion of an explicit elimination operation would imply a tight control over reference
passing outside their composition context. Reconfiguration would require reassessing the type
checking of the target instance after each reconfiguration step. This highly restricts the generic
manipulation of configurators and components as we present it.

Another aspect relates to our forbidding of repetition of names inside composition opera-
tions. The type system in lt

c disallows this, however, through reconfiguration it is possible to
introduce internal elements named with already used names. The new name hides the older
one that clashes with it, but because the names are replaced by their locations all the existing
structure is maintained. However, hidden names become inaccessible to further reconfigura-
tions.

There are also some design options of our language which imply compromises in the un-
derlying framework. Corrections performed to objects are only valid during the application’s
lifetime. Once restarted, the original application’s code is loaded, and the incorrect code one
intended to correct before gets executed again. So, from a software maintenance perspective,
a procedure is necessary to apply update schemes on the generating components (the replace-
ment by an up-to-date component). We do not deal with this issue as it is orthogonal to the one
we chose to study. The issuer of a reconfiguration script can also issue the corrected compo-
nents thus completing the diagram in Figure 4.1.

We now relate our work on dynamic reconfiguration with that of other authors.

4.5 Related Work

Our work on dynamic reconfiguration of component instances compares with several approaches
by other authors, but nevertheless provides a fresh perspective on the issue of software evolu-
tion.

We first compare reconfiguration of instances with the notion of dynamic module replace-
ment in the context of an application. Despite the existence of run-time support for dynamic
loading of modules in main-stream frameworks, like COM, CORBA, Java, or .NET, the burden
of correctly handling different versions of modules and data in these systems is on the program-
mer. Fundamental work was developed on type safe mechanisms for the explicit treatment of
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versioning of modules and abstract data types with type safety [90, 37, 14] to support this kind
of software evolution.

Another approach that relates to our work is the one resulting from the use of mixin mod-
ules [17, 16, 38, 11, 101, 56, 57, 41] which add to structured module languages, like the ML
functor language, the definition of modules by means of composition operations on other mod-
ules, allowing also for mutually recursive structures. In the cases of [101, 41] modules are also
first-class. These characteristics are primitive in our base calculus lt

c, and were already sub-
ject of analysis in Section 3.4, we nevertheless recall them here to compare the form of module
reconfiguration defined in [41] with our notion of instance reconfiguration.

We also compare our work with others that have introduced programing language mecha-
nisms for supporting dynamic changes of the implementation of objects [35, 36, 89, 91]. We
finally comment on the reconfiguration mechanisms on architecture description languages
(ADLs) with relation to our work.

Run-Time type information The usage of run-time type information is essential in our lan-
guage to inspect the structure of objects, which is hidden from typing, and decide at run-time
if a reconfiguration action succeeds or not and hence guaranty its atomicity. This is inspired
in the widely known dynamic typing and type inspection mechanisms of programming lan-
guages notably formalised in [2]. The other side of the coin is the run-time type information
in configurators scripts. We see reconfiguration scripts as values that can be imported by pro-
grams to correct running objects, which can be (and almost certainly are) developed in different
moments. Hence, the run-time type information on configurators, resembles a form of signa-
ture or proof carrying code [75] in the sense that the reconfiguration is only performed if this
information is checked successfully.

Dynamic software update systems. From the perspective of software evolution and dynamic
reconfiguration, the works of Sewell [90], Duggan [37] and Bierman et al. [14] all address the
operational semantics and type structure of software systems supporting dynamic change of
modules implementing certain abstract data types (ADTs), mainly focusing on version man-
agement of values of such abstract types.

The model language developed in [90] supports separate compilation and linking of dis-
tributed programs, which interact via typed channels, along with a version control mecha-
nism. It allows the definition and execution of new modules while explicitly defining com-
patibility between abstract types of different modules. Language primitives are provided for
defining typed second-class modules, in a language similar to ML functor language, and their
implementation, in a distributed programming language similar to the p-calculus, a command
language is introduced to define (build) and run modules at a system configuration level. Ab-
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stract data types within modules can be made explicitly compatible with prior versions by a
language mechanism that forces their actual representation types to be the same. For instance,
the sequence of commands:

A := (struct type t=trep val x=e main=... end) with! B

run A

builds and runs a new program (A) based on the module definition expression

struct type t=trep val x=e main=... end

which defines an abstract type t with the internal representation trep and a value x given by
the core expression e. The definition A := ... with! B forces the equivalence between the
shapes of the new module and a previously defined module B to be similar and it forces the
compatibility between the type representation of t and the same type defined in B. Build-time
checks are made to ensure compatibility between types.

In the case of [37], the equivalence between abstract types is relaxed by the explicit use
of isomorphisms between type representations, called version adapters. The calculus defines
primitive operations for unifying abstract types in a certain scope (where isomorphisms are de-
fined). Dynamic type information and explicit folding and unfolding operations on modules
are then used to determine, depending on the result of a run-time test, the need for an isomor-
phism application to data values. Type safety ensures that all needed version adapters do exist
when well-typed programs are evaluated.

The work of Bierman et al. [14] gives a precise characterisation of a module update mech-
anism inspired by previous work on dynamic patches in a typed assembly language [55].
It presents a model language, extending the simply typed l-calculus, with mutually recur-
sive module definitions and an update primitive that explicitly defines synchronisation points
where a particular module can be upgraded. When an update point is reached, the run-time
system checks for available updates for the invoking module and atomically performs the re-
placement. The language provides access to older versions of a given module when explicitly
stated, it otherwise implicitly accesses the latest version. To illustrate the calculus we now re-
produce a simplified version of an example in [55]. Consider the method bodies m and m0 and
the module set ms defined below:

m , { f = lx.update in M.z, z = 3}
m0 , {z = (5, 5)}
ms , {module M0 = m}

Module set ms defines the version 0 of a module named M with implementation m. Consider
the following program using the module set ms and an expression of the core language:

modules ms in M. f (0)
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The modules in ms are visible in the enclosed expression M. f (0).
Assuming that there is an update ready to be made to M changing its implementation to

m0, the program above evaluates as follows:

modules ms in M. f (0)
�! modules ms in (lx.update in M.z)(0)
�! modules ms in update in M.z

M1=m0�! modules ms0 in M.z
�! modules ms0 in (5, 5)

where ms0 = ms [ {module M1 = m0}. When M. f is resolved the latest version of M is M0

and therefore M. f denotes the abstraction in m. When update is executed a new version of
M is loaded and the current module set is augmented with M1 and therefore M.z evaluates to
the value of z in the latest version of M. With the presented type system, which is liberal with
respect to the signature types of new modules, assigned types are not preserved after a module
upgrade.

The latest development on this subject is presented in [93] where, to ensure type safety, is
statically verified that from a update point on, the representation of an updated abstract type,
is not used in its concrete form by code that relies on the old representation, i.e. code that
uses the old versions of modules do not manipulate concrete representations of abstract types.
Other than this, a module update must provide value transformer procedures when updating
a statically defined data type, must update top-level function definitions using the same type
signatures and may freely add new types, functions and variables.

On all the above approaches to dynamic software update the focus is on the compatibil-
ity of abstract typed values or on the access to old and new module versions. In our model,
components do not usually represent ADTs but rather service providers, and we concentrate
on dynamic reconfiguration of architectures, rather than on individual replacement of a mod-
ule’s implementations. On one hand, our calculus has no mechanism for declaring abstract
data types and if, in a reconfiguration process, any conversion of data or some state preser-
vation operation is necessary it must be programmed explicitly. On the other hand, the loose
coupling provided by interfaces and the strong encapsulation provided by components and
objects allow for the modification of the inner structure of objects (their functionality and data
representation) while maintaining type integrity.

Module calculi. The R-calculus proposed by Fagorzi and Zucca in [41], and later extended
by [42] is an evolution of the basic CMS calculus [11] of Ancona and Zucca with first-class
modules which according to the authors results in a form of reconfiguration. See Section 3.4 for
a description of CMS and other related module calculi. R-calculus builds on CMS by defining a
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notion of interleaved execution of module manipulation operations and core language expres-
sions. The core language in R-calculus is the module language itself, hence we can expect that
an expressive core language can, in fact, be encoded in R-calculus, and indeed computations us-
ing first-class modules can be expressed. Notice that [101] shows an encoding of the l-calculus
in m-calculus, which is very similar to the R-calculus.

The interleaved execution of core and module expressions derives from the selection prim-
itive of CMS, which extracts a component of from a module, a core language expression, to be
executed in a execution layer where all module linking operations are completed and produce
closed core expressions. In R-calculus, a component can be selected, but instead of being ex-
tracted from the component, the module enters a linking phase, where it reduces to a closed
expression (by substitution of its free names in the context of the module); at this stage a mod-
ule is called a configuration. The result can then be extracted and used outside the module’s
context. In this way, the interleaved execution of both kinds of operations allows the manipu-
lation of modules and configurations at run-time, rather than freezing the module structure in
a prior linking phase.

A module in R-calculus, written [i; o; r], basically follows the structure of CMS modules
where i maps input component names to variables whose scope are the expression within the
module, o maps output component names to expressions (components), and r maps local vari-
able names to private components. Besides the basic composition primitives of CMS: sum, to
combine two modules, freeze to resolve deferred input variables by linking them to output
component names, and reduct to rename both input and output names; R-calculus defines a se-
lection primitive run, written e#X, where a module yield by e reduces to a configuration value,
written [i; o; r | e ] where e is the expression associated with the name X within the module.
A configuration is an expression in its linking phase, the evaluation of the selected compo-
nent produces a result that can be, later on, used outside the module’s context by means of the
operation result, written e". All results in R-calculus are either modules or configurations.

For instance, starting from the CMS example in Section 3.4, where e5 denotes the module
e5 = [w 7!W; V 7! x + y; y 7! 2, x 7! 1 + 2 ]

with an input component name W (although not used, w is visible within the module), an
output component name V that maps to the component x + y, and two local variables x and y.
The “execution” of V in e5, defined by e6 , e5 #V reduces to the configuration:

e6 = [w 7!W; V 7! x + y; y 7! 2, x 7! 1 + 2 | x + y ]
which then evolves in some steps to

[w 7!W; V 7! x + y; y 7! 2, x 7! 1 + 2 | 5 ]
The result of this completed “computation” is then retrieved by e6 " which yields 5.

Three static type systems are presented in [42] to prevent run-time errors in R-calculus. The
first type system, strongly inspired on [11], only allows result extraction to happen when there
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are no more pending inputs on the module, and therefore the whole component expression can
be resolved. A second type system makes use of a complex dependency analysis procedure
to allow for a more flexible selection of module components. Despite having deferred input
variables, a module can be used only if the variables within the selected component refer to
already known components or to deferred components that can be made available in some
reconfiguration steps. A third proposal relaxes even further the restrictions imposed by the
previous type systems, this time allowing for ”missing component” errors to happen at run-
time.

When comparing to the results of [41, 42] we find that in R-calculus, where modules are also
pure values, it is impossible to define a reconfiguration script in the sense we present in our
model, i.e. an expression that modifies a module by referring to its inner (local) elements while
maintaining its identity. Hence, it seems impossible to redefine, in place, some functionality
in a component by other means than replacing it completely. The reconfiguration mechanism
defined in R-calculus therefore compares more closely to our notion of dynamic composition,
i.e. it produces first-class stateless components out of existing ones, at run-time. We can draw
an analogy between the run operation and our component construction operation, compose e,
which resolves the architecture of a component, and between the result operation and our
instantiation of components and their subsequent call of the object methods. In addition to
this, we also consider the in-place modification of the internal structure of running objects (of
local and private elements). Thus, we are able to correct or modify the behaviour of elements
(of the same object) whose functionality may indirectly depend on the ones being modified, as
a consequence of the reference semantics of the plug composition operator.

At the level of typing, the first of the typing disciplines described above, which imposes
that all deferred components are resolved prior to any selection of an inner component, is the
one nearest to our type system on the base component language (lt

c). The latter approaches
are not considered in our study. Besides these similarities we use a combination of dynamic
and static type verification when typing reconfiguration actions to match the actual structure
of objects against the type of the reconfiguration script. These dynamic checks safely “break”
the encapsulation of objects and ensure that all composition operations are applicable to the
object, thus allowing for the atomicity of the reconfiguration. This aspect does not seem to be
covered by R-calculus or any other approach.

Programming language perspective. Forms of dynamic reconfiguration for object-oriented
languages involving a fixed predetermined number of future configurations, have been con-
sidered in the Java-like language Fickle presented in [35]. The goal of Fickle is to express mod-
ifications on the implementation of objects while maintaining their identity. A static and safe
type and effect system is provided to ensure type safety. Fickle considers that an object may be
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reclassified, i.e. that the class that implements it may change during the run of a program but
its identity remains the same. This is achieved by a hierarchy of root and state classes allow-
ing for “state” changes to happen by explicit triggers in the program. Consider the example in
[36] where the implementation of a video game character is defined as follows:

abstract root class Player extends Object {
bool brave ;
abstract bool wake ( ) {} ;
abstract Weapon kissed ( ) { Player } ;

}
state class Frog extends Player {

Vocal pouch ;
bool wake ( ) { } {pouch . blow ( ) ; return brave ;}
Weapon kissed ( ) { Player } { th is+Pr ince ; sword := new Weapon ; return sword ;}

}
state class Pr ince extends Player {

Weapon sword ;
bool wake ( ) {} { sword . swing ( ) ; return brave ; }
Weapon kissed ( ) { Player } { return sword ; }
Frog cursed ( ) { Player } { th is+Frog ; pouch := new Vocal ; return th is ;}

}

The root class Player defines here a common structure to all state classes, which is maintained
in state changes. The state classes extending the root class define the possible states for an
object of class Player. A state change operations, written o+C can then be used to change the
implementation of object o to state class C. Notice the code in the Frog.kissed method, after the
state change ( this+Prince) it follows as if this was of class Prince. The symmetric happens in the
Prince.cursed method.

The following sequence of expressions illustrates the effects of re-classification:

Frog mate ;
mate . wake ( ) ; / / i n f l a t e s pouch
mate . k issed ( ) ; / / t u rns i n t o a pr ince
mate . wake ( ) ; / / swings sword

A type and effect system ensures the type safety of such constructions. A similar idea is pre-
sented in [89] but based on dynamic typing mechanisms.

Although modifications may depend on computational results reconfiguration happens in
predictable and limited ways. In our work, we aim to model unanticipated reconfiguration
using first-class typed notions of (re)configuration scripts, thus following an approach that
does not seem to have been explored here.

Another object-oriented programming language which allows for dynamically changing
the functionality of objects is Chai [91]. In the definition of a class one can use the standard
inheritance mechanism and, additionally, “use” a set of traits (which define behaviour based
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on a set of expected methods) to extend its base functionality. A trait, used in the definition of a
class, can then be replaced, in a particular object, by another, thus changing its implementation.
Unlike this trait updating mechanism, our reconfiguration allows, besides the local replacing
of elements, the arbitrary addition of new elements and connections to an object’s structure.

Evolution on distributed systems Architecture description languages [66, 72, 58, 40, 102]
usually describe the behaviour of distributed components at the level of a coordination ser-
vice. Evolution of the existing sets of connections and components can usually be integrated
in the initial description of the system or later introduced into the system and cause changes
in the architecture. In general these approaches do not provide mechanisms for predicting
and analysing the consequences of reconfiguration scripts or ensuring the consistence of the
resulting architectures.

Other approaches operate at system level to reconfigure the architecture of distributed ap-
plications based on middleware systems [64, 63, 5, 13] but rely on ad-hoc sequences of API calls
and lack any programming language support for the expression of reconfiguration actions.



Chapter 5

Recursion and Polymorphism

In this chapter we study the fundamentals of subtyping second-order equi-recursive types. The
results obtained here are afterwards used to enrich our component calculus with new ingredi-
ents which are essential in any modern object-oriented language: recursive types and bounded
parametric polymorphism.

5.1 Introduction

Recursive types are pervasively used to capture the structure of inductively defined data. They
also turn out to be essential to type objects where methods may refer to entities of the self
type (see e.g. [1]). On the other hand, polymorphism leverages the flexibility and reusability of
software pieces in strongly typed languages, as notably described in [27].

Cardelli and Wegner classify polymorphism, by refining a classification by Strachey [95], as
either ad-hoc or universal. Ad-hoc polymorphism is present in most programming languages
in the form of implicit coercions and overloading of operators as a practical way of liberating
the programmer of many and cumbersome annotations. This happens for instance in the im-
plicit integer and float conversions of arithmetic operations in most languages, or by implicit
coercions of objects and primitive values to their textual representation in Java. In the case
of universal polymorphism, the classification is subdivided in parametric polymorphism and
inclusion polymorphism. Parametric polymorphism denotes the quantification over a range of
types allowing for some module or function to be safely applied to different typing contexts.
On the other hand, inclusion polymorphism or type inclusion is intrinsically based on the struc-
ture of types. It is supported by a universally defined subtyping relation. This is particularly
important in most object-oriented languages where it is implicit from using inheritance.

Bounded quantification is a combination of these two kinds of polymorphism (parametric
and inclusion) developed in the context of some fundamental languages (e.g. Fun [27], kernel-
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Fun, F [34]). In this case the range of type arguments accepted in a parametric module is
bounded by subtyping. Thanks to the efforts of a group of researchers, it was incorporated
recently into main-stream languages like Java [18] and C] [61], thus greatly improving their
safety and expressiveness.

Type inclusion denotes a special coercion operation where modifications to the internal rep-
resentation of the values are many times avoided, like in object-oriented languages, by clever
design options. Nevertheless, it can be considered as universal polymorphism because it is
supported by a global property, subtyping. This implicit coercion operation is expressed in
terms of typing by the following inference rule

(Subsumption)

D ` e : s D ` s  t

D ` e : t
.

This rule intuitively asserts that an expression of a type can be safely used as if it was of any
more general type.

In most object-oriented languages, subtyping is intimately related to a nominal class-extension
mechanism, and therefore must follow a rigid hierarchy explicitly defined by the programmer.
On the other hand, there are languages with richer subtyping relations based on the propa-
gation of basic relations through the structure of type constructors, like type equivalence and
general subtyping towards a maximal type >. For instance, the rules

t0  t s  s

t ! s  t0 ! s0
n � m ti  t0i 8i21..m

{`i : ti i21..n}  {`j : tj
j21..m}

denote the relations between the standard type forms for functions and records. The subtyping
relation between function types, t ! s, is based on the subtyping of its subexpressions and
expresses the inverted direction in domain set (contravariant in the parameter types) and the
same direction in the target set (covariant in the result type). Record types, which are the basis
for most object-oriented language encodings [1, 20], are related in two different ways, in depth,
by propagating subtyping to field types, and in width, by arbitrary expansion of new fields in
subtypes.

When object-oriented programming is at stake, languages like the object calculus of Abadi
and Cardelli [1] and Bettini, Bono and Venneri’s class and mixins based language, Momi [12],
are good examples of how to express general object-oriented programming mechanisms. How-
ever, their subtyping relations on classes, objects and mixins stay far behind the flexible relation
on records shown above. Both use invariant width subtyping due to unsoundness problems
when coding the self reference as a generic extra parameter of methods. Abadi and Cardelli
present an interesting version of their calculus using variance tags in order to be able to use a
richer subtyping relation.
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In FJ [59], as well as in Java and C], structural equivalence of types, and consequently
subtyping, is traded by name-based equivalence, which is very convenient in terms of imple-
mentation and also to overcome existing problems with subtyping of recursive types. In fact,
structural equivalence of types, although adopted in some experimental programming lan-
guages such as OCaml [99] and Modula3 [26], does not seem to have had substantial impact in
main-stream object-oriented languages.

Nevertheless, the increasing use of dynamic loading, late binding and mobile code in gen-
eral purpose programming frameworks raises the issue of finding more flexible compatibility
criteria between software components. One reason is that the rigid hierarchy of classes de-
fined by name-based extension and subtyping implies the usage of a global namespace and,
for instance, disallows the compatibility of two classes that separately combine the same set
of interfaces. This problem can of course be diminished by explicitly using wrapper objects
that redirect method calls and therefore make compatible two otherwise incompatible classes.
But, structural equivalence would be the most natural solution to this kind of problems. One
approach to this problem in main-stream languages is, for instance, Buchi and Weck’s work on
compound types [21].

Moreover, the task of defining a structure-based subtyping relation is entangled by the in-
clusion of recursion in the type language. Name-based type systems also use the names as
a mean to define recursion and, by using a fixed name hierarchy, do not need to unfold and
inspect the structure of types, thus not interfering with subtyping.

Type systems with recursion essentially adopt one of two different forms of relating a re-
cursive type and its unfoldings [3]. They are either related by explicit folding and unfolding
language operations, the denominated iso-recursive types, or they are implicitly equivalent
according to the equivalence relation,

µX.t = t[X µX.t]

where µX.t indicates that X, when occurring inside t represents the type itself. This means
that, in the limit, µX.t represents a regular infinite tree of type constructors. Type systems
where type equality is interpreted as equality of these infinite trees are called equi-recursive
types. We focus our attention on the latter, as solving type equivalence or subtyping using the
iso-recursive approach follows a too restrictive syntax-driven subtyping relation.

A pragmatic approach to structural type equivalence is already implemented in Algol68’s
compiler were record fields are stored and used to find recursive structure on modes (Algol68
terminology for types), the so-called infinite mode trees [100]. In Cardelli’s Amber language [23],
where type inclusion was first introduced, subtyping of equi-recursive types is resolved by a
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simple inductive rule and axiom

D, X  Y ` t  s

D ` µX.t  µY.s
D, X  Y ` X  Y,

which follows the same idea, but addressing type inclusion instead of equivalence. This ap-
proach is more powerful than the iso-recursive but it is still restrictive, because it only relates
types whose structure is perfectly “synchronised”.

Other approaches to the problem of defining an unrestricted subtyping relation between
first-order equi-recursive types already exist for quite a while [6, 19, 48]. Also, some work using
limited interpretations of type recursivity was developed [51, 28], to test the conservativity
of different second-order subtyping relations extended with recursive types, but again using
limited relations and with no real intention of covering the whole subtyping relation between
equi-recursive types.

Intuitively, when interpreted to the full extent, the subsumption relation between recursive
types corresponds to the usual inclusion of infinite (regular) trees, and the difficulty in the poly-
morphic case arises due to the presence of binding occurrences of type variables on types, intro-
duced by the unfolding of type quantifiers. These subtyping relations have been expressed by
means of inductive proof systems, where the coinduction principle appears embedded in var-
ious explicit ways. For instance, Amadio and Cardelli [6] define a finite approximation notion
on infinite trees. They build and prove correct an algorithm that records a trail of derivations to
detect recursion spots. On the other hand, Brandt and Henglein [19] define a special stratified
interpretation for sequents that outrules the inconsistency introduced by a fix-point rule

A, P ` P
A ` P

where A is the set of assertions and P is the predicate we wish to prove correct. This demands
that the proof A, P ` P is contractive, i.e. it does not conclude P trivially from A, P. Colazzo
and Ghelli [30, 31] have used this kind of rule in their algorithm for second-order types and
have used a tagging mechanism to deal with the introduction of type variables to avoid having
to perform variable substitution. This tagging mechanism allows the distinction between two
different variables that have the same name, an unpleasant consequence is that a true recursion
is only discovered if a pair of types is met in the derivation three times.

Our technical approach follows the more natural approach of Gapeyev, Levin and Pierce [48]
for first-order types which consists on the definition of the subtyping relation based on the
greatest fixed point of a function, also called generating function. For a language with arrow,
product and recursive types the authors define a function S on sets of pairs of types as follows
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S(R) = {(t,>) | t 2 T }
[ {(t ! s, t0 ! s0) | (t0, t), (s, s0) 2 R}
[ {(t ⇥ s, t0 ⇥ s0) | (t, t0), (s, s0) 2 R}
[ {(µX.t, s) | (t[X µX.t], s) 2 R}
[ {(t, µX.s) | (t, s[X µX.s]) 2 R}

where T is the set of all type expressions. Then, the subtyping relation is defined as the greatest
fixed point of S so that subtyping is given by,

t  s , (t, s) 2 nS.

We define a subtyping relation along the same lines, but introducing mechanisms to deal with
the bindings of type variables introduced by polymorphic quantification. After that, we define
an algorithm to check the subtyping of two type expressions.

In this chapter, we target the smallest of the theoretical languages mentioned above, the
second-order typed lambda calculus with subtyping. The second-order lambda calculus (F-
system [52]) was introduced independently by Girard and Reynolds and later extended with
subtyping and bounded-quantification in Fun [27]. A more general subtyping relation was
afterwards presented in [51], the F calculus, but its subtyping relation was later proven unde-
cidable [77, 29]. In this context, we chose to work with kernel-Fun, a generalisation of the Fun
calculus introduced in [27]. Here, we present the details of the definitions and corresponding
proofs in order to define a generic framework that allows us to reuse it. Although the proof
of the closure under transitivity is a bit more involving, we show that all properties of the
subtyping relation are proven using standard coinductive techniques. This work applies well
to other decidable subtyping disciplines such as F> [28] as well as to other more complicated
languages, such as our component calculus. In Chapter 6, we apply these techniques to our
component calculus in order to extend it with polymorphism and type recursion.

5.2 On Subtyping Second-Order Equi-Recursive Types

5.2.1 Subtyping Relation

We start with the type language of kernel-Fun plus type recursion and then present its sub-
typing relation and some of its properties. Some of these properties are essential to show type
safety, others are essential to prove the correctness of our subtyping algorithm.
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Definition 5.1 (Types).
The set of types Tl is defined by the following abstract syntax:

t :: = types
| > top
| t ! t function type
| X type variable
| 8Xt t quantifier type
| µX.t recursive type

Besides >, the supertype of all types, and the arrow type, both standard in the simply typed
lambda calculus, we also have type variables X, Y, Z, etc., quantified types of the form 8Xt t0

where X is bound in t0 and all its possible values are subtypes of t, and recursive types of the
form µX.t. The rules we might expect in an inductive subtyping system for this language are
the ones in Figure 5.1. These include the usual relationships: maximality of> (Sub Top), reflex-
ivity (Sub Equal), arrow type inclusion (Sub Fun), transitivity (Sub TransVar), and unfolding of
recursive types (Sub RecR) and (Sub RecL). To compare polymorphic types, we adopt a kernel-
Fun style rule, (Sub All), where the quantifier bound d is required to be the same on both types.

Notice that, in Figure 5.1, we do not include the explicit transitivity rule

(Sub Trans)

D ` t  d D ` d  s

D ` t  s

We replace this by Rule (Sub TransVar) as an intermediate step towards a definition of a sub-
typing algorithm. Notice that d in Rule (Sub Trans) cannot be determined from the conclusion
D ` t  s. In the case of kernel-Fun, transitivity can be proven to hold in the structure of types
except for type variables, hence subtyping of type variables must be dealt explicitly. Then, we
are, in general, able to prove transitivity for the whole relation.

Unfortunately, the adoption of an inductive system based on these rules results in an incom-
plete type system that does not seem to easily lead to a terminating algorithm, as remarked by
Ghelli [51] in the case of F. On the other hand, the subtyping algorithm developed by Co-
lazzo and Ghelli in [30] uses these rules together with the already referred fixed point rule of
Brandt and Henglein, but again giving sequents and derivations a particular interpretation, far
from the usual inductive interpretation. In fact, our difficulties in getting a clear understanding
of that work, which is fairly complex, lead us to attempt a different approach, leading to the
subtyping relation presented in this chapter.

Our approach is to follow the development of Gapeyev, Levin and Pierce [48] for first-order
types, and extend it in an uniform way to polymorphic types. We start from a coinductive
definition of the subtyping relation and then prove the properties which are fundamental to
type safety in any language such as transitivity, narrowing, weakening, substitution of type
variables and equivariance.
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(Sub Top)

D ` t  >
(Sub Equal)

D ` t  t

(Sub Fun)

D ` t0  t D ` s  s0

D ` t ! s  t0 ! s0

(Sub TransVar)

D ` t  s X  t 2 D

D ` X  s

(Sub All)

D, X  d ` t  s

D ` 8Xd t  8Xd s

(Sub RecL)

D ` t[X µX.t]  s

D ` µX.t  s

(Sub RecR)

D ` t  s[X µX.s]
D ` t  µX.s

Figure 5.1: Subtyping rules.

(Env f)

f ` ⇧

(Env TVar) (X 62 Dom(D))

D ` t ok

D, X  t ` ⇧

(Type Top)

D ` ⇧
D ` > ok

(Type Fun)

D ` t ok D ` s ok

D ` t ! s ok

(Type TVar)

D, X  t ` ⇧
D, X  t ` X ok

(Type Rec)

D, X  > ` t ok

D ` µX.t ok

(Type All)

D ` t ok D, X  t ` s ok

D ` 8Xt s

Figure 5.2: Well-formed types and typing environments.

Prior to this, we need to define and prove some basic properties of typing environments,
which are then used in the subsequent proofs.

Definition 5.2 (Typing Environments). The set D of all valid typing environments is defined by the
abstract syntax

D : : = f | D, X  t

such that D ` ⇧ is derivable by the rules in Figure 5.2.

We write D(X) to denote the type t such that X  t 2 D, where t is the bound of X.

Lemma 5.3. For all D, D0 2 D and d 2 Tl, If D ` t ok then D ` ⇧.

Lemma 5.4 (Weakening of typing environments). For all D, D0 2 D and d 2 Tl,

1. if D, D0 ` ⇧, X 62 Dom(D, D0), and D ` d ok then D, X  d, D0 ` ⇧.

2. if D, D0 ` t ok, X 62 Dom(D, D0), and D ` d ok then D, X  d, D0 ` t ok.
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Lemma 5.5 (Substitution). For all D, D0 2 D and d 2 Tl,

1. If D, X  d, D0 ` ⇧ and D ` d0 ok then D, D0[X d0] ` ⇧.

2. If D, X  d, D0 ` t ok and D ` d0 ok then D, D0[X d0] ` t[X d0] ok.

Lemma 5.6 (Variable Exchange). For all D, D0, D00 2 D and d 2 Tl,

1. If D, X  d, D0, D00 ` ⇧ and X 62 Dom(D0) then D, D0, X  d, D00 ` ⇧.

2. If D, X  d, D0, D00 ` t ok and X 62 Dom(D0) then D, D0, X  d, D00 ` t ok.

Lemmas 5.3, 5.4, 5.5, and 5.6 are proven by simple induction on the height of the derivations.
We omit the proofs from the core of this dissertation as they are not particularly relevant. Nev-
ertheless, the detailed proof reasoning is shown in Appendix A.3 from page 196 on.

Now we define the set of all subtyping judgements, the elements of J are tuples (D, t, s)
that denote subtyping judgements of the form D ` t  s. We use the notation (D; t; s) when
commas are needed to express the elements of the tuple.

Definition 5.7 (Subtyping judgements domain). J , D ⇥ Tl ⇥ Tl

We now define a function S that manipulates sets of tuples according to the rules in Fig-
ure 5.1 and then introduce its greatest fixed point as our subtyping relation.

Definition 5.8 (Generating function). The generating function is the map S 2 P(J )! P(J )
defined by:

S(R) = {(D; t; t) | D ` t ok} (Sub Equal)
[ {(D; t;>) | D ` t ok} (Sub Top)
[ {(D; t ! s; t0 ! s0) | (D; t0; t), (D; s; s0) 2 R} (Sub Fun)
[ {(D; X; s) | X  t 2 D and (D; t; s) 2 R} (Sub TransVar)
[ {(D; 8Xd t; 8Xd s) | (D, X  d; t; s) 2 R} (Sub All)
[ {(D; t; µX.s) | (D; t; s[X µX.s]) 2 R } (Sub RecR)
[ {(D; µX.t; s) | (D; t[X µX.t]; s) 2 R and s 6⌘ µX.s0 } (Sub RecL)

By keeping the typing environment in the relation together with the pair of types we keep the
correct binding for all type variables occurring in the types. New variables are introduced in
the typing environment by the case (Sub All). We assume that X is new in D, which is obtained
by replacing all occurrences of X in both t and s by a fresh type variable. More, notice that
the least fixed point of this function is the relation formed by an inductive interpretation of the
rules in Figure 5.1.

In order to proceed with the definition of the subtyping relation we verify that S is mono-
tonic, and therefore, confirm that its greatest fixed point nS 2 P(J ) exists.
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Proposition 5.9 (Monotonicity of S). For all R, R0 2 P(J ), R ✓ R0 ) S(R) ✓ S(R0).

Proof Sketch. The proof follows by case analysis on (D, t, s) 2 S(R). (for the complete proof
see Appendix A.3 on page 198).

We then define our subtyping relation to be the greatest fixed point of S, noted nS, and define
the validity of a subtyping judgement by the membership of its corresponding tuple in the
relation.

Definition 5.10 (Subtyping). D ` t  s , (D, t, s) 2 nS.

The relation thus defined enjoys the basic properties of weakening, substitution of type
variables, equivariance, narrowing and transitivity, essential to prove the type safety of any
underlying language and also the correctness of the subtyping algorithm. In general, these
kind of results are proved by somewhat involved inductions on derivations; in our setting,
due to the natural definition of subtyping as a greatest fixed point, we handle them by quite
standard coinductive proof techniques. Consider the weakening property in nS.

Lemma 5.11 (Weakening). For all D, D0 2 D, and all types t, s, d 2 Tl, if D, D0 ` t  s, X 62
Dom(D, D0), and D ` d ok then D, X  d, D0 ` t  s.

Proof Sketch. To prove that nS is closed under weakening we consider a set of tuples, W, built
by saturation of all possible weakenings of tuples in nS

W , {(D, X  d, D0; t; s) | (D, D0; t; s) 2 nS, X 62 Dom(D, D0) and D ` d ok}

By case analysis in the definition of S we prove W to be S-consistent, W ✓ S(W), and by
the coinduction principle we have that W ✓ nS. (for the complete proof see appendix A.3 on
page 199).

Now, consider transitivity in nS. Transitivity and narrowing are two interdependent prop-
erties, and so we must use a slightly different setting that combines both. This combination
of narrowing and transitivity already appears in the proofs of transitivity in second-order cal-
culus without recursive types. Now, due to the presence of equi-recursive types we have to
consider an even larger relation than usual, including the expected narrowing and transitivity
relations.

We start by defining the notion of narrowing on a typing environment, and then define the
closure of nS under narrowing.
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Definition 5.12 (Narrowing). For all D, D0 2 D, we have that D is narrower than D0 with relation to
R 2 P(J ), written D vR D0, where the relation vR is inductively defined by:

∆ vR∆
G, X  g vRG0, X  g0 if G vR G0 and (G0, g, g0) 2 R.

When a typing environment is narrowed more than once we write D vn
Ri i21..n G to denote the sequence

of related typing environments D vR1 G1 vR2 · · · vRn Gn and Gn = G.

Definition 5.13 (Closure of nS under narrowing). For all n 2 N we inductively define Nn by:

N0 , nS
Nn , {(D, t, s) | (G, t, s) 2 Nn�1 and D vNn�1 G}.

Proposition 5.14 (nS is closed under exchange). For all D, D0, D00 2 D and t, s, d 2 T , If (D, X 
d, D0, D00; t; s) 2 nS and X 62 FV(D0) then (D, D0, X  d, D00; t; s) 2 nS.

Proof Sketch. We use again the same coinductive technique this time based on the auxiliary set
P defined by:

P , {(∆, t, s)|(∆, t, s) 2 nS}
[ {(D, D0, X  d, D00; t; s) | (D, X  d, D0, D00; t; s) 2 nS and X 62 FV(D0)}.

Notice that nS ✓ P. All tuples in nS with empty environments are in P by the first case of the
definition, and the remaining tuples of nS are in P with D0 = ∆ in the second case.

We then prove that P is S-consistent by picking a tuple t 2 P and the corresponding tuple
t0 2 nS. We analyse all possible cases of t0 being supported in nS, and in all cases we reach the
conclusion that t 2 S(P). Thus, by the coinduction principle we conclude that P ✓ nS. (for the
complete proof see appendix A.3 on page 200).

We now define a new relation, larger than the closure of nS under transitivity and narrow-
ing, depicted by the derivation

...
Gn

0 ` t  a1
...

D ` t  a1
· · ·

...
Gn

n�1 ` an�1  s
...

D ` an�1  s
D ` t  s

where D ` t  a1 is the result of n narrowings of Gn
0 ` t  a1. The latter is supported

contractively in the relation, i.e. it is not the result of another explicit narrowing. The same is
true for D ` an�1  s and all the intermediate premises. The relation is thus defined by
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Definition 5.15 (Extended Transitive Closure of nS).

T , {(D, a0, an) | 9n2N.9a0..an2Tl
.8i21..n.(D, ai�1, ai) 2 Nn }

Notice that this relation includes the closure of nS under the standard formulation of transitiv-
ity (with n = 2) and also the closure under narrowing (with n = 1).

Lemma 5.16 (nS is closed under transitivity). T ✓ nS.

Proof Sketch. The proof is done by applying the coinduction principle, showing that T is S-
consistent, i.e. T ✓ S(T), and by the coinduction principle conclude that T ✓ nS. We use an
internal induction on the number of tuples of Nn that form a chain from a0 to an. There are
a certain number of cases where a chain of n tuples can be reconstructed in a chain of n � 1
tuples and the induction hypothesis applies. In the other cases we prove that this tuple is
in T by means of a different chain of tuples. The cases of interest are the ones involving the
transitive case for type variables (Sub TransVar) both in the base of the induction and in the
inductive case. In the proof, we write Ti to denote the subset of T containing only the tuples
supported by chains of size i.

Case: n = 1 and a0 = X (Sub TransVar)

This is the subcase of the induction base n = 1 where (D, X, a1) 2 T is supported by nar-
rowing by (G, X, a1) 2 nS with D vnS G and in turn by (G, G(X), a1) 2 nS. By definition of
N1 (Definition 5.12) we also know that (G, D(X), G(X)) 2 nS and therefore (D, D(X), G(X)),
(D, G(X), a1) 2 N1. Which means that, by definition of T, (D, D(X), a1) 2 T (in T2). Finally, by
the case (Sub TransVar) in the definition of S (Definition 5.8), we conclude that (D, X, a1) 2 S(T)
by (Sub TransVar).

This larger chain of tuples that supports the proof justifies the absence of an inductive so-
lution for the problem, only possible using coinductive proof techniques.

Subcase: n > 1 and a0 = X (Sub TransVar)

In the inductive case, by the definitions of Nn and nS we know that the tuple we are fo-
cusing on, (D, X, a1) 2 Nn, is supported by (Gn, X, a1) 2 nS which in turn is supported by
(Gn, Gn(X), a1) 2 nS, case (Sub TransVar). This implies by definition that (D, Gn(X), a1) 2 Nn.
Also, by definition of Nn (Definition 5.12), we know that there is a sequence of tuples support-
ing the narrowings of the first tuple:

(G1, D(X), G1(X)) 2 Nn�1, (G2, G1(X), G2(X)) 2 Nn�2, · · · , (Gn, Gn�1(X), Gn(X)) 2 N0.
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All these typing environments can all be narrowed to D preserving the relation between types.
Thus, by definition of Nn we conclude that there is a sequence of n tuples in Nn:

(D, D(X), G1(X)) 2 Nn, (D, G1(X), G2(X)) 2 Nn, · · · , (D, Gn�1(X), Gn(X)) 2 Nn.

Another chain of size n in Nn comprises the tuples starting with the bound of X to an:

(D, Gn(X), a1), (D, a1, a2), · · · , (D, an�1, an).

So, we conclude that (D, D(X), an) 2 T (in T2n) and therefore (D, X, an) 2 S(T). Again the
solution lies on a larger chain of tuples, which still belongs to the greatest fixed point of S.

We prove, in all cases, that T is S-consistent and therefore, by the coinduction principle, we
conclude that T ✓ nS. (for the complete proof see appendix A.3 on page 201).

Proposition 5.17 (Transitivity). For all D 2 D and t, d, s 2 Tl, If D ` t  d and D ` d  s then
D ` t  s.

Proof. This is a corollary of Lemma 5.16. If D ` t  d and D ` d  s then by Definition 5.10 we
know that (D, t, d), (D, d, s) 2 nS and therefore in N2. By definition of T (Definition 5.15) and
Lemma 5.16, we have (D, t, s) 2 nS and therefore D ` t  s.

Moreover, substitution of type variables in subtyping judgements is sound, and the sub-
typing relation is closed under name permutation. This is proven using the same coinductive
technique.

Lemma 5.18 (Substitution of type variables). For all D, D0 2 D, and t, s, d, d0 2 Tl, if D, X 
d, D0 ` t  s and D ` d0  d then we have D, D0[X d0] ` t[X d0]  s[X d0].

Proof Sketch. The proof follows a similar reasoning this time with the set

Q , nS [ {(D, D0[X d0]; t[X d0]; t0[X d0]) | (D, X  d0, D0; t; s), (D, d0, d) 2 nS}

which we use to prove that nS is closed under the substitution of type variables. (for the com-
plete proof see Appendix A.3 on page 204).

Lemma 5.19 (Equivariance). For all D 2 P(J ), t, s 2 Tl, if D ` t  s then D[X $ Y] ` t[X $
Y]  s[X $ Y].

Proof Sketch. This property is proven by means of weakening and substitution of type variables.
We transform the replacing of type variables [X $ Y] by a triplet of substitutions [X Z][Y 
X][Z Y] where Z is fresh.(for the complete proof see Appendix A.3 on page 205).
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So far we have defined and analysed a subtyping relation for kernel-Fun. The next sec-
tion presents an algorithm that checks whether a given subtyping judgement is in the relation
defined here.

5.2.2 Subtyping Algorithm

Decidability of the typing relation depends on the existence of an algorithm to determine the
type of an expression, or simply to check if a given typing judgement is valid or not. As ex-
pected, the subsumption rule, which usually uses the subtyping relation, cannot be used liter-
ally in the typing algorithm because we cannot deterministically choose the resulting supertype
from the input, the typing environment and the expression. The implementation of a typing
algorithm usually replaces the subsumption rule by subtyping verifications in other rules. The
subtyping relation is used only for testing the validity of judgements of the form D ` t  s.

In this context, we present and prove correct an algorithm for deciding the validity of a sub-
typing judgement with respect to the relation in Definition 5.10. The technique depicted here is
then used in the development of the typing algorithm for the component language presented
in the next chapter. Our algorithm closely follows existing algorithms for first-order equirecur-
sive types [6, 19, 48]. Briefly, these algorithms progress by computing, given a pair of types
to be checked for subsumption, a consistent set of pairs that includes it. By the coinduction
principle, all the pairs in the set belong to the greatest fixed point. The consistent set is built by
saturating the current approximation through backward rule application, and accumulating all
supporting pairs of types, until a terminal case, corresponding to the application of an axiom,
is found, or an already visited pair is encountered and a cycle is established in the derivation.
This corresponds to an unfolding step where both types agree.

In line with our definition, we naturally extend those approaches by building on the gener-
ating function in Definition 5.8 and defining a membership check procedure for a tuple t 2 J
in the subtyping relation nS. To maintain the binding occurrences of type variables our al-
gorithm manipulates entire judgements instead of pairs of types; this turns out to lead to a
remarkably simple way of dealing with type variables. Notice that environments grow as a
result of comparing polymorphic types, and, due to a-equivalence, the greatest fixed point nS
is closed under renaming (Lemma 5.19). Moreover, we prove that, in our setting, the number
of tuples reachable from a given starting tuple are finite up to such renaming and pruning of
useless variables (Lemma 5.33). Therefore, our algorithm checks for membership of a tuple in
the current approximation modulo a similarity relation on tuples that includes renaming. This
allows us to detect cycles at the level of equivalence classes based on similarity, instead of ex-
pecting the exact tuple to reappear in the successive approximations. We define similarity of
tuples as follows:
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(D, t, s) ' (D0, t0, s0)

(G, t, s) (G0, t0, s0)

substitution
r

equivariance

weakening

Figure 5.3: Closure of nS under similarity.

Definition 5.20 (Similarity). Similarity is the binary relation ' on J defined by: (D, t, s) '
(D0, t0, s0), if there are two typing environments G ✓ D and G0 ✓ D0 with G ` t ok, G ` s ok,
and G0 ` t0 ok, G0 ` s0 ok, and a bijection r : Dom(G) ! Dom(G0) such that r(G) = G0, r(t) = t0,
r(s) = s0.

In the sequel, and in particular when defining the subtyping algorithm, we will use the follow-
ing abbreviation t 2' A , 9u 2 A.t ' u. Notice that similarity is decidable, it can be checked
by matching the structure of types, modulo bijective renaming of their free type variables, re-
cursively checking if the corresponding bounds are similar. All unused variables are discarded
from this comparison as they are not included in the minimal common typing environment
supporting the similarity relation.

Example 5.21. For instance, consider the tuples

t = (X  t ! t, Y  X ; µZ.X ! Z ; X)
t0 = (Z  t ! t ; µX.Z ! X ; Z)

We know that t ' t0 because there is a G = X  t ! t, G0 = Z  t ! t and r = [X $ Z]
such that r(G) = G0, r(µZ.X ! Z) = µX.Z ! X and r(X) = Z.

Nevertheless, this can be mechanically determined by inspecting the structure of types and
maintaining a name correspondence between the two tuples. In this case the comparison of
µZ.X ! Z and µX.Z ! X leads directly to the bijection [X $ Z] as X and Z are free vari-
ables in corresponding places. X and Z have similar bounds, in this case equivalent, and they
agree on the second type of the tuple. Notice that Y is redundant in t and is ignored by this
mechanical verification.

Another important fact about the subtyping relation is that nS is closed under similarity.
This allows us to see the subtyping relation as a set of equivalence classes on tuples.

Definition 5.22 (Closure under similarity). For any R 2 P(J ) we define the closure of R under
similarity, noted R⇤, by R⇤ , {t0 | t 2 R and t0 ' t}.

As an abbreviation, given a tuple t 2 J we write t⇤ for {t}⇤.
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Subtyping(A, (D, t, s)) =
if (D, t, s) 2' A then A
else let A0 = A [ {(D, t, s)} in

if t ⌘ s then A
else if s ⌘ > then A
else if t ⌘ t0 ! t00 and s ⌘ s0 ! s00 then

let A1 = Subtyping(A0, (D, t00, s00)) in Subtyping(A1, (D, s0, t0))
else if t ⌘ X then Subtyping(A0, (D, D(X), s))
else if t ⌘ 8Xd t0 and s ⌘ 8Xd s0 then Subtyping(A0, (D, X  d; t0; s0))
else if t ⌘ µX.t0 then Subtyping(A0, (D, t0[X t], s))
else if s ⌘ µX.s0 then Subtyping(A0, (D, t, s0[X s]))
else fail

Figure 5.4: Subtyping algorithm.

Lemma 5.23 (nS is closed under similarity). nS⇤ = nS.

Proof. By reflexivity of similarity we know that nS ✓ nS⇤. We prove that the opposite is also
true based on existing properties of the subtyping relation that relate similar tuples in the way
depicted in Figure 5.3. For any tuple t0 2 nS⇤, we want to show that t0 2 nS. By Definition 5.22,
we have a t 2 nS such that t0 ' t. Let t = (D, t, s) and t0 = (D0, t0, s0). By Definition 5.20 there
are G and G0 such that G ` t ok, G ` s ok, G0 ` t0 ok, and G0 ` s0 ok. There is also a bijection
r : Dom(G) ! Dom(G0) such that r(G) = G0, r(t) = t0, and r(s) = s0. By applying the
substitution lemma (Lemma 5.18) on t, to replace each variable X 2 Dom(D\G) in t by its bound
D(X). Since such type variables do not occur in G, t and s, we conclude that (G, t, s) 2 nS. By
equivariance (Lemma 5.19), we conclude that (G0, t0, s0) 2 nS. By weakening (Proposition 5.11)
we conclude that t0 2 nS. Hence nS⇤ ✓ nS.

We now have the necessary ingredients to define our algorithm. The procedure Subtyping
defined next, when called with an empty set of assumptions (tuples) and a tuple (D, t, s),
Subtyping(∆, (D, t, s)), corresponds to checking the judgement D ` t  s. The result of this
procedure is a consistent set of tuples that support the initial argument and by the coinduc-
tion principle it implies its inclusion in the greatest fixed point. In the event of failure, the
judgement is not valid.

Definition 5.24 (Subtyping algorithm). Subtyping(A, (D, t, s)) is defined by the procedure de-
scribed in Figure 5.4.

Notice that the terminal cases of the algorithm correspond either to a self-supported case
of the relation, (Sub Equal) and (Sub Top), to a cycle detection by repetition of a tuple in A, or
to a mismatch of the type shapes (the alternative to all other cases). In the latter, the result f ail



126 CHAPTER 5. RECURSION AND POLYMORPHISM

automatically propagates through the entire call stack like an exception being raised at that
point. The remaining cases recur on the structure of types and in a larger set of tuples, A0,
where (D, t, s) is included. Thus, if, due to some recursive type, (D, t, s) is encountered again
in the derivation, the membership test (D, t, s) 2' A succeeds and that particular branch of
the algorithm succeeds.

Remark 5.25. Notice that, with relation to the standard first-order subtyping algorithm of
[48, 78], the fundamental differences are concentrated on the domain of the function, which
includes the context of type variables, and particularly on the halting condition, which works
modulo the similarity relation defined in Definition 5.20. This allows for a better intuitive un-
derstanding about the obtained result and it provides a better technical support for proving its
correctness.

Next, we prove that the subtyping algorithm yields correct results. We start by showing
that the algorithm terminates on all inputs and, that upon termination the result is correct. We
show that the search space of the algorithm, comprising all tuples reachable from the initial
argument, is finite modulo the similarity relation presented above. To characterise such search
space we first introduce some notions about subexpressions, type variable scoping and reach-
ability.

Definition 5.26 (Subexpression). Subexpression is the binary relation on types, written t � s,
inductively defined as follows:

t[X µX.t]� µX.t
t� t ! s

s� t ! s

d� 8Xd t

t[X Y]� 8Xd t (with Y a fresh variable)
t � s0 and s0 � s (for some type s0).

Definition 5.27 (Reachability). Reachability is the binary relation on J , noted t >> t0, inductively
defined by:

1. (D, t, s) >> (D, t, s)
2. if (D, t, s) >> (D0, X, s0) then (D, t, s) >> (D0, D0(X), s0)
3. if (D, t, s) >> (D0, 8Xd t; 8Xd t0) then (D, t, s) >> (D0, X  d; t; t0)
4. if (D, t, s) >> (D0; t; µX.s) then (D, t, s) >> (D0; t; s[X µX.s])
5. if (D, t, s) >> (D0; µX.t; s) then (D, t, s) >> (D0; t[X µX.t]; s)
6. if (D, t, s) >> (D0; t0 ! t00; s0 ! s00)

then (D, t, s) >> (D0; s0; t0) and (D, t, s) >> (D0; t00; s00)

For any t 2 J we use the abbreviation Reach(t) , {t0 | t >> t0}.
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Lemma 5.28. If t0 2 Reach(t) then all types occurring in t0 are subexpressions of types occurring in t.

Proof. By induction on the notion of Reachability.

1. If t0 = t then t >> t0.

2. If t >> (D0, X, s0) then by induction hypothesis, (D0, X, s0) contains only subexpressions
of the types occurring in t. Since D(X) is a type expression occurring in t we conclude
that all types occurring in (D, D(X), s0) are subexpressions of types occurring in t.

3. If t >> t00 with t00 = (D0, 8Xd t; 8Xd t0), by induction hypothesis t00 contains only
subexpressions of the types occurring in t. By Definition 5.26 the types occurring in
(D0, X  d; t; t0) are subexpressions of the types occurring in t00 and hence, by transi-
tivity, in t.

4. If t >> t00 with t00 = (D0; t; µX.s) then by induction hypothesis t00 contains only subex-
pressions of t. By Definition 5.26 the types contained in (D0; t; s[X µX.s]) are subex-
pressions of the types occurring in t00, and hence, by transitivity, in t.

5. If t >> t00 with t00 = (D0; µX.t; s) the reasoning is similar to the case 4.

6. If t >> t00, and t00 = (D0; t ! s; t0 ! s0) then by induction hypothesis it contains only
subexpressions of types in t. By Definition 5.26 the types in (D0; t0; t) and (D0; s; s0) are
subexpressions of the types in occurring in t00 and by transitivity in t.

Definition 5.29 (Variable chain). We define a chain for a type variable X0 in t to be the sequence
of occurrences of type variables X0, X1, . . . , Xn in the type t such that t can be expressed in the form

t = C0[8X0d0 C1[8X1d1 C2[8X2d2 . . .]]]

where for any i � 0, Xi may occur in any dj with j > i, and where Ci[. . .] are syntactical type contexts.

Intuitively, a variable chain is a sequence of type variables, each one occurring in the bound
of the next one. Note that each type variable in a type may have multiple variable chains, i.e.
several different ways of writing the type according to the definition. Hereafter, when referring
to variable chains in a subtyping judgement D ` t  s, the type variables in D are implicitly
quantified over the type expressions t and s. We write 8Dt to denote the type expression
obtained by quantifying all variables of D over the type expression t. This notation makes the
notion of variable chain uniform both in types and tuples and establishes a common ground
to reason about the possible evolutions of the algorithm. We now define some properties on
variable chains:
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Definition 5.30 (Maximal chain). Let t 2 Tl, we define ktk to be the length of any maximal chain in
t. For a tuple t 2 J , we let ktk, max(k8Dtk, k8Dsk) where t = (D, t, s).

This notion of length of maximal chains establishes a measure that allows for the analysis of
the length of all the chains that appear in a run of the algorithm. The next lemma is particularly
useful to ensure this property.

Lemma 5.31 (Preservation of maximal length). For all t, s, X 2 Tl, ks[X t]k max(ksk, ktk).

Proof. Consider a maximal chain of s[X t]. There are three possible ways of characterising
this chain. It is either an original chain of s, an original chain of t, or it is a chain that starts
with a variable of s and at some point switches to a variable of t or vice-versa. The two first
cases immediately lead to the conclusion. In the third case, it must be the case that a variable
declared in s is in a bound of t, or vice-versa. This is impossible because the scope of such
variables is a subexpression of s and the type variable substitution avoids the capture of local
variables.

Finally, we enunciate a lemma that limits the length of a maximal chain within the progress
of the algorithm.

Lemma 5.32. For all t, t0 2 J , if t >> t0 then kt0kktk.

Proof. By induction on the notion of Reachability.

1. If t0 = t then kt0k=ktk.

2. If t >> (D0, X, s0) then by induction hypothesis k (D0, X, s0)kk tk. Now, we have two
possibilities to locate a maximal chain in t0 = (D0, D0(X), s0): it can be in 8D0D

0(X), in 8D0s
0

which are also chains of D0. In all cases kt0kktk.

3. If t >> t00 with t00 = (D0; 8Xd t; 8Xd t0), then by the induction hypothesis kt00kktk. In
this case there are two possibilities for the maximal chains of t0 = (D0, X  d; t; t0): either
a maximal chain involves X and by Definition 5.29 the contribution of X and its bound
to the length of a maximal chain is the same, or no maximal chain involves X and the
maximal chain in 8D0,Xdt and 8D0,Xdt0 is the same. In both cases the maximal chains
have the same length, so kt0kktk.

4. If t >> t00 with t00 = (D0; t; µX.s) then by induction hypothesis kt00kktk. Now, consider
t0 = (D0; t; s[X µX.s]). If all maximal chains of t00 are in D0 and t, then all maximal
chains of t0 are also in D0 and t and kt0kktk. If, on the other hand, one maximal chain is
in D0 and µX.s then we have by Lemma 5.31, ks[X µX.s]k max(ksk, kµX.sk). Hence
kt0kktk.
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5. The case where t >> t00 with t00 = (D0; µX.t; s) is similar to 4.

6. If t >> t00, t00 = (D0; t ! s; t0 ! s0) then by induction hypothesis we have that kt00kktk.
Now, the maximal chains of the tuples t00 = (D0; t0; t) and t01 = (D0; s; s0) are either maxi-
mal in t00 and the length of the maximal chain is the same, or they are not and its maximal
chains are smaller. Hence kt00kktk and kt01kktk.

Given these intermediate results, we now prove that, modulo similarity, the number of
reachable tuples is finite for all inputs.

Lemma 5.33. For any t 2 J , Reach(t)/' is finite.

Proof. Let t , (D, t, s) and for the sake of getting a contradiction, suppose that Reach(t)/' is
infinite. Then there is an infinite sequence of non-similar tuples t0, t1, t2, . . . reachable from t
where ti = (D, ti, si). By Lemma 5.28 all types occurring in tuples reachable from t are subex-
pressions of the types occurring in t according to Definition 5.26. By Lemma 5.32 we also know
that all tuples have maximal chains with a length smaller than the length of a maximal chain
of t.

So, using the similarity relation, we can define an infinite sequence t00, t01, t02, . . . of non-
similar tuples where t0i ' ti and whose environments only contain the initial variables in D

and the variables necessary to support the free variables of ti and si. However, the number of
subexpressions of t and s is finite up to renaming of type variables, and the number of chains
in the typing environment in any t0i is bounded by the number of free variables in ti and si

and, by Lemma 5.32, their length is bounded by the maximal chain of t. In these conditions
it is obvious that the number of tuples that can be defined from D, a limited number of type
variables, and a limited number of type expressions is finite up to renaming of type variables.
Since each one of the tuples t0i is similar to a different tuple in the set of all possible tuples (oth-
erwise they would be similar by transitivity) we reach a contradiction. Hence, Reach(t)/' must
be finite.

In this finite search space, and by observing the algorithm, we can immediately conclude
that it must terminate, since it does not repeat the computation for two similar tuples. This is
formally stated in the following theorem:

Theorem 5.34 (Termination). For all sets of tuples A 2 P(J ), and tuples t 2 J , Subtyping(A, t)
terminates.
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Proof. We prove that the Subtyping(A, t) terminates on all inputs by induction on a customly
defined measure. We assign to each subsidiary call Subtyping(A0, t0) of the subtyping algo-
rithm a measure given by

|Subtyping(A0, t0)| , #Reach(t)/' � #(A0/')

for all A0 and t0 such that t >> t0. The measure gives the number of equivalence classes in
Reach(t)/' that were not yet visited by the algorithm.

When |Subtyping(A0, t0)| = 0 then there is t00 2 A0 with t00 ' t0. t00 acts as a representative
for that equivalence class modulo similarity of t0. So, the algorithm terminates returning A0.

For the inductive case we have |Subtyping(A0, t0)| > 0. There are two possible cases: ei-
ther t0 2' A and the algorithm terminates with A0, or t0 62' A. In this case, we can see that
|Subtyping(A0, t0)| > |Subtyping(A0 [ {t0}, u)| for any u such that t >> u. Therefore, by the
induction hypothesis all recursive calls of the subtyping algorithm terminate, and so the initial
call also terminates.

It is important to remark that the finite reachability property of Lemma 5.33 holds both for
kernel-Fun and F> . From the proof we can also see why the same result cannot be extended to
F. Notice that by using the rule for quantified types in F,

D ` d0  d D, X  d0 ` t  t0

D ` 8Xd t  8Xd0 t0

the variable chains containing variables from d, X and continuing in t are altered in the premises
to start in d0. This may cause larger variable chains to appear in reachable tuples and therefore
cause a divergence of the algorithm.

Now, to prove that our algorithm is sound and complete, it is technically convenient to fol-
low the approach of [48] and introduce a function gfp that characterises nS in a form both suit-
able for the correctness proofs and for establishing the correspondence between the algorithm
and the extensional definition of the subtyping relation. Moreover, unlike the analogous notion
in [48], instead of accumulating tuples, our gfp function works with '-equivalence classes.

Definition 5.35 (Support). support(t) denotes the minimal set G 2 P(J ) such that t 2 S(G).
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Definition 5.36 (gfp). Let gfp be the partial function P(J )⇥ J ! P(J ) defined by:

gfp(A, t) = if t⇤ ✓ A then A
else if support(t) is undefined then undefined
else let {t1, . . . , tn} = support(t) in

let A0 = A [ t⇤ in

let A1 = gfp(A0, t1) in

. . .
let An = gfp(An�1, tn) in An.

Lemma 5.37. For all t 2 J , if t 2 nS then support(t) ✓ nS.

Proof. Since the greatest fixed point of S is the union of all consistent sets (Tarski’s theorem), if
t 2 nS then there is a set G 2 P(J ) such that t 2 G and G ✓ S(G). By Definition 5.35, this
implies that support(t) ✓ G which implies that support(t) ✓ nS.

The next lemma states that gfp correctly characterises the subtyping relation.

Lemma 5.38 (Correctness of gfp). For all t 2 J , and A 2 P(J ),

1. if gfp(∆, t) = A then t 2 nS.

2. if gfp(∆, t) is undefined then t 62 nS.

Proof. To prove the first part of the lemma we prove an auxiliary result by induction on the
definition of gfp. For all A, A0 2 P(J ), and t 2 J :

If A⇤ ✓ A and gfp(A, t) = A0 then A ✓ A0, A0⇤ ✓ A0, t⇤ ✓ A0, and A0 ✓ S(A0) [ A

Remember that A⇤ is the closure of A under similarity and that A⇤ ✓ A means that A is closed
under similarity.

The induction base is when t⇤ ✓ A, we have that gfp yields A0 = A and all the conclusions
result directly from the assumptions, and thus A0⇤ ✓ A0, t⇤ ✓ A0, and A0 ✓ S(A0) [ A.

In the inductive case we know that t⇤ and A are disjoint and {t1, . . . , tn} = support(t).
Notice that A is closed under similarity and therefore t⇤ 6✓ A implies that t⇤ \ A = ∆. By
applying the induction hypothesis to the recursive function calls:

gfp(A0, t1
⇤) = A1

gfp(A1, t2
⇤) = A2

. . .
gfp(An�1, tn

⇤) = An
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we conclude in sequence that

A0 ✓ A1, t1
⇤ ✓ A1 and A1 ✓ S(A1) [ A0,

A1 ✓ A2, t2
⇤ ✓ A2 and A2 ✓ S(A2) [ A1,

. . .
An�1 ✓ An, tn

⇤ ✓ An and An ✓ S(An) [ An�1.

and hence we obtain An ✓ S(An) [ S(An�1) [ . . . [ A0. By monotonicity of S, we have that
An ✓ S(An) [ A [ {t}. As we know that t1

⇤ [ t2
⇤ [ . . . [ tn

⇤ ✓ An and that An
⇤ ✓ An then we

conclude that for all t0 2 t⇤ there is a set of tuples t0i 2 ti
⇤ i21..n such that t⇤ ✓ S(An) and hence

An ✓ S(An) [ A. Now, with A = ∆ we conclude that t⇤ ✓ A0, t 2 A0, and A0 ✓ S(A0). By the
coinduction principle this implies that t 2 nS.

The second part of the lemma follows from another auxiliary property:
For all A 2 P(J ) and t 2 J , if gfp(A, t⇤) is undefined then t⇤ and nS are disjoint.

and to prove it we analyse the two possible reasons for gfp(A, t⇤) to be undefined:

Case: support(t) is undefined

For the sake of contradiction lets suppose that t 2 nS. By Lemma 5.37, support(t) ✓ nS which is
a contradiction. So indeed we have t 62 nS. Since, by Lemma 5.23, nS is closed under similarity
we have that t⇤ and nS must be disjoint.

Case: support(t) = {t1, . . . , tn}

and there is a least j such that gfp(Aj�1, tj) is undefined. By the induction hypothesis, we
have tj

⇤ and nS are disjoint. By Lemma 5.37, if t 2 nS then support(t) ✓ nS which is again a
contradiction, since support(t) \ tj

⇤ 6= ∆.

Knowing that gfp correctly checks if any tuple belongs to the subtyping relation nS, we now
prove that the results of gfp and Subtyping are equivalent. Since the algorithm terminates on
all inputs (Theorem 5.34), we show as a consequence that the algorithm is sound and complete
with relation to the subtyping relation.

Lemma 5.39 (Correctness of Subtyping). For all t 2 J , A 2 P(J ), and A0 2 P(J ),

1. Subtyping(A, t) = A0 if and only if gfp(A⇤, t) = A0⇤.

2. Subtyping(A, t) = f ail if and only if gfp(A⇤, t) is undefined.

Proof. We divide the first case of the proof in the two directions of the equivalence. We prove
the “only if” part of the lemma by induction on the recursive calls of Subtyping and in the cases
of the algorithm.

Case: t 2' A
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In this case we have that A0 = A and t⇤ ✓ A⇤. Hence gfp(A⇤, t) = A⇤ with A0⇤ = A⇤.

Case: t matches a case of Subtyping

Then we know that support(t) is defined and by inspection we conclude that all recursive calls
of Subtyping correspond to the sequence of calls in gfp for the tuples in the support of t. Note
that A0 = An. By applying the induction hypothesis to each recursive call of Subtyping we
conclude that each gfp(Ai�1

⇤, ti) = Ai
⇤ with A0 = A⇤ [ t⇤. Therefore gfp(A⇤, t) = A0⇤ with

A0⇤ = An
⇤.

In the other direction, the “if” part of the lemma is proven by Lemma 5.34 and the second
case of the lemma. As Subtyping terminates on all inputs and so, if gfp(A⇤, t) = A0, which (by
2) implies that there should be a A00 such that Subtyping(A⇤, t) = A00 and by 1, A00 = A0.

The second part of the lemma (2), is again proven in two steps. The “only if” implication is
proven by induction on the recursive calls of the Subtyping algorithm and in the two possible
cases for failure of Subtyping(A, t).

Case: t does not match any expected type shape

If Subtyping fails because t does not match any of the cases of the algorithm then support(t) is
undefined for that tuple. Hence gfp(A⇤, t) is also undefined.

Case: A recursive call fails

If on the other hand, a recursive call of Subtyping fails, by induction hypothesis we know that
the corresponding recursive call to gfp is undefined. Therefore gfp(A⇤, t) is undefined.

To complete the proof we show the other direction of the lemma. If gfp(A⇤, t) is undefined
then Subtyping(A, t) = fail. If gfp(A⇤, t) is undefined then there is no A0 such that gfp(A⇤, t) =
A0 then (by part 1) there is no A0 such that Subtyping(A, t) = A0. Since Subtyping always
terminates, we must have Subtyping(A, t) = f ail.

We use gfp as an intermediate definition. By Lemma 5.38 we prove that gfp corresponds to
our subtyping relation and in Lemma 5.39 we prove that its values correspond to the results
of our algorithm with the same arguments. By transitivity we have the correctness of our
subtyping algorithm as stated in the following theorem:

Theorem 5.40 (Correctness of Subtyping). For all D 2 D, and t, s 2 T ,

1. Subtyping(∆, (D, t, s)) = A if and only if D ` t  s

2. Subtyping(∆, (D, t, s)) = f ail if and only if D 6` t  s

Proof. Both cases of the theorem follow immediately from Lemmas 5.38 and 5.39. For the first
case we have that Subtyping(∆, (D, t, s)) = A if and only if gfp(∆, (D, t, s)) = A⇤, Lemma 5.39,
and therefore, (D, t, s) 2 nS, Lemma 5.38, which means that D ` t  s, Definition 5.10.
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For the second, we know that Subtyping(∆, (D, t, s)) = f ail if and only if gfp(∆, (D, t, s)) =
f ail, Lemma 5.39, and therefore, (D, t, s) 62 nS, Lemma 5.38, which means that D 6` t  s,
Definition 5.10.

This concludes our presentation of the subtyping algorithm for the relation of Definition 5.10.
The subtyping relation is defined coinductively from a set of structural comparison rules to
compare the natural interpretation of recursive types as infinite regular trees. This algorithm
can be applied to any subtyping relation for second-order equi-recursive types where we can
define a similarity relation such that the set of reachable tuples is finite modulo similarity.

The results presented in this section are used in the next chapter to present a new type sys-
tem for our component language with subtyping, recursive types and bounded polymorphism.

5.3 Remarks

The work presented in this chapter evolved over a couple of years in parallel with the devel-
opment of the type system for our component language. Early developments were done in the
context of the type system for the component language. By then, the structure of the compo-
nent types seem to lead to a decidable subtyping relation even with a F subtyping discipline
for polymorphic component types. That revealed to be untrue as we manage to encode the
divergent cases of F in our component language. The good side of this setback was that our
syntactic impositions on type structure for components were not, after all, limiting its expres-
siveness.

As a result of studying coinductive subtyping definitions for first-order recursive types, and
also the complex approach of Colazzo and Ghelli to second-order types with equi-recursive
types [30, 31], we devised a much simpler approach for solving the problem for the F> subtyp-
ing discipline, that also applies to the kernel-Fun style.

We then tried to streamline our results and isolate the initial results outside the context of
the component language, which we managed to do in [87]. It focuses on a small class-based
language with equi-recursive types and bounded quantification.

In that paper we also presented a composition mechanism for classes inspired in our com-
ponent language that avoids the major type related problems of inheritance-based languages.
This may lead to future results on the area of object-oriented languages.

The process of writing the final version of [87] and later this chapter lead to a cleaner ver-
sion of the definition of subtyping relation and algorithm, this time for the pure kernel-Fun
language.

Notice that the results obtained in this chapter depend on Lemma 5.33 and hence apply also
to other subtyping disciplines that have a finite search-space modulo the similarity relation. It
is clear that in the case of F, Lemma 5.32 does not hold, and this pinpoints the source of F
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undecidability found by Pierce and Ghelli. If we analyse the algorithm in terms of variable
chains we see that the chains of a variable may be changed in the course of a derivation which
may cause for an increase on the length of the maximal chain of a judgement. However, this
property applies to subtyping disciplines that fit well with the object-oriented style. One of this
proposals is F> , which contra-variantly relates the bounds of quantified types but leaves the
variables unbounded when relating quantified expressions. In this case the variables on one
side only relate by reflexivity with the variables on the other side of the relation. Another vari-
ant comes from noticing that in usual class-based languages, object types are usually extended
by adding more methods to it rather than refining their signatures. A subtyping relation that
relates the bounds of type parameters in a width-only subtyping discipline, thus not allowing
for the variable chains to change, again fits the necessary conditions to define a correct subtyp-
ing algorithm.

5.4 Related Work

Our work relates, by extension to second-order systems, with the work on subtyping first-order
type systems with recursive types of Amadio and Cardelli [6], Brandt and Henglein [19], and
Gapeyev et al. [48, 78].

On second-order systems with recursive types, our work closely relates with two other ap-
proaches, the one by Colazzo and Ghelli [30, 31] and another by Alan Jeffrey [60]. The pioneer
work of Colazzo and Ghelli presents an approach to the problem which is a specific coinduc-
tive interpretation of an inductive rule set (similar to the one in Figure 5.1). They extend the
initial algorithm of [6] which tracks the pairs of types which are found by the algorithm along
the structure of types, and show that the simple extension of this algorithm to second-order
systems is not correct due to the introduction of new variable declarations in quantified types.
They prove that, in their derivation system, the third time a pair is visited effectively corre-
sponds to a cycle in the derivation and therefore, by coinduction, correspond to a successful
derivation. Unlike them, we explicitly rename variables when analysing quantified types and
therefore avoid positively matching variables that are different. We keep the variable’s context
in the judgement and by defining a similarity relation on judgements we take the whole context
into account, and abstract from variable names.

Colazzo presents two examples where simpler algorithms either diverge or yield wrong re-
sults. The first case diverges when regular a-renaming of variables on quantifiers is used and
when the algorithm stops when a pair of types is revisited. Our algorithm stops the first time
the judgement repeats itself (modulo similarity). We present here an abbreviation of the deriva-
tion produced by an ML implementation of our algorithm [82], which shows the intermediate
and terminal cases that match modulo similarity. Given the following types:
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U = µw1.8w2.µx.8t.(?⇥ µz.8w3.µw4.8w5.(((?⇥ t)⇥ x)⇥ z))
T = µy.8u.µk.8w6.(((u⇥>)⇥ k)⇥ y)

The derivation is as follows:
1. ` U  T
. . .
4. v0  > ` µx.8t.(?⇥ µz.8w3.µw4.8w5.(((?⇥ t)⇥ x)⇥ z))  µk.8w6.(((v0 ⇥>)⇥ k)⇥ T)
. . .
10. v1  >, . . . ` µz.8w3.µw4.8w5.(((?⇥ v1)⇥ µx.8t.(?⇥ µz.8w3.µw4.8w5.(((?⇥ t)⇥ x)⇥ z)))⇥ z)  T
. . .
23. . . . , v2 >, . . . ` µx.8t.(?⇥ µz.8w3.µw4.8w5.(((?⇥ t)⇥ x)⇥ z))  µk.8w6.(((v2 ⇥>)⇥ k)⇥ T)
24. . . . , v1 >, . . . ` µz.8w3.µw4.8w5.(((?⇥ v1)⇥ µx.8t.(?⇥ µz.8w3.µw4.8w5.(((?⇥ t)⇥ x)⇥ z)))⇥ z)  T

Notice that the subtyping of quantified types introduces fresh variables represented by v0,
v1, etc, and although v0 and v2 represent different variables, the judgements in steps 4 and 23
match and terminate two derivation branches. Apart from the extra variables in the environ-
ment steps 10 and 24 are equal. Without the similarity relation on judgements, the derivation
that would follow step 23 would diverge.

In the second case, an algorithm based on similarity is shown to be unsound. Hereafter, we
show a correct derivation by our algorithm. Consider the following types:

U = µz.8t.µx.(x⇥ (t⇥ z))
T = 8u.µy.((>⇥ (u⇥ 8v.y))⇥>)

Then, the derivation of the subtyping judgement is as follows:

U = µz.8t.µx.(x⇥ (t⇥ z))
T = 8u.µy.((>⇥ (u⇥ 8v.y))⇥>)

` U  T
1. ` 8t.µx.(x⇥ (t⇥U))  8u.µy.((>⇥ (u⇥ 8v.y))⇥>)
2. v0  > ` µx.(x⇥ (v0 ⇥U))  µy.((>⇥ (v0 ⇥ 8v.y))⇥>)
3. v0  > ` (µx.(x⇥ (v0 ⇥U))⇥ (v0 ⇥U))  µy.((>⇥ (v0 ⇥ 8v.y))⇥>)
4. v0  > ` (µx.(x⇥ (v0 ⇥U))⇥ (v0 ⇥U))  ((>⇥ (v0 ⇥ 8v.µy.((>⇥ (v0 ⇥ 8v.y))⇥>)))⇥>)
. . .
15. v1  >, v0  > ` (µx.(x⇥ (v1 ⇥U))⇥ (v1 ⇥U))  ((>⇥ (v0 ⇥ 8v.µy.((>⇥ (v0 ⇥ 8v.y))⇥>)))⇥>)
. . .
20. v1  >, v0  > ` v1  v0

21. v1  >, v0  > ` >  v0

f ail

Notice that, in steps 4. and 15., although we may consider that the types involved are similar,
the usage of v0 and v1 differ in the two judgements, hence the two judgements are not in the
similarity relation. What separates our approach from the one of Colazzo and Ghelli is the fact
that we do not keep the visited pairs “in” the judgement, with the consequent difficulties when
maintaining and comparing type variables, but instead compare the types together with the
contexts of the type variables (modulo syntactic equivalence).
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Alan Jeffrey presents a partially correct algorithm for the F subtyping relation with equi-
recursive types [60] which is shown to be correct in the case of kernel-Fun. The algorithm is
based on an encoding of types in labelled transition systems and subtyping is mapped into
a simulation up to a special substitution definition. It decides, given a pair of types and an
environment, if such a simulation exists. The algorithm proceeds in a breadth-first manner
by gradually building a simulation between the two types modulo silent transitions, which
correspond to the unfolding of recursive types.

On the other hand, we present a simple syntax-based algorithm that uniformly extends
standard approaches for first-class systems and uses a simple similarity relation on judgements
whose implementation is straightforward.

An efficient algorithm to unify two recursive second-order types was proposed by Gauthier
and Pottier in [50]. It relies on an encoding of second-order type expressions into first-order
trees, and on the application of standard first-order unification algorithms for infinite trees. We
have no perspective on how this may be adapted to the subtyping problem.
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Chapter 6

Polymorphic Components and
Recursive Types

The component-based programming model that we have presented in the preceding chapters
has been defined in a succession of core programming languages where dynamic composition
and reconfiguration of objects is combined with the free manipulation of first-class components
and configuration scripts.

In this chapter, we bring our model to a more finished design by combining the language
mechanisms that express dynamic composition and reconfiguration of objects with standard
notions of polymorphism and type recursion. The notion of subtyping (subsumption of val-
ues) defines a notion of inclusion polymorphism allowing the safe substitution of values with
different sorts in statically typed contexts. In this case we define a subtyping relation on com-
ponent types based on the declared required and provided services. Bounded quantification
of type variables, combining parametric polymorphism with subtyping, forms a polymorphic
mechanism specially suitable for object-oriented languages. Since the subsumption relation
on objects usually leads to partial views of their interfaces, bounded quantification, allows for
the construction of software pieces that can (partially) interact with abstractly typed values
in a type safe manner. Bounded quantification has been recognised as such even in the most
pragmatic and widely known main-stream languages like C] [61] and Java [59]. Finally, type
recursion turns out to be essential in any object-oriented language to represent operations and
relations between objects of the same sort.

In this chapter we define the programming language lc by extension of the programming
language lr, presented in Chapter 4, with subtyping, parametric polymorphism, and recur-
sive types. We define a structural subtyping relation on the types of lc and show how the
general results obtained in Chapter 5 about the subtyping of second-order recursive types can
be used to support subtyping, polymorphism, and type recursion in a more complex setting

139
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such as our component-based programming language. We show that the typing problem of
our component-based language is decidable by presenting a typing algorithm and a subtyp-
ing algorithm. We prove that our typing algorithm is sound and complete by showing that it
enjoys the property of minimal-typing.

This chapter is therefore organised as follows: In section 6.1 we discuss the design of the
subtyping relation on component types. We then defined the language lc , in Section 6.2, by
extending the programming language lr with the basic mechanisms just described and prov-
ing type safety for lc . Section 6.3 defines correct typing and subtyping algorithms and shows
that the typing problem is decidable.

We then present a draft idea of a rich subtyping relation for configurators and discuss some
of the ideas introduced. We discuss, in Section 6.6, the implementation of a prototype compiler
of componentJ, a programming language inspired in the concepts of lc and targeting the Java
platform. In closing, we discuss some of the issues involving the integration of the different
parts of the programming model.

6.1 Subtyping Based on Services

Until this point, we have not yet defined, for the component language, any equivalence relation
on types. Hence, types are only related by an implicit equivalence relation which has been kept
at the syntactic level. By defining a subtyping relation on types, based on the semantics of the
values rather than the syntax of types [69, 27], we define a more flexible typing relation by
extending the set of values accepted in a number of situations.

It is common for object-oriented language designers to adopt name-based subtyping rela-
tions which are naturally associated to the inheritance mechanism, even in research languages,
e.g. FJ [59]. However, the use of late binding, dynamic loading, and mobile code, which mo-
tivated our work on structural subtyping in Chapter 5, suggests that some kind of structural
subtyping is essential to ensure low-level compatibility between separately developed compo-
nents in a wide scale environment.

Hence, we define on top of a standard subtyping relation for the base language (lR) a struc-
tural subtyping relation for component and object types. The principle of safe substitution on
components can be intuitively understood in terms of the services that components require and
provide. A component value must provide at least the services that are expected in the utilisa-
tion context (statically typed) and these provided services may be more specific (of a subtype)
with relation to the expected type; furthermore, components may require less services from its
context than expected, and the specification of these required services may be less specific (of a
supertype).
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The subtyping relation on component types extends uniformly to object types but referring
only the provided services: an object can be used in a given context only if it provides the
expected services; as in the component type relation the provided services of the object may be
more specific than expected and the object may provide more services which are not used.

Configurator types can also be related so that the effect they cause is subsumed. A config-
urator type defines a precondition to the application of its values, which give a partial view
of the elements it interacts with, and a postcondition, which gives the relative view of its ef-
fect. Thus, a subtyping relation on configurator types may be defined by defining subtypes
with more restricted views on required resources, i.e. less available elements, more unsatisfied
resources, and introducing more available elements and less unsatisfied resources. We do not
integrate the subtyping of configurator types in the design of lc but we explain the intuition
that supports it in section 6.4.

We illustrate, by a simple example, the subtyping relation on component types.

Example 6.1. In this example, we use a factory function to create components out of given
arguments. We illustrate subsumption on component values and show that it preserves the
structure of the resulting structures. Consider the following type abbreviations for two inter-
face types:

I = {m1: i n t ! i n t }
J = {m1: i n t ! int , m2: i n t ! i n t }

and a component type:

T = {q : J}){p : I }

Observe that in the usual sense we have that J is a subtype of I. Consider the following expres-
sion:

l e t f = fun x : T!compose ( provides p : I ;
m[m1 = fun x : i n t ! x ] ;
c [ x : T ] ;
plug m into c . q ;
plug c . p into p ) in

l e t D = compose ( provides p : J ;
m[m1 = fun x : i n t ! 2⇤x ,

m2 = fun x : i n t ! 2⇤x ] ;
plug m into p ) in

l e t o = new f (D) in . . .

Notice that in the definition of function f, the formal parameter x is used to introduce an internal
element in the component resulting from calling the function.
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The component type T that types x, allows for the correct typing of the plug operations
between the ports of the internal component x and its context. The connection of method block
m to port c.q and the connection of port c.p to port p.

The argument passed in the call to function f, which is component D defined above, is typed
{}){p:I} (which is a subtype of T). The component type indicates that it implements the service
specified in port p without need for any external reference.

Notice that component D does not require any port as it provides a port whose type is a
subtype of the demanded in the static type of x. Notice that the soundness of the resulting
structure remains intact, i.e. no dependencies are left unsatisfied. By instantiating the internal
component x with the component value D there is a plug operation in the composition in func-
tion f composition that produces no practical effect (the one that connects method block o to
port c.q).

Now that we have described a subtyping relation we define it in a core component-based
programming language with bounded quantification and recursive types.

6.2 lc — A Polymorphic Component Language with Recursive Types

In this section, we define lc by using the results of Chapter 5 and extending the component-
based language lr, defined in Chapter 4. The new features of lc are subtyping, bounded
parametric polymorphism, and equi-recursive types.

Types

We first introduce the type language for lc by building on Tc and adding the necessary ex-
pressions to express polymorphic and recursive types. Let Z be a denumerable set of type
variables.

Definition 6.2 (Types). The types T c of lc are defined by the abstract syntax in Figure 6.1.

The occurrence of the type variable X in the type expression 8Xd t is binding in t. This type
expression also states that all possible instantiations (types) for the type variable X should be
subtypes of type d. The type expression > is helpful for introducing unbound type variables in
the language. Recursive types, of the form µX.t, already used in Chapter 5 are also added to
the type language.

We now extend our language lc by adding the standard terms for type abstraction and
type application to the expressions of lr, as follows:
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t :: = types
| X type variable
| > top
| 8Xt t bounded quantification
| µX.t recursive types
| t ! t function type
| {|`i : ti

i21..n|} record type
| {`i : ti

i21..n} interface type
| t ) t component type
| {ri

i21..n} =) {ri
i21..m} configurator type

r :: = resources
| p � t unsatisfied resource
| p • t available resource
| p . t provided resource
| p / t required resource

Figure 6.1: Abstract syntax of lc types.
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e :: = terms
| x variable
| lx : t.e abstraction
| e(e) application
| LX  t.e type abstraction
| ehti type instantiation
| {`i = ei

i21..n} record
| e.` selection
| e.` := e assignment
| ` port label
| compose e component creation
| new e with `j := ej

j21..m instantiation
| reconfig x = e[e] with `i := ei

i21..n
in e else e reconfiguration

| requires ` : t required port
| provides ` : t provided port
| x[e : t] component introduction
| xI [`i : ti = lx : t.ei

i21..n] method block
| plug p : t into p : t plug
| e; e configurator composition
| l location value
| nil null value
| (e, e, e)G object
| comp(e) component
| conf(t, e) configurator

p :: = ` | x | x.` port name

Figure 6.2: Abstract syntax of lc .
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v :: = values
| lx : t.e abstraction
| LX  t.e type abstraction
| {`i = li

i21..n} record
| l location value
| nil null value
| (r, r, r)G object
| conf(t, c) configurator
| comp(c) component

r :: = {`i = li
i21..n} record

c :: = ground composition operations
| requires ` : t required port
| provides ` : t provided port
| x[v : t] internal component
| xI [`i : ti = lxi.ei

i21..n] method block
| plug p : t into p : t plug
| c; c composition

p :: = ` | x | x.` port name

Figure 6.3: Abstract syntax of lc values.

Definition 6.3 (Terms). The language lc is defined by the abstract syntax in Figure 6.2.

As expected, the set of lc values is obtained by adding type abstractions to the set of expres-
sions that may result from evaluating expressions.

Definition 6.4 (Values). The set of values Uc ✓ lc is defined by the abstract syntax in Figure 6.3.

Notice that type abstraction and application is added to the language lr in a compositional
way, e.g. type abstraction can be uniformly applied to any expression.

We use the usual definition of capture avoiding substitution of types in type expressions
and terms. Notice that the substitution of variables in terms extends uniformly to the new
expression for type abstractions. Consider that for a substitution q that we have

(LX  t.e)q , LX  t.(eq)

We now define the notion of free type variables in a type expression as follows:
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Definition 6.5. We define the set FTV(t) of free variables of type expression t as follows:

FTV(X) , X
FTV(>) , ∆

FTV(8Xt s) , FTV(t) [ FTV(s)\{X}
FTV(µX.t) , FTV(t)\{X}

FTV(t ! t) , FTV(t) [ FTV(s)
FTV({|`i : ti

i21..n|}) , S

i21..n FTV(ti)
FTV({`i : ti

i21..n}) , S

i21..n FTV(ti)
FTV(t ) s) , FTV(t) [ FTV(s)

FTV({` ⇤ ti21..n} =) {`0 ⇤ t0i21..m}) , S

i21..n FTV(ti) [
S

i21..m FTV(t0i )
where ⇤ = •, �, /, ..

The notion of substitutions of type variables in type expressions and in terms is defined as
follows:

Definition 6.6 (Type Substitution). A substitution (Q) is a finite mapping from type variables to type
expressions.

We denote by [X t] the singleton substitution that maps X to t. We write Dom(Q) to denote
the domain of the substitution Q and define the codomain of a substitution Q by Img(Q) ,
S{FTV(Q(X)) | X 2 Dom(Q)}. We write Q ⌫X to restrict the domain of the substitution Q by
eliminating the substitution of X.

Definition 6.7 (Application of type substitution in type expressions). We define the application of
a substitution Q to an expression t, written tQ, as follows:

XQ , Q(X)
XQ , X if X 62 Dom(Q)
>Q , >

(8Xt s)Q , 8XtQ0 (sQ0) where Q0 = Q⌫X
(µX.s)Q , µX.(sQ0) where Q0 = Q⌫X

(t ! s)Q , (tQ)! (sQ)
{|`i : ti

i21..n|}Q , {|`i : tiQ
i21..n|}

{`i : ti
i21..n}Q , {`i : tiQ

i21..n}
(t ) s)Q , (tQ)) (sQ)

({ri
i21..n} =) {ri

i21..m})Q , {riQ
i21..n} =) {riQ

i21..m}
where, for each ⇤ = •, �, ., /, and r = ` ⇤ t, we have rQ , ` ⇤ (tQ).
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(Eval Type Application)

e; S # LX  t0.e0; S0 e0[X t]; S0 # v; S00

ehti; S # v; S00

Figure 6.4: Evaluation rule for lc .

Definition 6.8 (Application of type substitution in terms). We define the application of a substitu-
tion Q to an expression e, written eQ, as follows:

xQ , x
(lx : t.e)Q , lx : (tQ).eQ

(LX  t.e)Q , LX  t.(eQ0) where Q0 = Q0 ⌫X
(e1(e2))Q , e1Q(e2Q)

{`i = ei
i21..n}Q , {`i = eiQ

i21..n}
(e.`)Q , (eQ).`

(e1.` = e2)Q , (e1Q).` = (e2Q)
(compose e)Q , compose (eQ)

(new e with `j := ej
j21..m)Q , new (eQ) with `j :=(ejQ) j21..m

(requires ` : t)Q , requires ` : (tQ)
(provides ` : t)Q , provides ` : (tQ)

(x[e : t])Q , x[(eQ) : (tQ)]
(x[`i : ti = lxi : t0i .ei

i21..n])Q , x[`i : (tiQ) = lxi : (t0i Q).(eiQ) i21..n]
(plug p1 : t1 into p2 : t2)Q , plug p1 : (t1Q) into p2 : (t2Q)

(e1; e2)Q , (e1Q); (e2Q)
lQ , l

nilQ , nil

conf(t, e)Q , conf(tQ, eQ)
comp(e)Q , comp(eQ)

We are now ready to define the operational semantics of lc .

Operational Semantics

Definition 6.9 (Evaluation). Let e 2 lc and a heap S such that (e; S) is a valid configuration. The
evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively by the rules
in Figures 2.8, 4.4, 4.5, 4.6, 4.7, and 6.4.

The operational semantics of the language lc is defined by extending the semantics of lr

with a rule to evaluate type applications. Notice that the evaluation of type abstractions is
already covered by Rule (Eval Value) and that the result of a type application is obtained by
Rule (Eval Type Application). The evaluation proceeds by replacing the type parameter by the
actual type argument.
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D :: = typing environments
| f empty environment
| D, x : t type assignment to a variable
| D, l : t type assignment to a location
| D, X  t bounded type variable declaration

Figure 6.5: Abstract syntax of typing environments in lc .

(Env Type Var)

D ` t ok X 62 Dom(D)
D, X  t ` ⇧

(Type Top)

D ` ⇧
D ` > ok

(Type TVar)

D ` ⇧ X 2 Dom(D)
D ` X ok

(Type All)

D ` d ok D, X  d ` t ok

D ` 8Xd t ok

(Type Rec)

D, X  > ` t ok

D ` µX.t ok

Figure 6.6: Validation rules for typing environments in lc .

Type System

In order to define the type system we first need to extend the earlier definition of typing en-
vironments (Definition 2.17) with the declaration of bounded type variables. We also need to
define a subtyping relation which we the use to define the typing relation of the language lc .

Definition 6.10 (Typing Environment). For x 2 V , X 2 Z , l 2 Loc, and t 2 T c the set D of all
typing environments is defined by the abstract syntax in Figure 6.5.

Definition 6.11 (Valid typing environment). A typing environment D is valid if the judgement
D ` ⇧ is derivable by the rules in Figures 2.10 and 6.6.

We now define our subtyping relation for lc .

Subtyping

The subtyping relation between the types of lc follows standard approaches to structural sub-
typing relations. The types are related according to their shape in ways that can be expressed
by the Rules of Figure 6.7. Notice that these rules are not intended to define the subtyping
relation but just to give an intuition about it. The actual subtyping relation we are interested
in will be defined as the greatest fixed point of a generating function, following the approach
of Chapter 5. Apart from the standard reflexivity, maximality of >, the standard relation of
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(Sub Equal)

D ` t  t

(Sub Top)

D ` t  >

(Sub Trans)

D ` t  d D ` d  s

D ` t  s

(Sub Fun)

D ` t0  t D ` s  s0

D ` t ! s  t0 ! s0

(Sub Interface) (n  m)
D ` ti  si 8i 2 1..n

D ` {`i : ti i21..m}  {`i : si i21..n}

(Sub Component)

D ` t0  t D ` s  s0

D ` t ) s  t0 ) s0

(Sub All)

D, X  d ` t  s

D ` 8Xd t  8Xd s

(Sub RecL)

D ` t[X µX.t]  s

D ` µX.t  s

(Sub RecR)

D ` t  s[X µX.s]
D ` t  µX.s

Figure 6.7: Hints about subtyping.

function types, the kernel-Fun discipline for polymorphic types, and the unfolding of recur-
sive types, we also have a rule that covariantly relates interfaces, in both depth and width,
Rule (Sub Interface).

Notice that the relation between component types, Rule (Sub Component), is contravariant
in the required ports and covariant in the provided ones. This rule, in combination with Rule
(Sub Interface) that relates the sets of required and provided services, defines the relation de-
scribed before (Section 6.1) which allows for the use of components that require at most the
same services than expected, possibly being more generic, and provide at least the same ser-
vices than expected, possibly implementing more specific services. Technically, this results in
a subtyping relation similar to the one found in arrow types, cf. Rule (Sub Fun). This is not
at all surprising as components may be seen as service transformers: they implement a set of
“resulting” services based on an instantiation of a set of “parameter” services. The difference
here, besides the nature of the values, is that type t and type s are both object types declaring
services in named ports which have a distinguished existence in the architecture of compo-
nents.

Notice that configurator and record types are not mentioned in the rules of Figure 6.7.
In the case of record values, inclusion polymorphism is possible by means of their type

coercion to interface types, by Rule (Val Interface), and then by subtyping. This allows for a
record value, typed by a record type, to be recognised and used in contexts where only an
interface type is specified. Record values, while allowing update operations, i.e. typed by a
record type, can only be seen using a single type description.

Configurator types are related by equivalence only, which is defined in Rule (Sub Equal).
Although not considered here, we describe, in section 6.4, a possible subtyping relation on
configurator types which uniformly expresses the safe substitution of configurator values.
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The result we extract from Chapter 5 is that an inductively defined relation, such as the
one inductively defined by the Rules in Figure 6.7, does not include the relation on the infinite
trees resulting from recursively defined types. A coinductive definition is therefore necessary
to cover the relation between infinite unfoldings of recursive types.

In consequence of this, and as pointed out in [78], the general transitivity property, rep-
resented in Rule (Sub Trans), cannot be used in the definition of such a coinductive relation.
The elimination of such a rule, obtaining nevertheless a relation closed under transitivity, is
essential to design any subtyping algorithm.

We replace the explicit transitivity rule by a more specific form of transitivity, restricted to
type variables, which we had already used in Chapter 5 for the case of kernel-Fun:

(Sub TransVar)

D ` t  s X  t 2 D

D ` X  s

Based on the cases expressed by the rules in Figure 6.7 and Rule (Sub TransVar), we define
the intended subtyping relation for lc as the greatest fixed point of a monotonic function on
sets of judgements. Given the representation (D, t, s) for judgements of the form D ` t  s

and the set J , D ⇥ T c ⇥ T c we define the following function:

Definition 6.12 (Generating function). The generating function is the map S 2 P(J )! P(J )
defined by:

S(R) = {(D; t; t) | D ` t ok} (Sub Equal)
[ {(D; t;>) | D ` t ok} (Sub Top)
[ {(D; t ! s; t0 ! s0) | (D; t0; t), (D; s; s0) 2 R} (Sub Fun)
[ {(D; {`i : ti

i21..m}; {`i : si
i21..n}) | n  m and (D; ti; si) 8i 2 1..n} (Sub Interface)

[ {(D; t ) s; t0 ) s0) | (D; t0; t), (D; s; s0) 2 R} (Sub Component)
[ {(D; X; s) | (D; t; s) 2 R and X  t 2 D} (Sub TransVar)
[ {(D; 8Xd t; 8Xd s) | (D, X  d; t; s) 2 R} (Sub All)
[ {(D; t; µX.s) | (D; t; s[X µX.s]) 2 R } (Sub RecR)
[ {(D; µX.t; s) | (D; t[X µX.t]; s) 2 R and s 6⌘ µX.s0 } (Sub RecL)

Notice that the cases of S defined above correspond to the rules in Figure 6.7 (with Rule
(Sub TransVar) instead of Rule (Sub Trans)). Notice also that the least-fixed-point of this mono-
tonic function is the inductive relation defined by the subtyping rules in Figure 5.1.

We define our subtyping relation as greatest-fixed-point of S, written nS. We the say that:

Definition 6.13 (Subtyping). D ` t  s , (D, t, s) 2 nS.
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(Val Subsumption)

D ` e : s D ` s  t

D ` e : t

(Val Type Abstraction)

D, X  t ` e : s

D ` LX  t.e : 8Xt s

(Val Type Application)

D ` e : 8Xt s D ` t0  t

D ` eht0i : s[X t0]

Figure 6.8: Typing rules for lc .

(Comp Requires)

D ` (requires ` : t) : ∆ =) {` • t, ` / t}
(Comp Provides)

D ` (provides ` : t) : ∆ =) {` � t, ` . t}

(Comp Plug)

D ` t1  t2

D ` plug (p1 : t1) into (p2 : t2) : ({p2 � t2, p1 • t1} =) {p1 • t1})

(Comp Sequence) (K0#K00, K0#K000)

D ` e1 : K =) K0, Kc D ` e2 : Kc, K00 =) K000

D ` (e1; e2) : K, K00 =) K0, K000

(Comp Uses) (t = {`r
i : ti

i21..n}, s = {`p
j : sj

j21..m})

D ` e : t ) s

D ` x[e : t ) s] : ∆ =)
n

x • s, x.`r
i � ti

i21..n, x.`p
j • sj

j21..m
o

(Comp Method Block) (I = {`0i : t0i
i21..m}, K = {`0i • t0i

i21..n})
|D|, `0i : t0i

i21..m, x : {|`i : ti
i21..n|} ` ei : ti 8i21..n

D ` xI [`i : ti = ei
i21..n] : K =) K, {x • {`i : ti

i21..n}}

Figure 6.9: Typing rules for lc (part 2).

This is a declarative definition of the subtyping relation, later in this chapter we define an
algorithm to determine whether a given judgement is in the subtyping relation or not, thus
giving it an operational definition.

Typing

We next define the typing relation of lc by extending the typing relation of lc and using the
subtyping relation in a subsumption rule which uniformly applies to all expressions.

Definition 6.14 (Typing relation). The judgement D ` e : t is valid if it is derivable by the rules in
Figures 2.11, 3.12, 6.9, 4.8, and 6.8.

We follow by explaining the rules in Figures 6.8, and 6.9. Rule (Val Subsumption), as expected,
allows the usage of a value in any context where a supertype is expected.



152 CHAPTER 6. POLYMORPHIC COMPONENTS AND RECURSIVE TYPES

(Wrong Type App)

e; S # v; S0 v 6= LX  t0.e0

ehti; S # wrong; S0

Figure 6.10: Error trapping rule for lc .

The typing of type abstractions, defined in Rule (Val Type Abstraction), and the typing of
type application expressions, defined in Rule (Val Type Application), follow along standard
lines. In a type abstraction LX  t.e, the body e is typed in a context where the declared
variable X has its corresponding bound t, and the application rule is only applicable if the
type argument t0 in expression eht0i is a subtype of the declared bound. The resulting type is
the type of the expression where the type variable (the type argument) is replaced by the actual
type argument.

With regard to composition operations we change the typing of plug expressions in or-
der to consider subtyping between the port types. In this type system, the source and tar-
get of a plug expression must be compatible by subtyping instead of type equivalence, Rule
(Comp Plug).

This completes the definition of the type system for lc which consists of adding standard
constructs, that deal with type abstraction and recursive types, to the type system of lr. We
now show that the resulting language is sound and has a decidable type checking problem.

6.2.1 Type safety

The type safety result we prove next extends the previous type safety results in the sense that it
allows the subsumption in the values resulting from evaluating well-typed expressions, i.e. the
type of the value can be a subtype of the statically assigned type. We use the same technique as
before. We enunciate and prove correct a subject reduction theorem that captures this property
on the results of an operational semantics extended with a distinguished value wrong and an
evaluation rule that captures errors in type applications, Figure 6.10.

Definition 6.15 (Extended Evaluation). Let e 2 lc and a heap S such that (e; S) is a valid configu-
ration. The evaluation relation of an expression e to a value v, written e; S # v; S0 is defined inductively
by the rules in Figures 2.8, 2.12, 4.4, 4.5, 4.6, 4.7, 3.14, 4.9, 6.4, and 6.10.

The intermediate result which introduces the computational and structural invariants on
well-typed expressions, as Lemma 3.29 for lc and 4.12 for lr, must now incorporate subsump-
tion of resulting values. We must first rewrite the definition of the typing of heaps to allow
locations to map to values yielding a subtype of what is expected.
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Definition 6.16 (Typing of Heaps). For any typing environment G and heap S, we say that G types
S if Dom(G) ✓ Dom(S) and 8l 2 Dom(S) we have that

1. l is undefined,

2. l refers-to nil, or

3. l refers-to v and G ` v : t with G ` t0  t.

Furthermore, we need to introduce new lemmas for weakening, substitution of values and
types in expressions and types; we also must state the transitivity property of the subtyping
relation. Remember that transitivity is not explicit in the relation, and that the closure of the
subtyping relation under transitivity is a side effect of its definition.

Lemma 6.17 (Transitivity). For all typing environments D, D0, and types t, s, d 2 T c :
If D ` t  d and D ` d  s then D ` t  s.

Proof. This property is expressed in Lemma 5.17 for kernel-Fun. Remember that the two type
languages differ only by two type constructs, component and interface types, and that these
constructs are uniform under transitivity. One has the exact same structure as function types
and the other is a labelled product type.

So, transitivity on these type constructs depends directly on the transitivity on their subex-
pressions. The proof of this lemma is therefore similar to that of Lemma 5.17. It is based on
an extended relation that includes the closure of the subtyping relation under transitivity and
narrowing. The proof is done by coinduction on the definition of the generating function.

The preservation of types under the substitution of types is defined for both the substitution
of type variables in type expressions and in terms.

Lemma 6.18 (Substitution of type variables in types). For all typing environments D, D0, and types
t, t0, s, s0 2 T c :
If D, X  t, D0 ` s  s0 and D ` t0  t then D, D0 ` s[X t0]  s0[X t0].

Proof. By proving coinductively that the subtyping relation is closed under substitution of type
variables. The proof for this property is similar to the proof of Lemma 5.18 for kernel-Fun.
Remember that substitution propagates uniformly through the new type constructs.

Lemma 6.19 (Substitution of type variables in terms). For all typing environments D, D0, all ex-
pressions e 2 lc , and types t, t0, s, s0 2 T c :
If D, X  t, D0 ` e : s and D ` t0  t then D, D0 ` e[X t0] : s0 with D ` s0  s.

Proof. By induction on the height of the derivation and by case analysis of the last rule used.
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Lemma 6.20 (Weakening). For all typing environments D, D0, all expressions x, e 2 lc , and types
t 2 T c :
If D, D0 ` e : t and x 62 Dom(D0) then D, x : t0, D0 ` e : t.

Proof. By induction on the height of the derivation and by case analysis of the last rule used.

Lemma 6.21 (Substitution). For all typing environments D, D0, all expressions e 2 lc , and types
t, s, s0 2 T c :
If D, x : t, D0 ` e : s and D ` v : t0 with D ` t0  t then D, D0 ` e[x v] : s0 with D ` s0  s.
Moreover, if e and v are record-based then e[x v] is also record-based.

Proof. By induction on the height of the derivation and by case analysis of the last rule used.

We now enunciate the following general lemma that proves subject reduction and captures
the subsumption of the result with relation to the expected type.

Lemma 6.22 (Subject Reduction).

1. Let (e; S) be a valid configuration in lc \{nil} such that nil(S) = ∆ and let G be a typing
environment typing S such that e and S are record-based with relation to G.

If G ` e : t and (e; S # v; S0) then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t such that D ` t0  t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.

2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S.

Let s be a partially linked object s such that it complies with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If s; c; S + s0; S0 then

a) there is G0 typing S0 and extending G,

b) s0 is a partially linked object that extends s and complies with K0. Its partially linked object
type is [[R� K0/ ) P� K0.]], and

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.
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Proof Sketch. The proof is carried out by induction on the two cases of the lemma. On the first
case, we prove it by induction on the size of the evaluation derivations and by analysis of the
last rule used. We use the second case when needed and its conditions are met. We show, in
the cases that evaluate to wrong, that these rules are never applicable. We here present the cases
for the new constructions and those where the effect of subtyping is most relevant. (for the
complete proof see appendix A on page 206).

Case: (Eval Value)

The conclusions of the theorem hold with G0 = G, S0 = S, and G ` v : t with G ` t  t by
definition of subtyping, Definition 6.13. We also have that nil(S0) = ∆ and that both v and S are
record-based.

Case: (Eval Application)t

In this case, with e1(e2); S # v; S0, we know by Rule (Eval Application), that: a) e1; S # lx : t.e; S0,
b) e2; S0 # v2; S00, and c) e[x v2]; S00 # v; S000. On the typing derivation, the only plausible last
rule for G ` e1(e2) : s is Rule (Val Application), with the premises: d) G ` e1 : t ! s and e)
G ` e2 : t.

Taking d) and a), by induction hypothesis we conclude that there is a G0 extending G and
typing S0, such that f) G0 ` lx : t.e : t0 ! s0 with G0 ` t0 ! s0  t ! s. By Lemma 3.24
(weakening) on e) we conclude that G0 ` e2 : t, which together with b), by induction hypothesis,
there is a G00 extending both G0 and G and typing S00 such that g) G00 ` v2 : t00 with G00 ` t00  t

and nil(S00) = ∆. From f), by Lemma 3.24 (weakening) and Rule (Val Abstraction) we have that
G00, x : t ` e : s and by Lemma 3.28 (substitution) with g) we have that h) G00 ` e[x v2] : s0 with
G00 ` s0  s. Taking h) and c), by induction hypothesis we have that there is G000 extending
G00 and typing S000, such that v is typed G000 ` v : s and v is either an abstraction or a location
that is either undefined or refers-to a record, and nil(S000) = ∆. Notice that v and S000 are
record-based.

The application of induction hypothesis to the different premises and the application of
Lemma 3.28 ensures that v and S000 are record-based.

Case: (Eval Type Application)

If the last rule is (Eval Type Application) the for the expression ehti we have the typing judge-
ment, whose premise must be a) D ` ehti : s[X t] and the evaluation judgement b) ehti; S #
v; S00. The premises for b) are, c) e; S # LX  t.e0; S0 and d) e0[X t0]; S0 # v; S00. By induc-
tion hypothesis we know that there is a typing environment G0 which extends G and types S0

and G0 ` LX  t.e0 : 8Xt s0 such that G0 ` 8Xt s0  8Xt s. From the polymorphic case
of S (Definition 6.12) we know that G0, X  t ` s0  s. By Rule (Val Type Abstraction) on
a) we know that G0, X  t ` e0 : s. Since G ` t0  t, by Lemma 6.20 (weakening) we have
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G0 ` t0  t, and by Lemma 6.19 (substitution) we have that e) G0 ` e0[X t0] : s0[X t0] and
by Lemma 6.18 (substitution) we have that G0 ` s0[X t0]  s[X t0].

From e) and d), by induction hypothesis, we have that there is a G00 that extends G and types
S00, such that G00 ` v : s00 with G00 ` s00  s0[X t0] and v is one of the possible values admitted
in the lemma. The induction hypothesis on both cases indicates that nil(S00) = ∆. Notice that v
and S000 are record-based.

We now enunciate the main type safety result as corollary of Lemma 6.22. As in previous
type safety results, the final subject reduction theorem isolates the fundamental type preserva-
tion property of lc . Lemma 6.22 is needed to ensure that types are preserved in compositions
as well.

Theorem 6.23 (Subject Reduction). Let (e; S) be a valid configuration of lc \{nil} and S a heap
not containing any nil value, let G be a typing environment typing the heap S such that e and S are
record-based with relation to G.
If G ` e : t and e; S; G # v; S0; G0 then

a) G0 extends G and types S0,

b) G0 ` v : t0 with G0 ` t0  t, and

c) v is either an abstraction, a component, a configurator, or a location that is either undefined or
refers-to a record.

d) If v is a component or configurator value then FL(v) = ∆, and

e) nil(S0) = ∆.

Proof. This theorem results directly from the first case of Lemma 6.22 and Lemma 3.25.

We conclude that lc conservatively extends lr, i.e. there are more lr programs accepted
by the type system presented here due to the introduction of subtyping. Theorem 6.23 implies
that, besides uniformly extending the typing of computational expressions, lc also extends the
notion of architecture soundness by means of subsumption in the introduction of internal com-
ponents and of subtyping between port types in plug operations. Notice that when a compo-
nent is introduced in a composition it may require less ports than expected (by subsumption).
In this case, we use the type expression provided in the expression x[e : t] to correctly type the
connections and rely on the operational semantics to ignore the lack of a target port (already
predicted in the semantics of lc).
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(X-Var)

X  s 2 D D ` s * t

D ` X * t

(X-Default)

t 62 Dom(D)
D ` t * t

Figure 6.11: Exposure rules for type variables.

6.3 Typing Algorithm

It is our claim that lc has all the essential elements to be a quite general component-based
object-oriented language. We have, so far, defined a precise semantics and a typing relation. In
this section, we define a typing algorithm which proves the decidability of the typing relation.

Typing algorithms designed out of inductive systems are generally defined by backward
interpretation of typing rules. However, there are some rules in Definition 6.14 for which a
backward interpretation is not feasible. Notably, subsumption, explicit in the rule

D ` e : s D ` s  t

D ` e : t

cannot be included in the algorithm. The result of this rule (the judgement D ` e : t) does
not have, in general, a single instantiation for t. The same happens with the explicit transitiv-
ity rule, Rule (Sub Trans) in Figure 6.7. The elimination of transitivity rule on subtyping was
already justified earlier in the context of the subtyping coinductive definition. To achieve the
same typing relation without using the indeterministic subsumption rule, we replace it by care-
fully placing subtype checks in the premises of other rules. This transformation allows for the
deterministic interpretation of all other rules and therefore permits the design of an algorithm
to compute the type of an expression with relation to a typing environment. In the case of the
rules that need to inspect the internal structure of a type (the so-called destructive rules), as it
is the case of the rule for record selections, Rule (Val Select), we use a special notion of vari-
able exposure, which is an explicit kind of deterministic subsumption to the lowest, concrete
supertype.

Definition 6.24. Type s is the exposure of type t if the judgement D ` t * s is derivable by the rules
in Figure 6.11.

Intuitively, the exposure of a type is, in the case of type variables, its nearest non-variable
bound, and it is the type itself otherwise. When used in type variables, it exposes the common
structure of all the types that may instantiate them. It replaces the subsumption relation for
type variables.

Another important part of the typing algorithm is the verification of subtyping judgements.
This is obtained by direct application of the results of Chapter 5 to the generating function in
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Subtyping(A, (D, t, s)) =
if (D, t, s) 2' A then A
else let A0 = A [ {(D, t, s)} in

if t ⌘ s then A
else if s ⌘ > then A
else if t ⌘ t0 ! t00 and s ⌘ s0 ! s00 then

let A1 = Subtyping(A0, (D, t00, s00)) in Subtyping(A1, (D, s0, t0))
else if t ⌘ t0 ) t00 and s ⌘ s0 ) s00 then

let A1 = Subtyping(A0, (D, t00, s00)) in Subtyping(A1, (D, s0, t0))
else if t ⌘ {`i : ti

i21..n} and s ⌘ {`j : sj
j21..m} then

if n � m then (8i21..m let Ai = Subtyping(Ai�1, (D, ti, si))) in Am
else if t ⌘ X then Subtyping(A0, (D, D(X), s))
else if t ⌘ 8Xd t0 and s ⌘ 8Xd s0 then Subtyping(A0, (D, X  d; t0; s0))
else if t ⌘ µX.t0 then Subtyping(A0, (D, t0[X t], s))
else if s ⌘ µX.s0 then Subtyping(A0, (D, t, s0[X s]))
else fail

Figure 6.12: Subtyping algorithm.

Definition 6.12. The result is basically an extension of the algorithm of Definition 5.24 with the
new type constructors for component and interface types.

Definition 6.25 (Subtyping algorithm). Subtyping(A, (D, t, s)) is defined by the procedure de-
scribed in Figure 6.12.

Besides the subtyping algorithm and the exposure of type variables we need other determin-
istic operations to access the types of fields in record and interface types, and of variables in
typing environments.

Definition 6.26 (Field lookup).

lookup(`, {. . . , ` : t, . . .}), t

lookup(`, {| . . . , ` : t, . . . |}), t

lookup(`, µX.t), lookup(`, t[X µX.t])

We indistinguishably treat records and interfaces and look into the unfolding of recursive types
in search for field labels. Note that we assume that recursive types are contractive and therefore
there is at most one unfolding operation involved in this operation. Notice that the similarity
relation on tuples (') used in the algorithm above is defined in Chapter 5, Definition 5.20, in
such a way that it can be reused here. Remember that t 2' A , 9u 2 A.t ' u.

Hence, combining all these elements together we define the typing algorithm based on the
backward interpretation of the rules in Figures 6.13 and 6.14 to obtain an instantiation of t from
an input D and e, in the judgement D `a e : t.
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(Val Var)a

x : t 2 D

D `a x : t

(Val Abstraction)a

D, x : t `a e : s

D `a lx : t.e : t ! s

(Val Application)a

D `a e1 : t ! s D `a e2 : t0 D ` t0  t

D `a e1(e2) : s

(Val Record)a

D `a ei : ti

D `a {`i = ei i21..n} : {|`i : ti i21..n|}

(Val Select)a

D `a e : s D ` s * s0 lookup(`, s0) = t

D `a e.` : t

(Val Assign)a

D `a e1 : s D ` s * {|`i : ti
i21..n|} lookup(`, {|`i : ti

i21..n|}) = t D `a e2 : t0 D ` t0  t

D `a e1.` := e2 : t

(Val Compose)a (K� = ∆)

D `a e : ∆ =) K
D `a compose e : K/ ) K.

(Val New)a

D `a e : {`i : ti
i21..n}) s D `a ei : t0i D ` t0i  ti 8i21..n

D `a new e with `i := ei i21..n : s

(Val Reconfig)
�

K0� = ∆, K0.#I, K0/ = {`i : si
i21..n}

�

D `a e1 : K =) K0 D `a e2 : I D `a e0i : s0i D ` s0i  si 8i21..n
D, x : I � K0. `a e3 : d D, x : I `a e4 : d

D `a reconfig x = e1[e2] with `i := e0i i21..n
in e3 else e4 : d

(Val Type Abstraction)

D, X  t `a e : s

D `a LX  t.e : 8Xt s

(Val Type Application)

D `a e : 8Xt s D ` t0  t

D `a eht0i : s[X t0]

Figure 6.13: Algorithmic typing rules for lc .

Definition 6.27 (Typing algorithm). The type of an expression with relation to a typing environment
is given by typing(d, e), defined by the backward interpretation of the rules in Figures 6.13 and 6.14.

The type of a closed expression e is then given by a procedure typing(∆, e) defined by backward
interpretation of the typing rules as illustrated in Figure 6.15. The procedure is not shown in
full but can be easily completed by transcribing the rules in Figures 6.13 and 6.14 in a goal
directed way. Notice that it builds a type for an expression based on the results of recursive
calls on its subexpressions. Notice also that we have omitted Rule (Val Interface), which makes
record types acceptable as the subject of a selection and incorporated this subsumption in the
lookup operation which indistinguishably operates on records and interfaces.
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(Comp Requires)a

D `a (requires ` : t) : ∆ =) {` • I, ` / t}
(Comp Provides)a

D `a (provides ` : t) : ∆ =) {` � t, ` . t}

(Comp Plug)a

D ` t1  t2

D `a plug (p1 : t1) into (p2 : t2) : ({p2 � t2, p1 • t1} =) {p1 • t1})

(Comp Sequence)a (K0#K00, K0#K000)

D `a e1 : K =) K0, Kc D `a e2 : Kc, K00 =) K000

D `a (e1; e2) : K, K00 =) K0, K000

(Comp Uses)a (t = {`i : ti
i21..k}, s = {`0j : sj

j21..m})

D `a e : t0 ) s0 D ` t0 ) s0  t ) s

D `a x[e : t ) s] : ∆ =) {x • s, x.`i � ti
i21..n, x.`0j • sj

j21..m}

(Comp Method Block)a (I = {`0i : t0i
i21..m}, K = {`0i • t0i

i21..n})
|D|, `0i : t0i

i21..m, x : {|`i : ti
i21..n|} `a ei : t0i D ` t0i  ti 8i21..n

D `a xK[`i : ti = ei
i21..n] : K =) K, {x • {`i : ti

i21..n}}

Figure 6.14: Algorithmic typing rules for lc (part 2).

Correctness

To prove that our typing algorithm, is correct with relation to the typing relation presented
in section 6.2, we first prove that the subtyping algorithm is also correct with relation to the
defined subtyping relation.

Lemma 6.28 (Correctness of Subtyping). For all D 2 D, and types t, s 2 T,

1. Subtyping(∆, (D, t, s)) = A if and only if D ` t  s

2. Subtyping(∆, (D, t, s)) = f ail if and only if D 6` t  s

Proof. This property is based on Lemma 5.39 where the definition of the relation is extended
with the regular type constructors. The result of the algorithm in these cases is directly sup-
ported by the results of recursive calls and therefore the proof is identical to that of Lemma 5.39.

We also need an auxiliary result that relates the exposure of a type variable and subtyping
as follows.

Lemma 6.29 (Exposure and subtyping). For all D 2 D, and types t 2 T,
If D ` t " t0 then D ` t  t0.
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typing(D, e) ,
(Val Var)a

if e = x then D(x)
(Val Abstraction)a

else if e = lx : t.e then let s = typing((D, x : t), e) in t ! s
(Val Application)a

else if e = e1(e2) then let d = typing(D, e1) in

if d = t ! s then

let t0 = typing(D, e2) in Subtyping(∆, (D, t0, t)); s
else f ail

(Val Record)a
else if e = {`i = ei

i21..n} then

(8i21..n let t0i = typing(D, ei) in Subtyping(∆, (D, t0i , ti))); {|`i : ti
i21..n|}

(Val Select)a
else if e = e.` then let s = typing(D, e) in

let s0 = expose(D, s) in

let t = lookup(`, s0)in t
(Val Assign)a

else if e = e1 := e2 then let s = typing(D, e1) in

let s0 = expose(D, s) in

if s0 = {|`i : ti
i21..n|} then

let t = lookup(`, s0)in
let t0 = typing(D, e2)in Subtyping(∆, (D, t0, t)); t

else f ail
(Val Compose)a

else if e = compose e then let t = typing(D, e) in

if t = K =) K0 and K = ∆ and K0� = ∆ then K0/ ) K0.
else f ail

(Val New)a
else if e = new e with `r

i := ei
i21..n

then

let t = typing(D, e) in

if t = {`i : ti
i21..n}) s then . . .

else f ail
. . .

expose(D, t) , if t = X then expose(D, D(X)) else t

Figure 6.15: The typing algorithm.

Proof. By induction on the height of the derivation.

We finally enunciate and prove the correctness of the typing algorithm in the following theo-
rem:

Theorem 6.30 (Soundness). For all D 2 D, expressions e and types t 2 T,
If D `a e : t then D ` e : t

Proof. By induction on the height of the derivation and by case analysis on the last rule used.
Lemma 6.29 is applied when necessary.

Theorem 6.31 (Completness). For all D 2 D, expressions e and types t 2 T,
If D ` e : s then D `a e : t with D ` t  s.
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Proof. By induction on the height of the derivation and by case analysis on the last rule used.
Lemma 5.17 is applied in the case of Rule (Val Subsumption).

The property enunciated by this theorem is also known as the minimal typing property
which ensures that the typing algorithm, which has at most one possible result for a given in-
put, gives the more specific type for an expression with relation to a typing environment. By
the subsumption property, many types are admissible for an expression, it is therefore impor-
tant, as a completeness result, that the algorithm gives the least of them. In this way it allows,
by subsumption, that any supertype of the result can be assigned to the expression.

This concludes the presentation of the type system and typing algorithm for lc . We now
close the chapter with a proposal for a structural subtyping relation on configurator types.

6.4 Subtyping on Configurator Types

Structural subtyping relations support the safe substitution of values in a uniform way. Their
definition is usually fairly intuitive and based on extensional type information (that describes
values regardless of their internal structure). But, when looking to the intensional type informa-
tion used in our model to type configurator values those intuitions get blurred by a multitude
of degrees of freedom.

For configurator types, subtyping means that configurator values must introduce and con-
nect architectural elements in such a way that it does not break the expected effect in a given
well-typed context, i.e. if a configurator value yield a subtype of the expected type, the compo-
sitions where they are used, in that context, are still well-formed.

We analyse here some situations when a configurator type can be made more specific (in
the subtyping sense) without disrupting the described effect. A subtyping relation including
all these situation can the be defined using the rules depicted in Figure 6.16.

For instance, a subtype may indicate the addition of elements that are not going to be used
in the context where a value of a supertype is expected, as in Rule (Sub • more provided). The
demand for less available elements, described in Rule (Sub • less required) is another possi-
bility. Symmetric relations can be found when analysing the unsatisfied resources, see Rules
(Sub �more required) and (Sub � less provided). A configurator that requires some unsatis-
fied resource, and presumably satisfies it, can be used in a context where the need for that
connection does not exist. Also, a configurator that introduces an unsatisfied resource can be
replaced by one that does not. Notice that these substitutions may result in the making of
void connections, which is already admissible in the original semantics (see discussion around
Definition 3.7).

Additionally, the types associated to resources may also vary in the subtyping relation,
either covariantly or contravariantly. The variance in the subtyping relation is influenced by
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(Sub • more provided)

D ` K =) K0  K00 =) K000

D ` K =) K0, p • t  K00 =) K000

(Sub • less required)

D ` K =) K0  K00 =) K000

D ` K =) K0  K00, p • t =) K000

(Sub �more required)

D ` K =) K0  K00 =) K000

D ` K, p � t =) K0  K00 =) K000

(Sub � less provided)

D ` K =) K0  K00 =) K000

D ` K =) K0  K00 =) K000, p � t

(Sub • provided)

D ` t  t0

D ` K =) K0, p • t  K =) K0, p • t0

(Sub • required)

D ` t0  t

D ` K, p • t =) K0  K, p • t0 =) K0

(Sub � provided)

D ` t0  t

D ` K =) K0, p � t  K =) K0, p � t0

(Sub � required)

D ` t  t0

D ` K, p � t =) K0  K, p � t0 =) K0

Figure 6.16: Subtyping rules for configurator values.

the tag of the resource. The available resources in the set of required resources resource are con-
travariant (Rule (Sub • required)), and unsatisfied resources are covariant (Rule (Sub � required)).
On the set of provided resources, available resources are covariant (Rule (Sub • provided)), and
unsatisfied resources are contravariant, (Rule (Sub � provided)).

When accounting the introduction of provided and required ports, they are best if kept the
same as we statically verify, in reconfiguration actions for instance, if port names do not clash
with others (while internal elements may overlap others without disrupting the implementa-
tion).

Given such a subtyping relation on configurator types we now emphasise some details
in the typing of expressions where subtyping of configurator types may have influence. For
instance, unsatisfied resources may exist in the required resources of a configurator and still the
configurator that requires them can form a well-formed component. The rule for the compose e
expression in the type system for the language lc , which demands that the required resource
sets are empty, can still type this component creation expression. The unsatisfied resources can
be eliminated from the type by the subsumption rule (Rule (Val Subsumption)) and Rule .

(Val Compose) (K� = ∆)

D ` e : ∆ =) K
D ` compose e : K/ ) K.

To type the composition of two configurators we also rely on subsumption to synchronise
the types of the operands to be composed.
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(Comp Sequence) (K0#K00, K0#K000)

D ` e1 : K =) K0, Kc D ` e2 : Kc, K00 =) K000

D ` (e1; e2) : K, K00 =) K0, K000

Notice that the additional available or unsatisfied resources in the types are naturally propa-
gated to the resulting type. As for variances in the types of resources, subsumption can be used
to make the common set of resources Kc to coincide.

Although this relation on configurator types is not integrated in the presented develop-
ments, we expect our current type safety results to hold in this extended subtyping relation.

6.5 An Example

We now illustrate the use of polymorphic values in our language by means of a small example.
Consider that a public key distribution infrastructure is implemented by a component that has
two internal components, and that these components are responsible for replicating keys in a
network of servers. Each one of these components deals with a different kind of keys (char-
acterised by two different subtypes of some type Key). Additionally, consider that although
the distribution mechanism is the same for both kinds of keys, for some reason it is interest-
ing to implement their replication separate. A polymorphic component KeyReplicator, of type
TKeyReplicator, is therefore used twice to instantiate the internal components of our main com-
ponent. Consider the following type declarations and the skeleton of a component using an
update service especially designed for this kind of components. (We use in this example the
Java-like syntax used in the examples shown in the Introduction.)

TKeyRepl icator = A l l (XKey ) { . . . }) { . . . }
IUpdateScr ip t = A l l (XKey ) {update : ( TKeyRepl icator<X>)void}
TUpdateScr ipt = A l l (XKey ) {}){p : IUpdateScr ip t<X>}
IRepl icatorUpdateGateway = { a v a i l a b l e S c r i p t : ( ) boolean , g e t S c r i p t : ( ) TUpdateScr ipt}
. . .
Keychain = component {

requires gw: IRepl icatorUpdateGateway ;
. . .
uses r e p l i c a t o r 1 2 8 = KeyRepl icator<Key128>;
uses r e p l i c a t o r 6 4 = KeyRepl icator<Key64>;
. . .
methods m {

checkAl l ( ) {
i f ( gw . a v a i l a b l e S c r i p t ( ) ) {

s c r i p t = gw . g e t S c r i p t ( ) ;

(new ( s c r i p t <Key128 > ) ) . p . update ( r e p l i c a t o r 1 2 8 ) ;
(new ( s c r i p t <Key64 > ) ) . p . update ( r e p l i c a t o r 6 4 ) ;
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}
}

} ;
. . .

}

Notice that the value returned by method getScript is a type abstraction which needs to be type
instantiated to meet the type of the target object. The resulting component value can then be
used to produce an object and its method update in port p can be called to safely upgrade both
internal elements replicator128 and replicator64.

Now consider that the implementation of component KeyReplicator makes uses of a polymor-
phic container to hold the distributed keys. One reconfiguration action that makes the use of
type parameters interesting is one that changes the implementation of such container. Consider
the following component UpdateScript implementing such a reconfiguration action.

UpdateScr ip t = A l l (X) component {
provides p : IUpdateScr ip t<X>;
methods m {

r = ( uses x = CNewContainer<X>; plug x . p into c . q ) ,
void update ( o : TKeyRepl icator<X>) { r econ f i g r [ o ] ; }

} ;
plug m into p

}

Consider that the container component inside of the target object (an instance of component
KeyReplicator) is plugged to a port c.q of another internal component named c. Then, the new
container (component CNewContainer) is introduced into the structure of the target object and its
port p is plugged to port c.q to replace the old implementation of the container.

This example demonstrates the smooth integration of the component model with the poly-
morphic mechanisms just introduced. Notice that, by means of parametric polymorphism we
are able to define reconfiguration actions at a high level of genericity.

6.6 ComponentJ

This section describes an experiment aim at the integration of the programming model pre-
sented in this work in a practical main-stream programming platform. To do so, we design a
glue language, in a glue language called componentJ, based on our component calculus, lc ,
and targeting the Java programming and run-time environment. The language componentJ is
an object-oriented imperative language where composition is preferred to implementation in-
heritance. Instead of classes and objects, the building blocks of componentJ applications are
components and objects.
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Unlike related approaches to the integration of component-based programming in object-
oriented languages, such as Jiazzi [74], which is derived from the Unit’s model [44], or more
recently in Smart Modules [8], derived from the CMS calculus [11], we define components as
first-class citizens, exactly as in lc , and component composition as a run-time operation, rather
than a static linking procedure performed before run-time. Although componentJ includes both
compositional and computational fragments, thus forming a general purpose language, we en-
visage it more as a glue and scripting language for componentJ and Java components. The
componentJ language may be either used as the main language of a program, possibly control-
ling native Java components, or, the other way around, componentJ components can be used in
Java programs.

Java was chosen as a template for the design of the scripting fragment of componentJ, and
the Java environment as the target run-time environment not only due to its widespread use
but also due to the presence of useful system level mechanisms such as dynamic loading, late
binding, decoupling between types and implementation (interfaces and single inheritance),
type safe reference semantics, and implicit garbage collection, all combined in a statically and
strongly typed language. Another programming language based on lc , componentGlue was
also developed in the context of [39], but targeting the .NET platform.

To adapt our programming model to a practical language, a set of constraints were imposed
on the initial design. The most significant ones are related to typing. Unlike type equivalence
(and subtyping) in lc , which is uniformly defined on the structure of types, componentJ sub-
typing for primitive types and port interfaces is based on type names. It turns out that a com-
pletely general structural subtype relation is hard to implement efficiently in the JVM because,
by design, it adopts a nominal subtype relation based on an explicitly typed hierarchy of classes
and interfaces. Nevertheless, when adding component types to the Java platform we preserved
our intended design, relying on structural type equivalence to compare them.

We also have implemented a prototype componentJ compiler1 which allows one to exper-
iment with the language. Although the current compiler’s implementation does not cover all
features of our model, it allows us to play with a significant part of the language. Besides the
examples provided in the component binary package, which illustrate the basic implemented
features, the language was also tested in the context of a research project (DataBricks) [73],
where, in collaboration with colleagues from the distributed systems area, it helped to modu-
larly define a framework for data management in mobile applications.

The most significant features of the component calculus which have not been covered by
the current compiler implementation are the reconfiguration of component instances and first-
class composition operations.

A more detailed description of the componentJ system can be found in appendix B.

1This compiler can be downloaded from the author’s web page: http://www-ctp.di.fct.unl.pt/⇠jcs.

http://www-ctp.di.fct.unl.pt/~jcs
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6.7 Remarks

This concludes the presentation of our programming model featuring dynamic composition
and reconfiguration of objects at the programming language level. In the preceding chap-
ters, we have incrementally showed how these concepts can be abstracted in language con-
structs and how configurators and components can be freely combined to support the pro-
gramming of software construction and software maintenance operations which are typical of
the Component-Oriented Paradigm. We also showed how these constructs can be decorated
with type annotations in order to statically ensure the absence of run-time errors.

In this chapter, we have presented the integration of our language with other standard pro-
gramming language mechanisms such as inclusion and parametric polymorphism and recur-
sive types. The uniform extension of the language with subtyping and bounded type abstrac-
tion allows for the manipulation of generic component and configurator values. Notice that
the structure of component and configurator types is such that it also allows for the definition
of structural subtyping relations based on services and resources.

It is interesting to observe the interaction of subsumption on configurators, components,
and objects values with the composition and reconfiguration mechanisms. We know that, by
subsumption, it may be the case that a component value has less required ports than the ones
known at compile-time. If this happens when a component is introduced in a composition
then there are plug operations whose target port does not exist. These are quite harmless plug
operations that try to implement a service that is not actually needed. Notice that the subtyp-
ing relation on configurator types presented in 6.4 also introduces this kind of vacuous plug
operations. Nevertheless, our type system ensures that all the essential connections are still
performed.

Soundness of object structures is also preserved when subsumption and reconfiguration
interact. We have showed that reconfiguration may change the interface of an object, it may
add new provided ports to an object, which become accessible in the successful branch of the
reconfig r[o] expression. The type system statically ensures that there are no conflicts between
the port names which are known and the newly introduced ones. However, by subsumption,
some ports of an object which may not be known at compile-time may be replaced causing an
apparent conflict. Observe that reconfiguration works by applying the composition operations
to the target instance, thus obtaining a modified copy of the original object value. It turns out
that object values are only a facade for a network of elements that actually implements their
behaviour. On reconfiguration actions, a new object value is produced which still leads to the
object’s network of elements. However, the old facade is preserved and therefore the appar-
ently conflicting ports are kept in different contexts and all connections inside the instance are
kept consistent, thus avoiding any kind of disruption.
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We next conclude the dissertation by summarising the main results and emphasising the
main characteristics of our programming model.



Chapter 7

Conclusions

In this dissertation we have presented a programming model we believe captures the essence of
the Component-Oriented programming paradigm. We have introduced and justified a notion
of software components as stateless entities which are capable of producing service-providing
executable objects and that define the behaviour of such objects by aggregation and adaptation
of other components. We instantiated our model in a core programming language where soft-
ware management operations, typical of component-based systems, are abstracted by typeful
programming language constructs.

Our model follows some basic design principles which state that all implicit dependen-
cies between components should be made explicit at compile-time, that the construction of
program structures should be controlled by run-time mechanisms, and that the evolution of
software should be possible at the level of objects. An overall principle is that the operations
introduced following the principles above should be verifiable at compile-time following a
typeful programming language design.

We next enumerate the main characteristics of the model we propose.
The first aspect of our model that is worth noting is that the units of code reuse in our model

are components, which are linked structures of components and scripting blocks, and config-
urators, which are composition operations. Both configurators and components are first-class
values, that can be freely combined according to their type information using all the com-
putational power of the base language. This allows the computation of all sorts of dynamic
compositions of components and configurators, which may depend on run-time information
and locally available elements.

Although the construction of configurator and component values depends on computa-
tions in a programming language with full computational power, and thus may not terminate,
configurator values represent first-class programs in a language (that of the composition oper-
ations) which are executed in isolation with relation to the remaining computations. We ensure

169
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that all configuration programs terminate. As noted in the end of Section 3.1.1, this separation
closely relates to the issue of phase distinction [22].

This separation between the definition of program structures and its actual realisation is
also present in the nature of configurator and component values. Configurators and compo-
nents are stateless values of the language that can be used to create and modify object struc-
tures at run-time. This is particularly useful in a distributed setting, where both components
and configuration scripts may need to be stored and loaded from remote locations, or passed
around in communication channels.

Another important characteristic of our model, is that composition operations form a declar-
ative language (that describes the final structure of a component or object instead of describing
how to achieve it) that uniformly expresses both the composition of configurators and com-
ponents, and the reconfiguration of objects. We have defined a small set of elementary com-
position operations (perhaps minimal) that may be incrementally combined to obtain more
elaborate composition operations. Each elementary operation produces a distinguished effect
on defining a component or reconfiguring an object.

The consistency of component compositions, and hence of object structures, is statically
enforced by a type system. Although defined from rather standard language constructs (a
l-calculus with mutable records), our language does not seem straightforwardly encodable,
in a type preserving way, in such a canonical language, due to the presence of intensional
information at the level of types, which assigns to configurator values type information not
related to their behaviour (during computation) but instead denotes the effect they produce on
object structures.

Due to information hiding on objects and components, type safety of reconfiguration ac-
tions on objects results from a combination of static type checking with a localised and efficient
dynamic type check. Run-time type information is kept in objects and configurators to support
this test. Furthermore, configurator composition requires computation with type information
to take place. An analogy can be made to some approaches to mobile code and dynamic load-
ing of code that use hashing or signature information. Our model has the additional advantage
that we obtain this information by direct composition of the information in configurator values
instead of (re)processing the source that generated them. Since we can (re)check the type infor-
mation in the configurator values against the operations they contain, this mechanism can also
be seen as a simple form of proof carrying code [75].

The last addition to our model showed that subtyping and bounded parametric polymor-
phism work uniformly with components and configurators thus allowing for generic compo-
nents and configurators to be transmitted in communication channels. Structural subtyping
relations on component types are based on the declared services they require or provide, thus
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defining a flexible way of reusing components. Although not formally integrated in the model,
we also use intensional type information to sketch a subtyping relation on configurator types.

In addition to the component-based programming model, we have developed new tech-
niques that apply to the subtyping problem of second-order equi-recursive types. We devel-
oped them on a standard and canonical second-order l-calculus, kernel-Fun, and then applied
them to our component language. We uniformly extended a standard approximation to first-
order equi-recursive types with explicit management of type variables and a similarity relation
on subtyping judgements. The result is a coinductive definition of the subtyping relation and
the corresponding subtyping algorithm which is significantly simpler than other existing ap-
proaches. In particular, our approach extends a standard coinductive algorithm with relevant
differences in its halting condition where we consider our similarity relation instead of stan-
dard syntactic equivalence.

All the characteristics mentioned above are formally defined in the programming languages
presented in this dissertation. Big step operational semantics and type systems are defined and
combined in order to prove type safety for these constructions. An initial draft of our model
was published in [81] and the more important results were formally presented in [87, 88].

The work enclosed in this dissertation is by no means complete, many topics remain un-
studied, either because they represent branching matters towards other areas, like the inte-
gration with distribution and concurrency in our model [39], or they represent an undesired
widening of the focus we imposed to ourselves, such as the issue of state transformation on
reconfiguration actions. We next describe some possible directions where to use and expand
the obtained results.

At the level of the component calculus, it is conceivable, in principle, to extend the appli-
cation of reconfiguration not only to objects, but also to component values. We refrained from
pursuing that because it does not seem to increase the expressiveness of our language, and
lacks pragmatical motivation. Nevertheless, this points to possible developments of a compo-
nent versioning mechanism, at the level of the supporting platform, which would centralise the
evolution of components and consequently of all their instances. Persistency of these changes
is also an issue that can be studied in this setting. Some more developments are also needed, at
the level of a practical supporting framework, for instance, to implement the dynamic loading
of typed component values.

We modelled dynamic reconfiguration of instances based on the internal structure of ob-
jects, regardless of their state. The evolution of state is not treated in our proposal, and can be
explicitly expressed in the base language. However, it would be interesting to investigate safe
ways of evolving the state of objects in the context of a reconfiguration in our model. Namely,
an embryo was already put into practise in the context of componentJ prototype compiler. The
idea consists on freezing the state of an object and producing a component out of it. This com-
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ponent can then produce instances whose initial state is the frozen state of the original instance.
The object’s configuration, given by the connections to its required ports, is undone. Thus, the
new component must be configured again in the new instantiation context.

In terms of the fundamental results on subtyping of recursive second-order types, it would
also be interesting to investigate more flexible typing relations, involving subtyping, polymor-
phism, and recursive types, along the lines of [87] to which our results apply. Namely, the
ones that fit better the object-oriented style. For instance, in usual class-based languages object
types are usually extended by adding more methods rather than refining the signatures of ex-
isting ones. A subtyping relation that relates the bounds of type parameters in this width-only
subtyping discipline fits the necessary conditions to define a correct subtyping algorithm. A
precise characterisation of these relations remains to be done.

Another unexplored aspect relates to the representation of abstract data types in our model.
As in any object-oriented language, binary methods based on interface types hide the internal
details of objects passed as arguments. This hinders the definition of binary relations on values
with the same implementation, which is quite natural, in class-based languages, by using class
names, which are types and references to a particular implementation. Our model could be
orthogonally extended with pure abstract data types by means of bounded existential types
exported by components. This would surely involve, in the case of reconfiguration, the us-
age of versioning techniques like the ones described in [90, 37], to tackle conversions between
different versions of abstractly typed values.

From our point of view, the present work surely represents a firm step into the construction
of programming language mechanisms that capture the essence of the Component-Oriented
programming paradigm. The composition of independently developed and possibly distributed
executing services yields the need for increasing support, not only at the binary level of bind-
ing, but also at the programming language level, with proper abstraction and verification
mechanisms. This work establishes ground for basic type checking verification of software
composition and leaves an open track to investigate the usage of more sophisticated forms of
typing for services.



Appendix A

Complete proofs

A.1 Chapter 2

In this section we give the detailed proofs of the lemmas in chapter 3.
(This is a repetition of Theorem 2.24, defined in page 37.)

Theorem 2.24 (Subject Reduction). Let (e; S) be a valid configuration in lt
R\{nil} and let G be a

typing environment typing S and nil(S) = ∆:
If G ` e : t and e; S # v; S0 then:

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, or a location that is either undefined or refers-to a record, and

d) such that nil(S0) = ∆.

Proof. We prove this theorem by induction on the height of the evaluation derivation and in
the cases of the last rule used, we show in the cases that evaluate to wrong that these rules are
never applicable.

Case: (Eval Value)

If v is a location, then it must be correctly typed by G and therefore the lemma holds by defini-
tion 2.21. If v is a record then its locations are correctly typed in G and the lemma also holds. If
v is an abstraction the conclusions of the theorem hold with G0 = G, S0 = S, and v = lx : t.e.
We also have that nil(S0) = ∆.

Case: (Eval Application)t

In this case, with e1(e2); S # v; S0, we know by Rule (Eval Application), that: a) e1; S # lx : t.e; S0,
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b) e2; S0 # v2; S00, and c) e[x v2]; S00 # v; S000. On the typing derivation, the only plausible last
rule for G ` e1(e2) : s is Rule (Val Application), with the premises: d) G ` e1 : t ! s and e)
G ` e2 : t.

Taking d) and a), by induction hypothesis we conclude that there is a G0 extending G and
typing S0, such that f) G0 ` lx : t.e : t ! s. By Lemma 3.24 (weakening) on e) we conclude that
G0 ` e2 : t, which together with b), by induction hypothesis, there is a G00 extending both G0 and
G and typing S00 such that g) G00 ` v2 : t and nil(S00) = ∆. From f), by Lemma 3.24 (weakening)
and Rule (Val Abstraction) we have that G00, x : t ` e : s and by Lemma 3.28 (substitution) with
g) we have that h) G00 ` e[x v2] : s. Taking h) and c), by induction hypothesis we have that
there is G000 extending G00 and typing S000, such that v is typed G000 ` v : s and v is either an
abstraction or a location that is either undefined or refers-to a record, and nil(S000) = ∆.

Case: (Eval Record)

When the last rule is (Eval Record) we have the hypothesis [`i = ei
i21..n]; S0 # l; S0 with S0 =

Sn[li 7! vi
i21..n][l 7! {`i = li

i21..n}] and G ` [`i = ei
i21..n] :{|`i : ti

i21..n|}. By the Rules (Val Record)
and (Eval Record), we have that a) G ` ei : ti and b) ei; Si�1 # vi; Si with i 2 1..n. By iterating the
induction hypothesis with a) and b), and using Lemma 3.24 (weakening) to adjust the typing
environment in the hypothesis, we reach the conclusion that, for all i 2 1..n, there is a Gi extend-
ing Gi�1 and typing each Si, with G0 = G such that Gi ` vi : ti and nil(Si) = ∆. So, by transitivity,
we have that Gn types Sn and extends G with nil(Sn) = ∆. By Rule (Val Record Value) and Def-
inition 2.21 we have that G0 = Gn, l : {|`i : ti

i21..n|} types S0 and that G0 ` l : {|`i : ti
i21..n|} with

relation to S0. We have that l is a location that refers-to a record and nil(S0) = ∆.

Case: (Eval Assign)

In this case, from e1.` := e2, by Rule (Eval Assign), we have that a) e1; S # l; S0 with l

0 =
derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}, and b) e2; S0 # v; S00. By Rule (Val Assign), we have
that G ` (e1.` := e2) : s is supported by c) G ` e1 : {| . . . , ` : s, . . . |} and d) G ` e2 : s. Thus, from
a) and c), by induction hypothesis we know that there is a G0 extending G and typing S0 such
that G0 ` l : {| . . . , ` : s, . . . |} and nil(S0) = ∆. By Definition 2.21 we conclude that for some
l

0 = derefS0(l) we have S0(l0) = {. . . , ` = l

00, . . .} and that G ` S0(derefS0(l)) : {| . . . , ` : s, . . . |}.
By rule (Val Record) we conclude that e) G0 ` l

00 : s. From b), by Lemma 3.24 (weakening)
we obtain G0 ` e2 : s, and by induction hypothesis together with d) we have that there is a
G00 extending G0 and typing S00 such that f) G00 ` v : s. and nil(S00) = ∆. G0 types S00[l 7! v]
and the result of the assignment expression is v, and v is not nil we conclude this case with
nil(S00[l 7! v]) = ∆. with v satisfying the conclusions of the theorem.

Case: (Eval Select)

If the last rule used is (Eval Select) then we have that a) e1; S # l; S0 with l

0 = derefS0(l) and
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S0(l0) = {. . . , ` = l

00, . . .}. On the typing relation we have that c) G ` e : {| . . . , ` : t, . . . |}. From
a) and c), by induction hypothesis we know that there is a G0 extending G and typing S0 such
that G0 ` l : {| . . . , ` : s, . . . |} and nil(S0) = ∆. By Definition 2.21 we conclude that for some
l

0 = derefS0(l) we have S0(l0) = {. . . , ` = l

00, . . .} and that G ` S0(l0) : {| . . . , ` : s, . . . |}. By Rule
(Val Record) we conclude that e) G0 ` l

00 : s. By Definition 2.21 we conclude that G0 ` S0(l00) : s.
Notice that nil(S0) = ∆.

We now look into the cases where the evaluation yields wrong and show that these rules are
not applicable to well-typed expressions.

Case: (Wrong Call)

For a application to be well-typed we must have G ` e1(e2) : s. Then, by inspection of the
type system, we conclude that the only typing rule that may derive this judgment is Rule
(Val Application), and therefore we have a) G ` e1 : t ! s and b) G ` e2 : s. We also have
that c) e1; S # v; S0 which by induction hypothesis lets us conclude that there is a G0 typing
S0 such that G ` v : t ! s and v is an abstraction. Therefore if an application expression is
well-typed, the Rule (Wrong Call) is never applicable.

Case: (Wrong Assign)

If G ` e1.` := e2 : t then by Rule (Eval Assign) we know that a) G ` e1 : {| . . . , ` : t, . . . |}. The
evaluation hypothesis has the premise b) e1; S # v; S0. Taking a) and b), by induction hypothesis
we know that there is G0 typing S0 and extending G such that G ` v : {| . . . , ` : t, . . . |} and v must
be a location leading to a record. Thus Rule (Wrong Assign) is never applicable to well-typed
assignment expressions.

Case: (Wrong Assign 2)

Following the reasoning from the previous case, we have G ` l : {| . . . , ` : t, . . . |} and that l is a
location leading to a record. By Definition 2.21 we know that G ` S(l) : {| . . . , ` : t, . . . |} which
by Rule (Val Record) must contain the label ` and therefore Rule (Wrong Assign 2) is also never
applicable.

Case: (Wrong Select). Similar.

Case: (Wrong Select 2). Similar.

In this way we conclude that all evaluation derivations on well-typed expressions must
contain only rules of Figure 2.8 and therefore the subject reduction property holds in the oper-
ational semantics defined in Definition 2.16

(This is a repetition of Lemma 3.29, defined in page 69.)
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Lemma 3.29 (Subject Reduction).

1. Let (e; S) be a valid configuration in lt
c\{nil} such that nil(S) = ∆ and let G be a typing envi-

ronment typing S such that e and S are record-based with relation to G.

If G ` e : t and (e; S # v; S0) then:

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, a configurator, a component, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.

2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S and S is
record-based with relation to G.

Let s be a partially linked object s such that it conforms with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If (r, e, p); c; S + (r0, e0, p0); S0 then

a) there is G0 typing S0 and extending G,

b) s0 = (r0, e0, p0) is a partially linked object that extends s and conforms with K0. Its partially
linked object type is [[R, K0/ ) P, K0.]], and

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.

Proof. The proof is carried out by induction on the two cases of the lemma. On the first case,
we prove it by induction on the height of the evaluation derivation and in the cases of the last
rule used. We use the second case when needed and its conditions are met. We show, in the
cases that evaluate to wrong, that these rules are never applicable.

Case: (Eval Value)

The conclusions of the theorem hold with G0 = G, S0 = S, and G0 ` v : t. We also have that
nil(S0) = ∆.

Case: (Eval Application)t

In this case, with e1(e2); S # v; S0, we know by Rule (Eval Application), that: a) e1; S # lx : t.e; S0,
b) e2; S0 # v2; S00, and c) e[x v2]; S00 # v; S000. On the typing derivation, the only plausible last
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rule for G ` e1(e2) : s is Rule (Val Application), with the premises: d) G ` e1 : t ! s and e)
G ` e2 : t.

Taking d) and a), by induction hypothesis we conclude that there is a G0 extending G and
typing S0, such that f) G0 ` lx : t.e : t ! s. By Lemma 3.24 (weakening) on e) we conclude
that G0 ` e2 : t, which together with b), by induction hypothesis, implies that there is a G00

extending both G0 and G and typing S00 such that g) G00 ` v2 : t and nil(S00) = ∆. From f),
by Lemma 3.24 (weakening) and Rule (Val Abstraction) we have that G00, x : t ` e : s and by
Lemma 3.28 (substitution) with g) we have that h) G00 ` e[x v2] : s.

Taking h) and c), by induction hypothesis we have that there is G000 extending G00 and typing
S000, such that v is typed G000 ` v : s and v is either an abstraction, a configurator, a component,
or a location that is either undefined or refers-to a record, and nil(S000) = ∆.

The application of induction hypothesis to the different premises and the application of
Lemma 3.28 ensures that v and S000 are record-based.

Case: (Eval Record)

When the last rule is (Eval Record) we have the hypothesis [`i = ei
i21..n]; S0 # l; S0 with S0 =

Sn[li 7! vi
i21..n][l 7! {`i = li

i21..n}] and G ` [`i = ei
i21..n] :{|`i : ti

i21..n|}. By Rules (Val Record)
and (Eval Record), we have that a) G ` ei : ti and b) ei; Si�1 # vi; Si with i 2 1..n. By iterating the
induction hypothesis with a) and b), and using Lemma 3.24 (weakening) to adjust the typing
environment in the hypothesis, we reach the conclusion that, for all i 2 1..n, there is a Gi extend-
ing Gi�1 and typing each Si, with G0 = G such that Gi ` vi : ti and nil(Si) = ∆. So, by transitivity,
we have that Gn types Sn and extends G with nil(Sn) = ∆. By Rule (Val Record Value) and Def-
inition 2.21 we have that G0 = Gn, l : {|`i : ti

i21..n|} types S0 and that G0 ` l : {|`i : ti
i21..n|} with

relation to S0. We have that l is a location that refers-to a record and nil(S0) = ∆. The result
is a location typed by a record type and therefore it is record-based. The resulting heap is also
record-based since all the introduced values are record-based (by induction hypothesis).

Case: (Eval Assign)

In this case, from e1.` := e2, by Rule (Eval Assign), we have that a) e1; S # l; S0 with l

0 =
derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}, and b) e2; S0 # v; S00. By Rule (Val Assign), we have
that G ` (e1.` := e2) : s is supported by c) G ` e1 : {| . . . , ` : s, . . . |} and d) G ` e2 : s. Thus,
from a) and c), by induction hypothesis we know that there is a G0 extending G and typ-
ing S0 such that G0 ` l : {| . . . , ` : s, . . . |}. and nil(S0) = ∆. By Definition 2.21 we conclude
that S0(derefS0(l)) = {. . . , ` = l

00, . . .} and that G ` S0(derefS0(l)) : {| . . . , ` : s, . . . |}. By rule
(Val Record) we conclude that e) G0 ` l

00 : s. From b), by Lemma 3.24 (weakening) we obtain
G0 ` e2 : s, and by induction hypothesis together with d) we have that there is a G00 extending
G0 and typing S00 such that f) G00 ` v : s. and nil(S00) = ∆. G0 types S00[l 7! v] and the result of
the assignment expression is v, and v is not nil we conclude this case with nil(S00[l 7! v]) = ∆.
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with v satisfying the conclusions of the theorem. Value v is record-based and it is introduced
inside a record, so the resulting heap S00[l 7! v] is also record-based.

Case: (Eval Select)

If the last rule used is (Eval Select) then the expression e.` can be typed by two possible rules.
In both cases we have that a) e1; S # l; S0 with l

0 = derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}.
The subcases are:

Subcase: (Val Select)

Now, in this case we have that c) G ` e : {| . . . , ` : t, . . . |}. From a) and c), by induction hypothesis
we know that there is a G0 extending G and typing S0 such that G0 ` l : {| . . . , ` : s, . . . |} and
nil(S0) = ∆. By Definition 2.21 we conclude that for some l

0 = derefS0(l) we have S0(l0) =
{. . . , ` = l

00, . . .} and that G ` S0(l0) : {| . . . , ` : s, . . . |}. By Rule (Val Record) we conclude that
e) G0 ` l

00 : s. By Definition 2.21 we conclude that G0 ` S0(l00) : s. Notice that nil(S0) = ∆. The
resulting value results from consulting a record in a record-based heap, so, it is also record-
based.

Subcase: (Val Select Interface)

In this case we know that c) G ` e : {. . . , ` : t, . . .} and therefore, by induction hypothesis (from
a) and c) ), that e1 yields an interface typed value (l). By inspection of the type system (Def-
inition 3.18) we see, by Rule (Val Select Interface), that G ` l : {| . . . , ` : t, . . . |} and then the
reasoning follows by applying Definition 2.21 and Rule (Val Record) as in the subcase above.

Case: (Eval Compose)

We have the typing G ` compose e : K/ ) K. supported by G ` e : ∆ =) K where K� = ∆.
The evaluation hypothesis is compose e; S # comp(c); S0 where e; S # conf(c); S0. By induction
hypothesis we have that there is a G0 extending G, that types S0 and G0 ` conf(c) : ∆ =) K and
nil(S0) = ∆. By Rule (Val Configurator Value) we know that G0 ` c : ∆ =) K, and by Rules
(Val Compose) and (Val Composition Value) we conclude that G0 ` comp(c) : K/ ) K.. with G0

extending G and typing S0, and with the resulting value being a component value. From the
application of the induction hypothesis we also conclude that nil(S0) = ∆ and that the value
comp(c) is record-based.

Case: (Eval New)

The hypothesis G ` new e with `r
j := ej

j21..n : {`p
i : si

i21..n} is obtained by Rule (Val New) with
the premises G ` e : t with t = {`r

j : tj
j21..m} ) {`p

i : si
i21..n}. new is evaluated by Rule

(Eval New), thus, if new e with `r
j := ej

j21..m; S # l; S0, then we must have e; S # comp(c); S0.
By induction hypothesis we have that there is a G0 extending G such that G0 ` comp(c) : t and
nil(S0) = ∆.
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Now, notice that then presentation order of the premises in the rule does not correspond
to the real dependence between them. For technical reasons, the plug-assignments must be
considered first in this proof. By iteratively applying Lemma 3.28 (substitution), the induction
hypothesis, and Lemma 3.24 (weakening) on the typing and evaluation judgements of each
plug-assignment expression, (G ` ei : ti) and (ei; Si�1 # vi; Si), we obtain that for all i 2 1..n we
have Gi extending Gi�1 and typing Si such that Gi ` vi : ti and nil(Si) = ∆. Notice that all vi and
Si are record-based.

By Lemma 3.24 (weakening) on the typing of comp(c) and Rule (Val Composition Value) we
have Gn ` c : ∆ =) K and K� = ∆, with type t = K/ ) K. thus K/ = {`j : tj

j21..m}. Notice that
the judgement above applies c to the empty instance (0; c; Sn + s; Sn+1), and that nil(Sn) = ∆
meets the conditions of the second part of the lemma with X = ∆. In this case, 0 conforms
with the resource list ∆ and has type [[{} ) {}]]. By induction hypothesis on the second case
of the lemma, we have that there is a Gn+1 extending Gn and the resulting instance s conforms
with K with the partial type [[K/ ) K.]]. We know that the locations of the required ports are
{li

i21..n} = {selectS0(s, `) | (` : t) 2 K/} and that nil(S0) ✓ {selectS0(s, `) | (` : t) 2 K/}.
Gn+1 types Sn+1 and the locations in s/ = {`i = li

i21..n} are in Sn. From the conformance
of s with K, Definition 3.23, and Rule (Val Record) we know that Gn+1 ` s : {| . . . , `p

j : sj
j21..m|}

where K. = {`p
j : sj

j21..m} and by Rule (Val Interface), we have a G0 = Gn+1, l : K., extending
G, and typing Sn+1[l 7! s][li 7!vi

i21..n]. We finally have that l is a location that refers-to an
object, which is a record, such that G0 ` l : K. with K. = {`p

j : sj
j21..m}. Finally, since vi 6= nil

for all i 2 1..n we have that nil(Sn+1[l 7! s][lj 7!vj
j21..m]) = ∆ with s being the newly created

instance. Notice that l and Sn+1[l 7! s][lj 7!vj
j21..m] are record-based.

Case: (Eval Requires)

The typing hypothesis for this case is G ` (requires ` : I) : s with s = ∆ =) {` • I, ` / I} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value), we
have G0 ` conf(requires ` : I) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Provides)

The typing hypothesis for this case is G ` (provides ` : t) : s with s = ∆ =) {` � t, ` . t} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value), we
have G ` conf(provides ` : t) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Plug)

The typing hypothesis for this case is G ` plug (p1 : t) into (p2 : t) : s with
s = ({p2 � t, p1 • t} =) {p1 • t}) where the expression plug (p1 : t) into (p2 : t) evaluates to
a configurator. By Rule (Val Configurator Value), we have G ` conf(plug (p1 : t) into (p2 : t)) : s

with G0 = G and S0 = S with nil(S0) = ∆.
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Case: (Eval Method Block)

The typing hypothesis for this case is G ` xK[`i : ti = ei
i21..n] : s with

s = K =) K, {x • {`i : ti
i21..n}} where the expression xK[`i : ti = ei

i21..n] evaluates to a config-
urator. By Rule (Val Configurator Value), we have G ` conf(xK[`i : ti = ei

i21..n]) : s with G0 = G

and S0 = S with nil(S0) = ∆.

Case: (Eval Uses)

The evaluation of this expression produces a configurator where e is replaced by its resulting
value, x[e : t ) s]; S # conf(x[v : t ) s]); S0. The typing judgment implies G ` x[e : t ) s] :
∆ =) K with t = {`r

i : ti
i21..n}, s = {`p

j : sj
j21..m} and K = {x • s, x.`r

i � ti
i21..n, x.`p

j • sj
j21..m}.

We have that G ` e : t ) s and e; S # v; S0, which by induction hypothesis on the first part
of the lemma implies that there is a G0 extending G such that G0 ` v : t ) s and nil(S0) = ∆.
The resulting value and the resulting heap are record-based by the application of the induction
hypothesis.

We conclude, by Rule (Val Configurator Value), that G0 ` conf(x[v : t]) : ∆ =) K and there-
fore there is G0 extending G and G0 ` conf(x[v : t]) : ∆ =) K.

Case: (Eval Sequence)

By induction hypothesis we reach the conclusion that there is a G0 extending G and typing S0

such that G0 ` conf(c1) : K =) K0, Kc and nil(S0) = ∆. Also by induction hypothesis, there is G00

extending both G0 and G and typing S00 such that G00 ` conf(c2) : Kc, K00 =) K000 and nil(S00) = ∆.
By Rule (Val Configurator Value) we conclude that G00 ` conf(c1; c2) : K, K00 =) K0, K000. The
resulting value and the resulting heap are record-based by the application of the induction
hypothesis.

We follow by proving that well-typed expressions never evaluate to wrong.

Case: (Wrong Call)

For a application to be well-typed we must have G ` e1(e2) : s. Then, by inspection of the
type system, we conclude that the only typing rule that may derive this judgment is Rule
(Val Application), and therefore we have a) G ` e1 : t ! s and b) G ` e2 : s. We also have
that c) e1; S # v; S0 which by induction hypothesis lets us conclude that there is a G0 typing
S0 such that G ` v : t ! s and v is an abstraction. Therefore if an application expression is
well-typed, the Rule (Wrong Call) is never applicable.

Case: (Wrong Assign)

If G ` e1.` := e2 : t then by Rule (Eval Assign) we know that a) G ` e1 : {| . . . , ` : t, . . . |}. The
evaluation hypothesis has the premise b) e1; S # v; S0. Taking a) and b), by induction hypothesis
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we know that there is G0 typing S0 and extending G such that G ` v : {| . . . , ` : t, . . . |} and v must
be a location leading to a record. Thus Rule (Wrong Assign) is never applicable to well-typed
assignment expressions.

Case: (Wrong Assign 2)

Following the reasoning from the previous case, we have G ` l : {| . . . , ` : t, . . . |} and that l is a
location leading to a record. By Definition 2.21 we know that G ` S(l) : {| . . . , ` : t, . . . |} which
by Rule (Val Record) must contain the label ` and therefore Rule (Wrong Assign 2) is also never
applicable.

Case: (Wrong Select). Similar.

Case: (Wrong Select 2). Similar.

Case: (Wrong Compose)

If G ` compose e : K/ ) K. then we know that G ` e : ∆ =) K by induction hypothesis we
have a G0 extends G and types S0 and that v is a value such that G ` v : ∆ =) K. This value can
only be a configurator value. So wrong is never issued by Rule (Wrong Compose).

Case: (Wrong New)

If G ` new e with `r
j := ej

j21..m : s, by Rule (Val New), we have that G ` e : t ) s and that
e; S # v; S0. By induction hypothesis we obtain that there is a G0 extending G and typing S0 such
that v is a component value (other possible values have different types). This is contradicts the
application of (Wrong New).

Case: (Wrong Sequence)

If G ` e1; e2 : K, K00 =) K0, K000 then G ` e1 : K =) K0, Kc and, as e1; S # v; S we know, by
induction hypothesis, that there is G0 extending G and typing S0 such that v is a configurator
value with G0 ` v : K =) K0, Kc. Once again, we find a contradiction.

Case: (Wrong Sequence 2). Similar.

The second part of the lemma states that the application of a configurator to an instance
causes an effect consistent with the type of the operation. This proof is done by induction on
the height of the derivations and by case analysis of the last evaluation rule used. We use the
first part of the lemma when necessary.

Case: (App Provides)

In this case we have an expression typed G ` (provides ` : t) : ∆ =) {` � t, ` . t} and an in-
stance s = (r, e, p) that conforms with ∆. The resulting instance, (r, e, p � {` = l}), trivially



182 APPENDIX A. COMPLETE PROOFS

conforms, by Definition 3.23, with the resource set {` � t, ` . t} and G0 = G, l : t types the heap
S[l 7! nil].

Since the set of demanded resources in the configurator type is empty we know that nil(S) ✓
X for some X. By Rule (App Provides) we know that selectS0(s0, `) = l and S0(l) = nil. More, l
is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So, {selectS0(s0, `) | (` :
t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds to the expected
results. With relation to the final instance type, we have that if the type of s is [[t ) s]] then the
partial type of s0 is [[t ) s� {` : t}]]. Since no record is introduced in the heap S[l 7! nil] is
still record-based.

Case: (App Requires)

In this case we have the typing judgment G ` (requires ` : t) : ∆ =) {` • t, ` / t} as hypothesis
and an instance s = (r, e, p) that conforms with ∆. The resulting instance, s0 = (r � {` =
l}, e, p), trivially conforms, by Definition 3.23, with the resource set {` • t, ` / t} and the typing
environment G0 = G, l : t, which also types the heap S0 = S[l 7! nil]. The resulting value is
well-typed according to Rule (Val Object).

Since the set of demanded resources in the configurator type is empty we have that nil(S) ✓
X for some X. By Rule (App Requires) we know that selectS0(s0, `) = l and that S0(l) =
nil. More, l is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So,
{selectS0(s0, `) | (` : t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds
to the expected results. With relation to the partially linked object type, we have that if the
initial type of s is [[t ) s]] then the partial type of s0 is [[t� {` : t}) s]] and the resulting heap
is record-based.

Case: (App Uses)

The expression x[v : t ) s] where t = {`r
i : ti

i21..n} and s = {`p
j : sj

j21..m} is typed by a
judgement G ` x[v : t ) s] : ∆ =) K with K = {x • s, x.`r

i � t0i
i21..n, x.`p

j • s0j
j21..m}. By Rule

(Comp Uses) we have that G ` v : t ) s. Rule (Val Composition Value) is the only one that
types a component value and therefore we have v = comp(c) with G ` c : ∆ =) K0 with
K0� = ∆ and (t ) s) = (K0/ ) K0.).

From the application judgement, s; x[v : t ) s]; S + s0; S0, we know that (new v); S # l; S0.
Since v only evaluates to itself with no changes to the heap, and there are no plug-assignments,
the evaluation of this new expression depends solely on 0; c; S + s; S00 with S0 = S00[l 7! s].

Since G ` x[v : t ) s] : ∆ =) K, where the set of demanded resources is empty, we
know that there is a set X such that nil(S) ✓ X. By induction hypothesis on the height of
the evaluation derivation we have that there is a G0 that types S00 and that the resulting value
s = (r0, e0, p0) conforms with K0 with the partially linked object type [[K0/ =) K0.]] with relation
to G00. We know that s0 = (r, e � {x 7! l}, p) and the store S0 are typed by G00 = G0, l :
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K0.. Notice that the instance type corresponding to [[t ) s]] is K0.. More, the instance s0

conforms, according to Definition 3.23, with the resource set K. By the induction hypothesis
we also know that nil(S00) ✓ {selectS00(s, `) | (` : t) 2 K0/} [ X with K0/ = {`r

i : ti
i21..n}. We

then conclude that, in the context of the containing instance, nil(S0) ✓ {selectS00(s0, p) | (p :
t) 2 {x.`r

i : ti
i21..n}} [ X. The partial type of the resulting object remains unchanged since no

required or provided ports are added to the instance.

Case: (App Method Block)

If G ` xK[`i : ti = vi
i21..n] : K =) K, {x • {`i : ti

i21..n}}, then by Rule (Comp Method Block),
we know that for all i 2 1..n, |G|, K•, x : {|`i : ti

i21..n|} ` vi : ti. Since (r, e, p) conforms with K
and vi[(r, e, p)][x l] denotes the substitution of the available names in the current instance
(r, e, p) by its locations, which are typed in G, by Lemma 3.24 (weakening) and Lemma 3.28
(substitution), we obtain G, x : {|`i : ti

i21..n|} ` vi[(r, e, p)] : ti for all i 2 1..n. Let G0 = G, l :
{|`i : ti

i21..n|} such that by Lemma 3.24 (weakening) and 3.28 (substitution) we have that G0 `
vi[(r, e, p)][x l] : ti for all i 2 1..n. So, we have that G0, li : ti

i21..n types the resulting heap
S0 = S[l 7! {`i 7!li

i21..n}][li 7!vi[(r, e, p)][x l] i21..n].
Since (r, e, p) conforms with K this makes the instance, (r, e � {x = l}, p), conform with

K0 = K, {x • {`i : ti
i21..n}}. No references are created in the heap that lead to nil, hence nil(S0) =

nil(S), and by considering the set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2 K/ [ K�} [ X
we have that nil(S0) ✓ {selectS(s, `) | (` : t) 2 K0/ [ K0�} [ X which is the same set. As in the
previous case, the partial object type remains unchanged. Notice that the original expressions
vi are record based and when replacing the locations of the object (which are also record-based)
the resulting values which are placed in the new record in the heap are record-based.

Case: (App Plug)

If D ` plug (p1 : t) into (p2 : t) : ({p2 � t, p1 • t} =) {p1 • t}) only the unsatisfied inner re-
quirements change, So K0� ✓ K�, with K = {p2 � t, p1 • t} and K0 = {p1 • t}. However,
the resulting instance is the same and by Definition 3.23 s conforms with K0. On the other
hand, the heap is changed to make the connection between the source and the target of the
plug operation. From the lemma’s hypothesis we know that nil(S) ✓ {selectS(s, `) | (` : t) 2
K/ [ K�} [ X. So, S(selectS(s, p2)) = nil and therefore nil(S[selectS(s, p2) 7! selectS(s, p1)]) ✓
{selectS(s, `) | (` : t) 2 K0/ [K0�}[X. This operation links two ports whose types are interface
types, so the heap stays record-based.

Case: (App Sequence)

We first prove that the resulting instance conforms with the type. The typing judgement D `
e1; e2 : K, K00 =) K0, K000 is supported by the premises D ` e1 : K =) K0, Kc and D ` e2 :
K0c, K00 =) K000. By induction hypothesis on the second case of the lemma, together with the
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application of e1 to an instance s which conforms with K we reach an instance s0which conforms
with K0, Kc. Since s0 extends s it also conforms with K00 and by Lemma 3.24 (weakening) and
induction hypothesis on the second case of the lemma together with the evaluation of e2 we
conclude that s00 conforms with K000. Since it extends s and s0 we conclude that it also conforms
with K0.

Now concerning the nil values in the heap. In the case of s; (c1; c2); S + s00; S00 with D `
(e1; e2) : K, K00 =) K0, K000 we have that there is a set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2
(K, K00)/ [ (K, K00)�}[X. By rewriting this definition we obtain nil(S) ✓ {selectS(s, `) | (` : t) 2
K/ [ K�} [ X0 with X0 = {selectS(s, `) | (` : t) 2 K00/ [ K00�} [ X. Given the application of the
first premise s; c1; S + s0; S0 typed D ` e1 : K =) K0, Kc, by induction hypothesis, we know that
nil(S0) ✓ {selectS(s, `) | (` : t) 2 (K0, Kc)/ [ (K0, Kc)�} [ X0. Which is the same as nil(S0) ✓
{selectS(s, `) | (` : t) 2 K0/ [K0�}[ {selectS(s, `) | (` : t) 2 Kc/ [Kc�}[ {selectS(s, `) | (` : t) 2
K00/ [ K00�} [ X. Again, by rearranging the definition we have nil(S0) ✓ {selectS(s, `) | (` :
t) 2 K00, Kc/ [ K00, Kc�} [ X00 with X00 = {selectS(s, `) | (` : t) 2 K0/ [ K0�} [ X. Given the
second premise evaluated by s; c1; S + s0; S0 and typed by D ` e2 : Kc, K00 =) K000, by induction
hypothesis we know that nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X00. As the
locations in X00 corresponding to the labels in K0 are already in this final set we conclude that
nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X.

Case: (Wrong Plug)

In this case, we would have that selectS(s, p1) is undefined. By Definition 3.7 we know that
either p1 = x or p1 = x.`.

Subcase: p1 = x

In this case we know that s conforms with {x • t, p2 � t} and by Definition 3.23 we know that
s = (r, e, p) and that r� e = {. . . , x = l, ...}. Hence, selectS(s, p1) must be defined.

Subcase: p1 = x.`

In this case we know that s conforms with {x.` • t, p2 � t} and by Definition 3.23 we know that
s = (r, e, p) and that e = {. . . , x = l, . . .} and that S(l) = (r0, e0, p0) and that p0 = {. . . , ` =
l

0, . . .}. Hence, selectS(s, p1) must be defined.
In both cases the rule is not applicable.

Case: (Wrong Uses)

If the expression is well-typed, we know that v is a value of type component (by Rule (Comp Uses))
and therefore the rule is not applicable.
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A.2 Chapter 3

In this section we give the detailed proofs of chapter 4.
(This is a repetition of Lemma 4.9, defined in page 97.)

Lemma 4.9. For all instances s and resource sets K, if s//K then s conforms with K.

Proof. The proof is done by induction on the height of the derivations of s//K with s = (r, e, p)G

and by case analysis on the last rule used.

Case: (Match Provides)

In this case we have that s//(` . t, K) and, by Rule (Match Provides), we have that G(s..`) = t

and s//K with s. = p. By induction hypothesis we know that s conforms with K. Therefore
conclude, by Definition 3.23 (compliance), that K. ✓ p with p = {`p

i : t
p
i

i21..np}. From G(s..`) =
t we know that ` must be one of the provided ports `p

i with i 2 1..np. So, we conclude that
(` : t, K.) ✓ {`p

i : t
p
i

i21..np} and that s conforms with (` . t, K).

Case: (Match Requires)

The result s//(` / t, K) is supported, by Rule (Match Requires), that G(s/.`) = t and that s//K
with s/ = r. By induction hypothesis we know that s conforms with K. Therefore we conclude,
by Definition 3.23 (conformance), that K/ ✓ r with r = {`r

i : tr
i

i21..nr}. From G(s/.`) = t

we conclude that ` must be one of the required ports `r
i with i 2 1..nr. So, we conclude that

(` : t, K/) ✓ {`r
i : tr

i
i21..nr} and that s conforms with (` / t, K).

Case: (Match Element)

If the last rule used is (Match Element), then s//(` • t, K) is supported by G(s•.`) = t and
that s//K with s/ = r. By induction hypothesis we know that s conforms with K. In this
case, we conclude, by Definition 3.23 (conformance) that the available resources are one of
the required ports, or one of the method blocks, one of the inner elements or a provided
port of an inner element: K• ✓ {`r

i : tr
i

i21..nr} [ {`m
i : tm

i
i21..nm} [ {`c

j .`
pj
h : g

j
h

j21..nc h21..mc
j , `c

i :

{`pi
h : gi

h
h21..mc

i }i21..nc}. From G(s•.`) = t we conclude that ` must be one of the required ports
`r

i with i 2 1..nr, one of the method blocks `m
i with i 2 1..nm, or one of the inner elements `c

i
with i 2 1..nc. Hence, s conforms with (` • t, K).

Case: (Match Unsatisfied)

If the last rule is (Match Unsatisfied) then s//(` � t, K) is supported by G(s�.`) = t and that
s//K with s� = r. By induction hypothesis we know that s conforms with K and, by Defini-
tion 3.23 (conformance), we know that K� ✓ {`p

i : t
p
i

i21..np} [ {`c
j .`

rj
h : d

j
h

j21..nc h21..nc
j }. From

G(s�.`) = t we conclude that ` must be one of the provided ports `p
i with i 2 1..np. Hence, s

conforms with (` � t, K).
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Case: (Match Element Port)

In the case of s//(x.` • t, K), by Rule (Match Element Port) we know that s//K and therefore,
by induction hypothesis, we know that it conforms with K. Thus, by Definition 3.23, we have
that K• ✓ {`r

i : tr
i

i21..nr} [ {`m
i : tm

i
i21..nm} [ {`c

j .`
pj
h : g

j
h

j21..nc h21..mc
j , `c

i : {`pi
h : gi

h
h21..mc

i }i21..nc}.
We also know, from Rule (Match Element Port), that s• = {. . . , x = l, . . .}, S(l) = s0, and

G0(s0..`) = t. Then we have that x is one of the inner components `c
j with i 2 1..nc, and that x.`

is one of its provided ports the `c
j .`

pj
h with t = g

j
h and j 2 1..nc and h 2 1..mc

j . This means that

K• ✓ {`r
i : tr

i
i21..nr} [ {`m

i : tm
i

i21..nm} [ {`c
j .`

pj
h : g

j
h

j21..nc h21..mc
j , `c

i : {`pi
h : gi

h
h21..mc

i }i21..nc} and
that s conforms with (x.` • t, K•).

Case: (Match Unsatisfied Port)

In the case of s//(x.` � t, K), by Rule (Match Unsatisfied Port) we know that s//K and therefore,
by induction hypothesis, we know that it conforms with K. Thus, by Definition 3.23, we have
that K� ✓ {`p

i : t
p
i

i21..np} [ {`c
j .`

rj
h : d

j
h

j21..nc h21..nc
j }.

We also know, from Rule (Match Unsatisfied Port), that s• = {. . . , x = l, . . .}, S(l) = s0,
and G0(s0/.`) = t. Then we have that x is one of the inner components `c

j with i 2 1..nc, and

that x.` is one of its required ports the `c
j .`

rj
h with t = d

j
h and j 2 1..nc and h 2 1..nc

j . This

means that (x.` � t, K�) ✓ {`p
i : t

p
i

i21..np} [ {`c
j .`

rj
h : d

j
h

j21..nc h21..nc
j } and that s conforms with

(x.` � t, K�).

(This is a repetition of Lemma 4.12, defined in page 98.)

Lemma 4.12 (Subject Reduction).

1. Let (e; S) be a valid configuration in lr\{nil} such that nil(S) = ∆ and let G be a typing envi-
ronment typing S such that e and S are record-based with relation to G.:

If G ` e : t and (e; S # v; S0) then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.

2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S.
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Let s be a partially linked object s such that it conforms with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If s; c; S + s0; S0 then

a) there is G0 typing S0 and extending G,

b) s0 is a partially linked object that extends s and conforms with K0. Its partially linked object
type is [[R� K0/ ) P� K0.]], and

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.

Proof. The proof is carried out by induction on the two cases of the lemma. On the first case,
we prove it by induction on the size of the evaluation derivations and by analysis of the last
rule used. We use the second case when needed and its conditions are met. We show, in the
cases that evaluate to wrong, that these rules are never applicable.

Case: (Eval Value)

The conclusions of the theorem hold with G0 = G, S0 = S, and v = lx : t.e. We also have that
nil(S0) = ∆.

Case: (Eval Application)t

In this case, with e1(e2); S # v; S0, we know by Rule (Eval Application), that: a) e1; S # lx : t.e; S0,
b) e2; S0 # v2; S00, and c) e[x v2]; S00 # v; S000. On the typing derivation, the only plausible last
rule for G ` e1(e2) : s is Rule (Val Application), with the premises: d) G ` e1 : t ! s and e)
G ` e2 : t.

Taking d) and a), by induction hypothesis we conclude that there is a G0 extending G and
typing S0, such that f) G0 ` lx : t.e : t ! s. By Lemma 3.24 (weakening) on e) we conclude that
G0 ` e2 : t, which together with b), by induction hypothesis, there is a G00 extending both G0 and
G and typing S00 such that g) G00 ` v2 : t and nil(S00) = ∆. From f), by Lemma 3.24 (weakening)
and Rule (Val Abstraction) we have that G00, x : t ` e : s and by Lemma 3.28 (substitution) with
g) we have that h) G00 ` e[x v2] : s. Taking h) and c), by induction hypothesis we have that
there is G000 extending G00 and typing S000, such that v is typed G000 ` v : s and v is either an
abstraction or a location that is either undefined or refers-to a record, and nil(S000) = ∆.

The application of induction hypothesis to the different premises and the application of
Lemma 3.28 ensures that v and S000 are record-based.

Case: (Eval Record)

When the last rule is (Eval Record) we have the hypothesis [`i = ei
i21..n]; S0 # l; S0 with S0 =

Sn[li 7! vi
i21..n][l 7! {`i = li

i21..n}] and G ` [`i = ei
i21..n] :{|`i : ti

i21..n|}. By the Rules (Val Record)
and (Eval Record), we have that a) G ` ei : ti and b) ei; Si�1 # vi; Si with i 2 1..n. By iterating the
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induction hypothesis with a) and b), and using Lemma 3.24 (weakening) to adjust the typing
environment in the hypothesis, we reach the conclusion that, for all i 2 1..n, there is a Gi extend-
ing Gi�1 and typing each Si, with G0 = G such that Gi ` vi : ti and nil(Si) = ∆. So, by transitivity,
we have that Gn types Sn and extends G with nil(Sn) = ∆. By Rule (Val Record Value) and Def-
inition 2.21 we have that G0 = Gn, l : {|`i : ti

i21..n|} types S0 and that G0 ` l : {|`i : ti
i21..n|} with

relation to S0. We have that l is a location that refers-to a record and nil(S0) = ∆. The re-
sulting heap is also record-based since all the introduced values are record-based (by induction
hypothesis).

Case: (Eval Assign)

In this case, from e1.` := e2, by Rule (Eval Assign), we have that a) e1; S # l; S0 with l

0 =
derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}, and b) e2; S0 # v; S00. By Rule (Val Assign), we have
that G ` (e1.` := e2) : s is supported by c) G ` e1 : {| . . . , ` : s, . . . |} and d) G ` e2 : s. Thus,
from a) and c), by induction hypothesis we know that there is a G0 extending G and typ-
ing S0 such that G0 ` l : {| . . . , ` : s, . . . |}. and nil(S0) = ∆. By Definition 2.21 we conclude
that S0(derefS0(l)) = {. . . , ` = l

00, . . .} and that G ` S0(derefS0(l)) : {| . . . , ` : s, . . . |}. By rule
(Val Record) we conclude that e) G0 ` l

00 : s. From b), by Lemma 3.24 (weakening) we obtain
G0 ` e2 : s, and by induction hypothesis together with d) we have that there is a G00 extending
G0 and typing S00 such that f) G00 ` v : s. and nil(S00) = ∆. G0 types S00[l 7! v] and the result of
the assignment expression is v, and v is not nil we conclude this case with nil(S00[l 7! v]) = ∆.
with v satisfying the conclusions of the theorem. Value v is record-based and it is introduced
inside a record, so the resulting heap S00[l 7! v] is also record-based.

Case: (Eval Select)

If the last rule used is (Eval Select) then the expression e.` can be typed by two possible rules.
In both cases we have that a) e1; S # l; S0 with l

0 = derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}.
The subcases are:

Subcase: (Val Select)

Now, in this case we have that c) G ` e : {| . . . , ` : t, . . . |}. From a) and c), by induction hypothesis
we know that there is a G0 extending G and typing S0 such that G0 ` l : {| . . . , ` : s, . . . |} and
nil(S0) = ∆. By Definition 2.21 we conclude that for some l

0 = derefS0(l) we have S0(l0) =
{. . . , ` = l

00, . . .} and that G ` S0(l0) : {| . . . , ` : s, . . . |}. By Rule (Val Record) we conclude that
e) G0 ` l

00 : s. By Definition 2.21 we conclude that G0 ` S0(l00) : s. Notice that nil(S0) = ∆. The
resulting value results from consulting a record in a record-based heap, so, it is also record-
based.

Subcase: (Val Select Interface)

In this case we know that c) G ` e : {. . . , ` : t, . . .} and therefore, by induction hypothesis (from
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a) and c) ), that e1 yields an interface typed value (l). By inspection of the type system (Def-
inition 3.18) we see, by Rule (Val Select Interface), that G ` l : {| . . . , ` : t, . . . |} and then the
reasoning follows by applying Definition 2.21 and Rule (Val Record) as in the subcase above.

Case: (Eval Compose)

We have the typing G ` compose e : K/ ) K. supported by G ` e : ∆ =) K where K� = ∆.
The evaluation hypothesis is compose e; S # comp(c); S0 where e; S # conf(t, c); S0. By induction
hypothesis we have that there is a G0 extending G, that types S0 and G0 ` conf(t, c) : ∆ =) K and
nil(S0) = ∆. By Rule (Val Configurator Value)r we know that G0 ` c : t and that t = ∆ =) K,
and by Rules (Val Compose) and (Val Composition Value) we conclude that G0 ` comp(c) :
K/ ) K.. with G0 extending G and typing S0, and with the resulting value being a component
value. From the application of the induction hypothesis we also conclude that nil(S0) = ∆ and
that the value comp(c) is record-based.

Case: (Eval New)

The hypothesis G ` new e with `r
j := ej

j21..n : {`p
i : si

i21..n} is obtained by Rule (Val New) with
the premises G ` e : t with t = {`r

j : tj
j21..m} ) {`p

i : si
i21..n}. new is evaluated by Rule

(Eval New), thus, if new e with `r
j := ej

j21..m; S # l; S0, then we must have e; S # comp(c); S0.
By induction hypothesis we have that there is a G0 extending G such that G0 ` comp(c) : t and
nil(S0) = ∆.

Now, notice that the presentation order of the premises does not reflect the real depen-
dence between them. For technical reasons, the plug-assignments must be considered first in
this proof. By iteratively applying Lemma 4.11 (substitution), the induction hypothesis, and
Lemma 4.10 (weakening) on the typing and evaluation judgements of each plug-assignment
expression, (G ` ei : ti) and (ei; Si�1 # vi; Si), we obtain that for all i 2 1..n we have Gi extending
Gi�1 and typing Si such that Gi ` vi : ti and nil(Si) = ∆. Notice that all vi and Si are record-based.

By Lemma 4.10 (weakening) on the typing of comp(c) and Rule (Val Composition Value) we
have Gn ` c : ∆ =) K and K� = ∆, with type t = K/ ) K. thus K/ = {`j : tj

j21..m}. Notice that
the judgement above applies c to the empty instance (0; c; Sn + s; Sn+1), and that nil(Sn) = ∆
meets the conditions of the second part of the lemma with X = ∆. In this case, 0 conforms
with the resource list ∆ and has type [[{} ) {}]]. By induction hypothesis on the second case
of the lemma, we have that there is a Gn+1 extending Gn and the resulting instance s conforms
with K with the partial type [[K/ ) K.]]. We know that the locations of the required ports are
{li

i21..n} = {selectS0(s, `) | (` : t) 2 K/} and that nil(S0) ✓ {selectS0(s, `) | (` : t) 2 K/}.
Gn+1 types Sn+1 and the locations in s/ = {`i = li

i21..n} are in Sn. From the conformance
of s with K, Definition 3.23, and Rule (Val Record) we know that Gn+1 ` s : {| . . . , `p

j : sj
j21..m|}

where K. = {`p
j : sj

j21..m} and by Rule (Val Interface), we have a G0 = Gn+1, l : K., extending
G, and typing Sn+1[l 7! s][li 7!vi

i21..n]. We finally have that l is a location that refers-to an



190 APPENDIX A. COMPLETE PROOFS

object, which is a record, such that G0 ` l : K. with K. = {`p
j : sj

j21..m}. Finally, since vi 6= nil

for all i 2 1..n we have that nil(Sn+1[l 7! s][lj 7!vj
j21..m]) = ∆ with s being the newly created

instance. Notice that l and Sn+1[l 7! s][lj 7!vj
j21..m] are record-based.

Case: (Eval Reconfig)

If the last rule used is (Eval Reconfig) then we must have
a) reconfig x = e1[e2] with `i := fi

i21..n
in e3 else e4; S # v; S000

and b) G ` reconfig x = e1[e2] with `i := e0i
i21..n

in e3 else e4 : d.
From b), by Rule (Val Reconfig), we have that G ` e1 : K =) K0 and from a), by Rule

(Eval Reconfig), we have e1; S # conf(t0, c); S0. By induction hypothesis, we conclude that
there is a G0 that extends G and types S0 such that G0 ` conf(t0, c) : K =) K0, which, by
Rule (Val Configurator Value), leads to t0 = K =) K0 and G0 ` c : t0. From b), by Rule
(Val Reconfig), we also have that G ` e2 : t. By Lemma 4.10 (weakening) we obtain G0 ` e2 : t,
and e2; S0 # l; S0 with S0(l) = s. By induction hypothesis we conclude that there is a G00 which
extends G0 and types S0 such that G00 ` l : t.

Again, from a), by Rule (Eval Reconfig), we now know that s//K and therefore, by Lemma 4.9,
we know that s conforms with K and should have the partial linked object type [[s ) t]] for
some object type s.

The evaluation follows on the plug assigment expressions. By iterating Lemma 4.10 (weak-
ening) and the induction hypothesis for all the expressions ei, typed by Gi ` ei : si, we obtain
that for each i there is a Gi that extends Gi�1, with G0 = G00 typing each Si such that Gi ` vi : si.

Then, we have that s; c; Sn + s0; S00. By induction hypothesis on the second part of the lemma
(the application of a configurator) we have that there is a G000 which extends G00 and that the
resulting instance, s0, conforms with K0 and has the partial type [[K0/ � s ) K0. � t]] and its
object type is K0. � t.

Let G0000 = G000, l0 : (t� K0.). Again, from b), by Rule (Val Reconfig) and Lemma 4.10 (weak-
ening), we obtain G0000, x : (t�K0.) ` e3 : d and by Lemma 4.11 (substitution) with the side condi-
tion G0000 ` l

0 : (t�K0.). We conclude c) G0000 ` e3[x l

0] : d. So, from a), by Rule (Eval Reconfig),
we have e3[x l

0]; Sn+1[l0 7! s0][li 7!vi
i21..n] # v; S0000, and with c), by induction hypothesis,

we obtain the final result that there is a G0000 such that G0000 ` v : d with G0000 extending G000 types
S0000.

Finally, the occurrence of nil values in the heap follows the reasoning used in the instantia-
tion process. In the first case, all nil values introduced by the new required ports are replaced
by non-nil values, so we prove that nil(S0000) = ∆. The new values introduced in the heap are all
record-based (by induction hypothesis) and so it is the result of evaluating e3.

Case: (Eval Reconfig Else)

The second evaluation possibility for a reconfiguration follows without applying the config-
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urator to the instance and therefore the typing of the resulting value v results by induction
hypothesis on the typing derivation of e4.

When composition operations are involved the reasoning is also similar, but handling dif-
ferent value forms and using Rule (Val Configurator Value) to correctly type the results.

Case: (Eval Requires)r

The typing hypothesis for this case is G ` (requires ` : I) : s with s = ∆ =) {` • I, ` / I} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value)r, we
have G0 ` conf(s, requires ` : I) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Provides)r

The typing hypothesis for this case is G ` (provides ` : t) : s with s = ∆ =) {` � t, ` . t} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value)r, we
have G ` conf(s, provides ` : t) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Plug)r

The typing hypothesis for this case is G ` plug (p1 : t) into (p2 : t) : s with
s = ({p2 � t, p1 • t} =) {p1 • t}) where the expression plug (p1 : t) into (p2 : t) evaluates to
a configurator. By Rule (Val Configurator Value)r, we have G ` conf(s, plug (p1 : t) into (p2 :
t)) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Method Block)r

The typing hypothesis for this case is G ` xK[`i : ti = ei
i21..n] : s with

s = K =) K, {x • {`i : ti
i21..n}} where the expression xK[`i : ti = ei

i21..n] evaluates to a con-
figurator. By Rule (Val Configurator Value)r, we have G ` conf(s, xK[`i : ti = ei

i21..n]) : s with
G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Uses)r

The evaluation of this expression produces a configurator where e is replaced by its resulting
value, x[e : t ) s]; S # conf(d, x[v : t ) s]); S0. The typing judgment implies G ` x[e : t ) s] :
∆ =) K with t = {`r

i : ti
i21..n}, s = {`p

j : sj
j21..m} and K = {x • s, x.`r

i � ti
i21..n, x.`p

j • sj
j21..m}.

We have that |G| ` e : t ) s and e; S # v; S0, which by induction hypothesis on the first part
of the lemma implies that there is a |G0| extending |G| such that |G0| ` v : t ) s and nil(S0) = ∆.

We conclude, by Rule (Val Configurator Value)r, that |G0| ` conf(d, x[v : t]) : ∆ =) K
with d = ∆ =) K and by Lemma 4.10 (weakening) that there is a G0 extending G and
G0 ` conf(d, x[v : t]) : ∆ =) K.

Case: (Eval Sequence)
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By induction hypothesis we reach the conclusion that there is a G0 extending G and typing
S0 such that G0 ` confs, c1) : s with s = (K =) K0, Kc) and nil(S0) = ∆. Also by induction
hypothesis, there is G00 extending both G0 and G and typing S00 such that G00 ` conf(s0, c2) : s0

with s0 = (Kc, K00 =) K000) and nil(S00) = ∆. By Rule (Val Configurator Value) we conclude
that G00 ` conf(s00, (c1; c2)) : s00 with s00 = K, K00 =) K0, K000.

We follow by proving that well-typed expressions never evaluate to wrong.

Case: (Wrong Call)

For an application to be well-typed we must have G ` e1(e2) : s. Then, by inspection of the
type system, we conclude that the only typing rule that may derive this judgment is Rule
(Val Application), and therefore we have a) G ` e1 : t ! s and b) G ` e2 : s. We also have
that c) e1; S # v; S0 which by induction hypothesis lets us conclude that there is a G0 typing
S0 such that G ` v : t ! s and v is an abstraction. Therefore if an application expression is
well-typed, the Rule (Wrong Call) is never applicable.

Case: (Wrong Assign)

If G ` e1.` := e2 : t then by Rule (Eval Assign) we know that a) G ` e1 : {| . . . , ` : t, . . . |}. The
evaluation hypothesis has the premise b) e1; S # v; S0. Taking a) and b), by induction hypothesis
we know that there is G0 typing S0 and extending G such that G ` v : {| . . . , ` : t, . . . |} and v must
be a location leading to a record. Thus Rule (Wrong Assign) is never applicable to well-typed
assignment expressions.

Case: (Wrong Assign 2)

Following the reasoning from the previous case, we have G ` l : {| . . . , ` : t, . . . |} and that l is a
location leading to a record. By Definition 2.21 we know that G ` S(l) : {| . . . , ` : t, . . . |} which
by Rule (Val Record) must contain the label ` and therefore Rule (Wrong Assign 2) is also never
applicable.

Case: (Wrong Select). Similar.

Case: (Wrong Select 2). Similar.

Case: (Wrong Compose)

If G ` compose e : K/ ) K. then we know that G ` e : ∆ =) K by induction hypothesis we
have a G0 extends G and types S0 and that v is a value such that G ` v : ∆ =) K. This value can
only be a configurator value. So wrong is never issued by Rule (Wrong Compose).

Case: (Wrong New)

If G ` new e with `r
j := ej

j21..m : s, by Rule (Val New), we have that G ` e : t ) s and that
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e; S # v; S0. By induction hypothesis we obtain that there is a G0 extending G and typing S0 such
that v is a component value (other possible values have different types). This is contradicts the
application of (Wrong New).

Case: (Wrong Sequence)

If G ` e1; e2 : K, K00 =) K0, K000 then G ` e1 : K =) K0, Kc and, as e1; S # v; S we know, by
induction hypothesis, that there is G0 extending G and typing S0 such that v is a configurator
value with G0 ` v : K =) K0, Kc. Once again, we find a contradiction.

Case: (Wrong Sequence 2). Similar.

Case: (Wrong Reconfig)

By induction hypothesis on the premises typing and evaluating e1, we know that there is a G0

that extends G and types S0 such that e1 evaluates to a value v typed by G0 ` v : K =) K0 that
is either an abstraction, a component, a configurator, or a location that refers-to a record.
By our typing relation we conclude that this is a configurator conf(K =) K0, c). So, Rule
(Wrong Reconfig) is never applicable.

Case: (Wrong Reconfig 2) and (Wrong Reconfig 3)

From the previous case we know that the value to which e1 evaluates is a configurator, and if
e2 is typed by an interface, and e2; S0 # v; S0. by induction hypothesis we know that it must
be a location that is either undefined or refers-to a record. So, Rules (Wrong Reconfig 2) and
(Wrong Reconfig 3) are never applied.

The second part of the lemma states that the application of a configurator to an instance
causes an effect consistent with the type of the operation. This proof is done by induction on
the height of the derivations and by case analysis of the last application rule used. We verify
that the type information in the instances is, at any time, sound with the global typing of the
heap. We use the first part of the lemma when necessary.

Case: (App Provides)r

In this case we have an expression typed G ` (provides ` : t) : ∆ =) {` � t, ` . t} and an in-
stance s = (r, e, p)P that conforms with ∆. The resulting instance, s0 = (r, e, p� {` = l})P,l:t,
trivially conforms, by Definition 3.23, with the resource set {` � t, ` . t} and the typing en-
vironment G0 = G, l : t which also types the heap S0 = S[l 7! nil]. The resulting value is
well-typed according to Rule (Val Object).

Since the demanded resources in the configurator type is empty we have that nil(S) ✓ X for
some X. By Rule (App Provides)r we know that selectS0(s0, `) = l and that S0(l) = nil. More, l
is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So, {selectS0(s0, `) | (` :
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t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds to the expected
results. With relation to the partially linked object type, we have that if the initial type of s is
[[t ) s]] then the partial type of s0 is [[t ) s� {` : t}]].

Case: (App Requires)r

In this case we have the typing judgment G ` (requires ` : t) : ∆ =) {` • t, ` / t} as hypothesis
and an instance s = (r, e, p)P that conforms with ∆. The resulting instance, s0 = (r � {` =
l}, e, p)P,l:t, trivially conforms, by Definition 3.23, with the resource set {` • t, ` / t} and the
typing environment G0 = G, l : t, which also types the heap S0 = S[l 7! nil]. The resulting
value is well-typed according to Rule (Val Object).

Since the demanded resources in the configurator type is empty we have that nil(S) ✓ X for
some X. By Rule (App Requires)r we know that selectS0(s0, `) = l and that S0(l) = nil. More, l
is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So, {selectS0(s0, `) | (` :
t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds to the expected
results. With relation to the partially linked object type, we have that if the initial type of s is
[[t ) s]] then the partial type of s0 is [[t � {` : t}) s]].

Case: (App Uses)r

If the last evaluation rule is (App Uses)r then we have a) s; x[v : t]; S + s0; S0 and also
b) G ` x[v : t] : ∆ =) K with K = {x • {`p

j : s0j
j21..m}, x.`r

i � t0i
i21..n, x.`p

j • s0j
j21..m} where

t = {`r
i : ti

i21..k}) {`p
j : sj

j21..m}.
From b), by Rule (Comp Uses), we have that |G| ` v : t, and since the only kind of values

typed in this way are components, we also have that v = comp(c) with |G| ` comp(c) : t. By
Rule (Val Composition Value) we known that |G| ` compose c : t and from Rule (Val Compose)
we know c) |G| ` c : ∆ =) K0 with K0� = ∆ and t = (K0/ ) K0.).

From a), by Rule (App Uses)r, we know that (new v); S # l; S0. Since v evaluates to itself
causing no changes to the heap, Rule (Eval Value), and there are no plug assignments to be
considered, the evaluation of new v is supported, by Rule (Eval New), on d) 0; c; S + s00; S00 with
S0 = S00[l 7! s00].

Since the set of demanded resources in the type assigned in b) (∆ =) K) is empty, we
know, from the conditions of the lemma, that there is a set X such that nil(S) ✓ X. From c)
and d), by induction hypothesis on the second case of the lemma, we have that there is a |G0|
that types S00 and that the resulting value, s00, conforms with K0 with the partially linked object
type [[K0/ =) K0.]] with relation to |G0|. Remember that the initial instance is 0 and therefore
its partial object type is [[{}) {}]].

The instance resulting from applying x[v : t] to s is therefore s0 = (r, e� {x = l}, p)P,l:K0. ,
see (App Uses), and the resulting heap is S0. They are both well typed with relation to |G00| =



A.2. CHAPTER 3 195

|G0|, l : K0. and by weakening with relation to G00 (by adding the elements taken from G to
produce |G|).

More, the instance (r, e� {x = l}, p)P,l:K0. , according to Definition 3.23, conforms with K.
The induction hypothesis also tells us that nil(S00) ✓ {selectS00(s, `) | (` : t) 2 (`r

i : ti)i21..n} [
X with K0/ = {`r

i : ti
i21..k}. Which, in the involving composition context, can be written by

dereferrencing x, nil(S0) ✓ {selectS00(s0, p) | (p : t) 2 K�} [ X where K� = {x.`r
i : ti

i21..n}.
The partial type of the resulting object remains unchanged since no required or provided

ports are added to the instance.

Case: (App Method Block)

If G ` xK[`i : ti = vi
i21..n] : K =) K, {x • {`i : ti

i21..n}}, then by Rule (Comp Method Block),
we know that for all i 2 1..n, |G|, x : {|`i : ti

i21..n|}, K• ` vi : ti. Since (r, e, p)P conforms with K
and vi[(r, e, p)P][x l] denotes the substitution of the available names in the current instance
(r, e, p)P by its locations, which are typed in G, by Lemma 4.10 (weakening) and Lemma 4.11
(substitution), we obtain G, x : {|`i : ti

i21..n|} ` vi[(r, e, p)P] : ti for all i 2 1..n (|G| correctly types
the instance). Let G0 = G, l : {|`i : ti

i21..n|} and by Lemma 4.10 (weakening) and 4.11 (substi-
tution) we have that G0 ` vi[(r, e, p)][x l] : ti for all i 2 1..n. So, we have that G0, li : ti

i21..n

types the resulting heap S0 = S[l 7! {`i = li
i21..n}][li 7!vi[(r, e, p)][x l] i21..n].

Since (r, e, p)P conforms with K this makes the instance, (r, e� {x = l}, p), conform with
K0 = K, {x • {`i : ti

i21..n}}. No references are created in the heap that lead to nil, hence nil(S0) =
nil(S), and by considering the set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2 K/ [ K�} [ X
we have that nil(S0) ✓ {selectS(s, `) | (` : t) 2 K0/ [ K0�} [ X which is the same set. As in the
previous case, the partial object type remains unchanged.

Case: (App Plug)

If G ` plug (p1 : t) into (p2 : t) : ({p2 � t, p1 • t} =) {p1 • t}) only the unsatisfied inner re-
quirements change, So K0� ✓ K�, with K = {p2 � t, p1 • t} and K0 = {p1 • t}. However, the
resulting instance is the same and by Definition 3.23, s conforms with K0. On the other hand, the
heap is changed to make the connection between the source and the target of the plug opera-
tion. From the lemma’s hypothesis we know that nil(S) ✓ {selectS(s, `) | (` : t) 2 K/ [K�}[X.
S(selectS(s, p2)) = nil, hence nil(S[selectS(s, p2) 7! selectS(s, p1)]) ✓ {selectS(s, `) | (` : t) 2
K0/ [ K0�} [ X.

Case: (App Sequence)

We first prove that the resulting instance conforms with the type. The typing judgement D `
e1; e2 : K, K00 =) K0, K000 is supported by the premises D ` e1 : K =) K0, Kc and D ` e2 :
K0c, K00 =) K000. By induction hypothesis on the second case of the lemma, together with the
application of e1 to an instance s conforms with K we reach an instance s0 which conforms
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with K0, Kc. Since s0 extends s it also conforms with K00 and by Lemma 4.10 (weakening) and
induction hypothesis on the second case of the lemma together with the evaluation of e2 we
conclude that s00 conforms with K000. Since it extends s and s0 we conclude that it also conforms
with K0.

Now concerning the nil values in the heap. In the case of s; (c1; c2); S + s00; S00 with D `
(e1; e2) : K, K00 =) K0, K000 we have that there is a set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2
(K, K00)/ [ (K, K00)�}[X. By rewriting this definition we obtain nil(S) ✓ {selectS(s, `) | (` : t) 2
K/ [ K�} [ X0 with X0 = {selectS(s, `) | (` : t) 2 K00/ [ K00�} [ X. Given the application of the
first premise s; c1; S + s0; S0 typed D ` e1 : K =) K0, Kc, by induction hypothesis, we know that
nil(S0) ✓ {selectS(s, `) | (` : t) 2 (K0, Kc)/ [ (K0, Kc)�} [ X0. Which is the same as nil(S0) ✓
{selectS(s, `) | (` : t) 2 K0/ [K0�}[ {selectS(s, `) | (` : t) 2 Kc/ [Kc�}[ {selectS(s, `) | (` : t) 2
K00/ [ K00�} [ X. Again, by rearranging the definition we have nil(S0) ✓ {selectS(s, `) | (` :
t) 2 K00, Kc/ [ K00, Kc�} [ X00 with X00 = {selectS(s, `) | (` : t) 2 K0/ [ K0�} [ X. Given the
second premise evaluated by s; c1; S + s0; S0 and typed by D ` e2 : Kc, K00 =) K000, by induction
hypothesis we know that nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X00. As the
locations in X00 corresponding to the labels in K0 are already in this final set we conclude that
nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X.

A.3 Chapter 4

(This is a repetition of Lemma 5.3, defined in page 117.)

Lemma 5.3. For all D, D0 2 D and types d 2 Tl, If D ` t ok then D ` ⇧.

Proof. We prove this by induction on the height of the derivations and by case analysis on the
last rule used.

Case: (Type Top) and (Type TVar)

In this case the conclusion is immediate from the premises of the rule.

Case: (Type Fun) and (Type All)

By induction on one of the premises.

Case: (Type Rec)

D ` µX.t ok has as premise D, X  > ` t ok which by induction hypothesis implies that
D, X  > ` ⇧ which is only true if D ` > ok and consequently if D ` ⇧.

(This is a repetition of Lemma 5.4, defined in page 117.)

Lemma 5.4 (Weakening of typing environments). For all D, D0 2 D and types d 2 Tl,
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1. if D, D0 ` ⇧, X 62 Dom(D, D0), and D ` d ok then D, X  d, D0 ` ⇧.

2. if D, D0 ` t ok, X 62 Dom(D, D0), and D ` d ok then D, X  d, D0 ` t ok.

Proof. For the first case we prove by induction on the height of the derivations and in the two
possible cases for D0 = f.

Case: D0 = f

In this case we have D ` d ok and by Rule (Env TVar) we conclude that D, X  d ` ⇧.

Case: D0 6= f

In this case we have that D0 = D00, Y  t and we know that D, D00 ` t ok and that Y 62
Dom(D, D00). By induction hypothesis we know that D, X  d, D00 ` t ok. So, we conclude
that D, X  d, D0 ` ⇧.

For the second case we apply the induction hypothesis in the cases of t and applying the
first case in the case of >.

Case: t = >

We have D, D0 ` > ok if D, D0 ` ⇧ and by induction hypothesis we conclude that D, X  d, D0 ` ⇧
and by (Type Top) we conclude that D, X  d, D0 ` > ok.

Case: t 6= >

Follows by induction hypothesis on the premises of the rule applied.

(This is a repetition of Lemma 5.5, defined in page 118.)

Lemma 5.5 (Substitution). For all D, D0 2 D and types d 2 Tl,

1. If D, X  d, D0 ` ⇧ and D ` d0 ok then D, D0[X d0] ` ⇧.

2. If D, X  d, D0 ` t ok and D ` d0 ok then D, D0[X d0] ` t[X d0] ok.

Proof. We prove this lemma by mutual induction of the two cases. The first case is proven by
induction on the height of the derivations and in two possible cases for D0 = f.

Case: D0 = f

In this case we have D, X  d ` ⇧which must be derived from D ` d ok. By Lemma 5.3 we have
that D ` ⇧.

Case: D0 6= f

In this case D, X  d, D0 ` ⇧ and D0 = D00, Y  d0 then it must be derived from (Env TVar)
which is implied by D, X  d, D00 ` d0 ok. Then, by the second case of the lemma, we have that
D, D00[X d] ` d0[X d] which, by Rule (Env TVar) leads to D, D0[X d] ` ⇧.
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We prove the second case of the lemma by induction on the height of the derivations and
in the cases of the last rule used.

Case: (Type Top) and (Type TVar)

It follows from applying the first case of the lemma on the premises.

Case: (Type Fun), (Type All), and (Type Rec)

By applying the induction hypothesis on the premises.

(This is a repetition of Lemma 5.6, defined in page 118.)

Lemma 5.6 (Variable Exchange). For all D, D0 2 D and types d 2 Tl,

1. If D, X  d, D0, D00 ` ⇧ and X 62 Dom(D0) then D, D0, X  d, D00 ` ⇧.

2. If D, X  d, D0, D00 ` t ok and X 62 Dom(D0) then D, D0, X  d, D00 ` t ok.

Proof. For the first case, by iterating Rule (Env TVar) and Lemma 5.3 we have that D, X  d, D0 `
⇧. As X 62 D0 then, by Lemma 5.5 we have D, D0 ` ok and therefore D, D0, X  d ` ok. We can
then reconstruct the typing environment to obtain D, D0, X  d, D00 ` ⇧.

The second case is proven by induction on height of the derivations by applying the induc-
tion hypothesis on the premises of the last rule used.

(This is a repetition of Proposition 7, defined in page 119.)

Proposition 5.9 (Monotonicity of S). For all R, R0 2 P(J ), R ✓ R0 ) S(R) ✓ S(R0).

Proof. The proof is done by case analysis on (D, t, s) 2 S(R):

Case: t ⌘ s (Sub Equal) and s ⌘ > (Sub Top).

In this case we have that t 2 Tl and D ` t ok. By the definition of S we know that for any other
relation R00 2 P(J ), (D, t, s) 2 S(R). In particular this is true for R0.

Case: t ⌘ X (Sub TransVar).

There is a type d 2 Tl such that (D, d, s) 2 R with X  d 2 D. As R ✓ R0 then (D, d, s) 2 R0

and by the definition of S we have that (D, d, s) 2 S(R0).

Case: t ⌘ t ! s and s ⌘ t0 ! s0 (Sub Fun)

The support for this case is (D; t0; t) and (D; s; s0) both in R and R0. So, by definition of S we
have that (D; t; s) 2 R0.

Case: t ⌘ 8Xt t0 and t ⌘ 8Xs s0 (Sub All). Similar.

Case: s ⌘ µX.s0 (Sub RecR)
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In this case we know that (D, t, s0[X µX.s0]) 2 R and also in R0. Thus, (D, t, µX.s0) 2 S(R0).

Case: t ⌘ µX.t0 (Sub RecL). Similar.

(This is a repetition of Lemma 5.11, defined in page 119.)

Lemma 5.11 (Weakening). For all typing environments D, D0 2 D, and types t, s, d 2 Tl, if D, D0 `
t  s, X 62 Dom(D, D0), and D ` d ok then D, X  d, D0 ` t  s.

Proof. We first define the set of all judgments that result from weakening judgments of nS as:

W , {(D, X  d, D0; t; s) | (D, D0; t; s) 2 nS, X 62 Dom(D, D0) and D ` d ok}

and then prove that W ✓ nS by the coinduction principle.
Let (D, X  d, D0; t; s) be a tuple of W. There is (D, D0; t; s) 2 nS such that X 62 Dom(D, D0)

and D ` d ok. We now analyze the different cases of S that support (D, D0; t; s) 2 nS.

Case: t ⌘ s (Sub Equal)

In this case we have that D, D0 ` t ok. We know that X 62 Dom(D, D0), and D ` d ok. By
lemma 5.4 we have that D, X  d, D0 ` t ok and therefore (D, X  d, D0; t; s) 2 S(R) for any
simulation R and in particular for W.

Case: s ⌘ > (Sub Top). Similar.

Case: t ⌘ Y (Sub TransVar)

There is a type t 2 Tl such that (D, D0; t; s) 2 nS with Y  t 2 D, D0. By definition we have
that (D, X  d, D0; t; s) 2W and by definition of S, (D, X  d, D0; Y; s) 2 S(W).

Case: s ⌘ µY.I (Sub RecR)

In this case we know that (D, D0; t; I[Y µY.I]) 2 nS and so (D, X  d, D0; t; I[Y µY.I]) 2W.
Then (D, X  d, D0; t; s) 2 S(W).

Case: t ⌘ µY.t (Sub RecL). Similar.

Case: t ⌘ t0 ! t00 (Sub Fun)

By inspection of the definition of S we have t ⌘ t0 ! t00 and s ⌘ s0 ! s00, and the tuple
(D, D0; t; s) 2 nS supported by the tuples (D, D0; s0; t0), (D, D0; t00; s00) 2 nS. Thus, by definition
(D, X  d, D0; s0; t0), (D, X  d, D0; t00; s00) 2W. By definition of S, (D, X  d, D0; t; s) 2 S(W).

Case: t ⌘ 8Xd t0 and s ⌘ 8Xd s0 (Sub All)

This tuple is supported by the tuple (D, D0, X  d; t; t0) 2 nS which by a reasoning similar to
the one applied in the previous case, leads to the conclusion.

(This is a repetition of Proposition 8, defined in page 120.)
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Proposition 5.14 (nS is closed under exchange). For all D, D0, D00 2 P(J ) and t, s, d 2 T , If
(D, X  d, D0, D00; t; s) 2 nS and X 62 FV(D0) then (D, D0, X  d, D00; t; s) 2 nS.

Proof. We first define the auxiliary set P by:

P , {(∆, t, s)|(∆, t, s) 2 nS}
[ {(D, D0, X  d, D00; t; s) | (D, X  d, D0, D00; t; s) 2 nS and X 62 FV(D0)}.

Note that nS ✓ P and that all the tuples in nS that have empty typing environments are in P

by the first case of the definition. The remaining tuples of nS are in P by the second case with
D0 = ∆. We prove that P is S-consistent and therefore by the coinduction principle that P ✓ nS.
P is S-consistent if P ✓ S(P). So, pick a tuple (D, t, s) 2 P, if the tuple is supported by the first
case of P’s definition then it is a member of nS and the possible cases of that happening are the
ones that allow empty typing environments:

Case: t = s (Sub Equal) and s = > (Sub Top)

(∆, t, s) 2 S(P) by definition of S.

Case: s = µY.s0 (Sub RecR)

In this case we know that if (∆, t, µY.s0) 2 nS it is because (∆, t, s0[Y µY.s0]) 2 nS which,
by definition, is also in P. Therefore (∆, t, µY.s0) 2 S(P).

Case: t = µY.t0 (Sub RecL). Similar.

Case: t = 8Xd t0 (Sub All)

In this case we have s = 8Xd s0 and that (∆, t, s) 2 nS is supported by the tuple (∆, X 
d; t0; s0) 2 nS. Which, by definition, is also an element of P and hence (∆; t; s) 2 S(P).

Case: t = t0 ! t00 (Sub Fun)

As in the previous case, the tuples that support this case are also elements of P and therefore
the conclusion is also true.

The remaining case in the definition of S, (Sub TransVar), does not apply it demands a
non-empty typing environment. On the other hand, if the tuple is supported by the second
case of P’s definition then it is of the form (D, D0, X  d, D00; t; s) and there is a tuple (D, X 
d, D0, D00; t; s) 2 nS that supports it. We now analyse the cases by which (D, X  d, D0, D00; t; s)
is in turn supported in nS.

Case: t = s (Sub Equal)

We know that D, X  d, D0, D00 ` t ok, by Lemma 5.6 we have that D, D0, X  d, D00 ` t ok. Thus,
by definition of P, we know that (D, D0, X  d, D00; t; s) 2 S(P).
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Case: s = > (Sub Top). Similar.

Case: t = Y (Sub TransVar)

Independently of whether X = Y or not we know that the tuple (D, X  d, D0, D00; Y; s) 2 nS is
supported by the tuple (D, X  d, D0, D00; t0; s) 2 nS with Y  t0 2 D, X  d, D0, D00 and therefore
Y  t0 2 D, D0, X  d, D00. By definition of S (Definition 5.8), (D, D0, X  d, D00; Y; s) 2 S(P).

Case: s = µY.s0 (Sub RecR)

In this case, if (D, X  d, D0, D00; t; µY.s0) 2 nS then (D, X  d, D0, D00; t; s0[Y µY.s0]) 2 nS. By
definition of P, (D, D0, X  d, D00; t; s0[Y µY.s0]) 2 P and by definition of S (Definition 5.8),
(D, D0, X  d, D00; t; µY.s0) 2 S(P).

Case: t = µY.t0 (Sub RecL). Similar.

Case: t = t = 8Xd t0 and s = 8Xd s0 (Sub All)

This case is supported by the tuple (D, X  d, D0, D00, X  d; t0; s0) 2 nS. By the definition
of P, (D, D0, X  d, D00, X  d; t0; s0) 2 P. And by definition of S (Definition 5.8), the tuple
(D, D0, X  d, D00; t; s) 2 S(P).

Case: t = t0 ! t00 (Sub Fun). Similar.

We know that P ✓ nS, hence if D, X  d, D0, D00 ` t  s and X 62 FV(D0) then we have
D, D0, X  d, D00 ` t  s.

(This is a repetition of Lemma 5.16, defined in page 121.)

Lemma 5.16 (nS is closed under transitivity). T ✓ nS.

Proof. The proof is done by the coinduction principle, showing that T is S-consistent (T ✓ S(T))
and therefore T ✓ nS. We will use an internal induction on the number of tuples of Nn that
form a chain from a0 to an. In the proof, we write Ti to denote the subset of T containing only
the tuples supported by chains of size i.

Case: n = 1

This is the induction base, for which we have T1 = N1 and therefore we also prove that nS is
closed under narrowing. So, a tuple (D, a0, a1) 2 T1 if (G, a0, a1) 2 nS and exists G 2 D such
that D vN0 G, where by definition N0 = nS. The proof is divided in the different cases that may
support (G, a0, a1) 2 nS.

Subcase: a0 = a1 (Sub Equal) and a1 = > (Sub Top)

In this case G ` a0 ok and we know by the definition of S that (G, a0, a0) 2 S(R) 8R 2 P(J ).
Which means, in this case, that (D, a0, a1) 2 S(T) since Dom(D) = Dom(G), by Definition 5.12.
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Subcase: a0 = X (Sub TransVar)

(D, X, a1) 2 T is supported by (G, X, a1) 2 nS with D vnS G and in turn by (G, G(X), a1) 2 nS.
By definition of N1 (Definition 5.12) we also know that (G, D(X), G(X)) 2 nS and therefore
(D, D(X), G(X)), (D, G(X), a1) 2 N1. Which means that, by definition of T, (D, D(X), a1) 2 T

(in T2). Finally, by the definition of S, we conclude that (D, X, a1) 2 S(T) by (Sub TransVar).

Subcase: s = µa.s0 (Sub RecR)

In this case we know that if (G; t; µX.s0) 2 nS it is because (G; t; s0[X  µX.s0]) 2 nS. By
definition, (D; t; s0[X µX.s0]) 2 N1 and therefore in T and (D; t; µX.s0) 2 S(T).

Subcase: t = µX.t0 (Sub RecL). Similar..

Subcase: t = 8Xd t0 (Sub All)

In this case we have s = 8Xd s0 and that (D, t, s) 2 T is supported by the tuple (G, t, s) 2 nS
and more, (G, X  d; t0; s0) 2 nS. By Definition 5.13, (D, , X  d; t0; s0) 2 N1 and therefore in
nS. Thus the conclusion (D; t; s) 2 S(T) is true.

Subcase: t = t0 ! t00 (Sub Fun). Similar.

Case: n > 1

In the induction step we have a tuple (D, a0, an) 2 T which, by definition, is supported by a set
of tuples (D, ai�1, ai) 2 Nn (i 2 1..n). By definition of Nn each one of these tuples is supported
by a tuple (Gn

i , ai�1, ai) 2 nS such that D vn
Nn�1..N0 Gn

i with i 2 1..n where D vn
Nn�1..N0 Gn

i =
D vNn�1 G1

i vNn�2 . . . vN1 Gn�1
i vN0 Gn

i . The proof is divided in the cases by which the first
tuple (Gn

1 , a0, a1) may be supported in nS. The inner induction hypothesis is applied to cases
based on smaller chains of tuples (with size n � 1). We will refer to Gn

1 as Gn when obvious
from context.

Subcase: a0 = a1 (Sub Equal)

In this case there is a the set of n � 1 tuples, (D, a0, a2), ..., (D, an�1, an), which by induction
hypothesis leads to (D, a0, an) 2 S(T).

Case: a0 = > (Sub Top). Similar.

Subcase: a0 = X (Sub TransVar)

By the definitions of Nn and nS we know that the tuple we are focusing on, (D, X, a1) 2 Nn,
is supported by (Gn, X, a1) 2 nS which in turn is supported by (Gn, Gn(X), a1) 2 nS. This
implies by definition that (D, Gn(X), a1) 2 Nn. By definition of Nn we also know that there is a
sequence of narrowings:

(G1, D(X), G1(X)) 2 Nn�1, (G2, G1(X), G2(X)) 2 Nn�2, · · · , (Gn, Gn�1(X), Gn(X)) 2 N0.
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Thus, by definition of Nn we conclude that there is a sequence of n tuples in Nn:

(D, D(X), G1(X)), (D, G1(X), G2(X)), · · · , (D, Gn�1(X), Gn(X)).

Another chain of size n in Nn comprises the tuples:

(D, Gn(X), a1), (D, a1, a2), · · · , (D, an�1, an).

By definition of T we conclude that (D, D(X), an) 2 T (in T2n) and therefore (D, X, an) 2 S(T).

Subcase: a1 = µX.b1 (Sub RecR)

In this case we know that if (Gn
1 ; a0; µX.b1) 2 nS it is because (Gn

1 ; a0; b1[X a1]) 2 nS. As
for the second tuple (Gn

2 ; a1; a2) 2 nS, it can be supported either by the left recursion or by
right recursion case of S. In the first case we have that (Gn

2 ; b1[X a1]; a2) 2 nS, and in the
second a2 = µX.b2 and (Gn

2 ; a1; b2[X  a2]) 2 nS which in turn can only be supported by
(Gn

2 ; b1[X a1]; b2[X a2]) 2 nS. Continuing to the next tuple we can replace each tuple by
its unfolding until we rebuild the chain from a0 to an or the corresponding unfolding.

If the last tuple of the chain is (Gn
n ; an�1; bn[X  an]) then we have a chain in Nn that

sustains that (D; a0; bn[X an]) 2 T and therefore (D; a0; an) 2 S(T). If this is not the case then
the support for the first tuple, (Gn

1 ; a0; b1[X a1]) 2 nS leads to the result that (D; a0; an) 2 S(T)
as we can see in all other cases in this proof (this particular case as a1 is contractive and may
not be included in that support).

Subcase: a0 = µX.b0 (Sub RecR)

In this case we have that the support for the first tuple is (Gn
1 ; b0[X a0]; a1) 2 nS and therefore

(D; b0[X a0]; an) 2 T. Then we have that (D; a0; an) 2 S(T).

Subcase: a0 = 8Xd a00 and a1 = 8Xd a01 (Sub All)

The tuple supporting (G, a0, a1) is (Gn
1 , X  d; a00; a01) 2 nS with D vn

Nn�1..N0 Gn
1 . By inspection of

the generating function we see that the shapes of all ai must be the same (quantifier constructor)
and the possibilities for supporting the tuples are either reflexivity (Sub Equal) or the class type
constructor (Sub All). If it is the case that one of the tuples is supported by reflexivity then
9j 2 1..n� 1 such that aj = aj+1 and there is a chain of tuples with size n� 1 from a0 to an. By
induction hypothesis we know that (D, a0, an) 2 S(T).

If one the other hand all tuples are supported by the (Sub All) case, let all ai = 8Xd a0i In
this case, (D, ai, ai+1) 2 Nn for all i 2 1..n� 1 are supported in nS by (Gn

i , ai, ai+1) 2 nS for all
i 2 1..n� 1 and their support comprises the tuples (Gn

i , X  d; a0i; a0i+1) 2 nS with D vn
Nn�1..N0

Gn
1 . By the definition of Nn we conclude that (D, X  d; a0i; a0i+1) 2 Nn with D vn

Nn�1..N0 Gn
1 . And

by definition of T (D, X  d; a00; a0n) 2 T and therefore (D, a0, an) 2 S(T).
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Subcase: t = t0 ! t00 (Sub Fun). Similar.

(This is a repetition of Lemma 5.18, defined in page 122.)

Lemma 5.18 (Substitution of type variables). For all D, D0 2 D, and t, s, d, d0 2 Tl, if D, X 
d, D0 ` t  s and D ` d0  d then we have D, D0[X d0] ` t[X d0]  s[X d0].

Proof. We first define an auxiliary set that represents the closure of nS under substitution.

Q , nS [ {(D, D0[X d0]; t[X d0]; t0[X d0]) | (D, X  d0, D0; t; s), (D, d0, d) 2 nS}

And then prove that Q ✓ nS. By coinduction principle it is sufficient to prove that Q is S-
consistent. We now divide the proof in the cases of Q. If an element is in Q by the first case
then it is obvious that it is also a member of nS. On the second case, for each tuple (D, D0[X 
d0]; t[X d0]; s[X d0]) 2 Q there is a pair of tuples (D, X  d, D0; t; s), (D; d0; d) 2 nS that
support it. In order to prove that (D, D0[X d0]; t[X d0]; s[X d0]) 2 S(Q) we divide the
proof in the cases that support (D, X  d0, D0; t; s) 2 nS.

Case: t ⌘ s (Sub Equal)

In this case we know that D, X  d0, D0 ` t ok By Lemma 5.5, we have that D, D0[X  d0] `
t[X d0] ok. By definition of S, (D, D0[X d0]; t[X d0]; t[X d0]) 2 S(Q).

Case: t ⌘ Y (Sub TransVar)

The support for the tuple (D, D0[X d0]; Y; s[X d0]) 2 Q is a tuple (D, X  d, D0; Y; s) 2 nS
which is in turn supported by the tuple (D, X  d, D0; t0; s) 2 nS with Y  t0 2 D, X  d, D0.
This last tuple supports (D, D0[X d0]; t0[X d0]; s[X d0]) 2 Q. We then have to analyse
three different subcases:

Subcase: Y  I 2 D

we have that X does not occur in t0 and t0[X t0] = t0 and (D, D[X d0]; Y; s[X d0]) 2 S(Q).

Subcase: Y  t0 2 D0

We know that Y  t0[X d0] 2 D0[X d0] and therefore (D, D[X d0]; Y; s[X d0]) 2 S(Q).

Subcase: X ⌘ Y

By the definition of Q we know (D, X  d, D0; X; s), (D, d0, d) 2 nS, and in the case of support by
variable transitivity in X we also know that the tuple (D, X  d, D0; d; s) 2 nS. By Lemma 5.11
(weakening) we also know that (D, X  d, D0; d0; d) 2 nS. By Lemma 5.16 (transitivity) we
know that the tuple (D, X  d, D0; d0; s) 2 nS. Lets now analyse the possible cases of S that may
support this new tuple.
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(Sub Equal) From d0 ⌘ s we know that D ` d0 ok and by Lemma 5.4 we know that D, D0[X 
d0] ` d0 ok. As d0[X  d0] = d0 we have that, by definition of S, (D, D0[X  d0]; d0[X  
d0]; d0[X d0]) 2 S(Q) which is exactly the conclusion we were looking for when d0 ⌘ s

and t ⌘ X.

(Sub TransVar) In this case we have that d0 ⌘ Z and Z 6⌘ X. We also know that Z  d00 2 D

and (D, X  d, D0; d00; s) 2 nS. By definition (D, D0[X d0]; d00[X d0]; s[X d0]) 2 Q with
d00[X d0] ⌘ d00. Therefore (D, D0[X d0]; Z; s[X d0]) 2 S(Q) which is the result we
were looking for. Note that t[X d0] ⌘ Z.

(Sub All) In this case d0 ⌘ 8Yg d00 and also s ⌘ 8Yg s0. By the definition of S we know
that the tuple (D, X  d, D0, Y  g; d00; s0) 2 nS. Then, by the definition of Q we know
that (D, D0[X  d0], Y  g; d00[X  d0], s0[X  d0]) 2 Q. As X does not occur in d0,
(D, D0[X d0]; d0[X d0]; s[X d0]) 2 S(Q). Remember that X does not occur in d0 and
the intended conclusion is (D, D0[X d0]; X[X d0]; s[X d0]) 2 S(Q).

(Sub Fun) Similar.

All this subcases prove the lemma for the case where the tuple is supported by variable
transitivity.

Case: t ⌘ 8Yg t0 and s ⌘ 8Yg0 s0 (Sub All)

To prove that (D, D0[X  d0]; t[X  d0]; s[X  d0]) 2 S(Q) we start with the tuples (D, X 
d, D0; t; s), (D, d0, d) 2 nS where the first tuple is supported by (D, X  d, D0, Yj  g; t0, s0) 2 nS.
By definition we can say that (D, D0[X d0], Y  g; t0[X d0], s0[X d0]) 2 Q. Then (D, D0[X 
d0]; t[X d0]; s[X d0]) 2 S(Q).

Case: t ⌘ t0 ! t00 and s ⌘ s0 ! s00 (Sub Fun). Similar.

Finally if D, X  d, D0 ` t  s and D ` d0  d then we have (D, X  d, D0; t; s), (D; d0; d) 2 nS.
As Q ✓ nS we know that (D, D0[X  d0]; t[X  d0]; s[X  d0]) 2 nS which is the same as
D, D0[X d0] ` t[X d0]  s[X d0].

(This is a repetition of Lemma 5.19, defined in page 122.)

Lemma 5.19 (Equivariance). For all D 2 P(J ), t, s 2 Tl, if D ` t  s then D[X $ Y] ` t[X $
Y]  s[X $ Y].

Proof. From D ` t  s and assuming that X, Y 2 Dom(D) we have that D = D0, X  d, D00, Y 
g, D000. We prove this lemma by dividing the varible replacing [X $ Y] in a triplet of substitu-
tions [X Z][Y X][Z Y] where Z is fresh. By weakening (Lemma 3.24), we have

D0, Z  d, X  d, D00, Y  g, D000 ` t  s.
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By the substitution lemma we have that

D0, Z  d, D00[X Z], Y  g[X Z], D000[X Z] ` t[X Z]  s[X Z].

Again, by weakening we obtain

D0, Z  d, D00[X Z], X0  g[X Z], Y  g[X Z], D000[X Z] ` t[X Z]  s[X Z].

Notice that we have use X0 to represent the new X without loss of generacity because we keep
them iin different scopes. By the substitution lemma, we have

D0, Z  d, D00[X Z], X0  g[X Z], D000[X Z][Y X0] `
t[X Z][Y X0]  s[X Z][Y X0].

Using the same weakening/substitution scheme we obtain

D0, Y0  d, D00[X Z][Z Y0], X0  g[X Z][Z Y0], D000[X Z][Y X0][Z Y0] `
t[X Z][Y X0][Z Y0]  s[X Z][Y X0][Z Y0].

which is the same as
D[X $ Y] ` t[X $ Y]  s[X $ Y].

A.4 Chapter 5

(This is a repetition of Lemma 6.22, defined in page 154.)

Lemma 6.22 (Subject Reduction).

1. Let (e; S) be a valid configuration in lc \{nil} such that nil(S) = ∆ and let G be a typing
environment typing S such that e and S are record-based with relation to G.

If G ` e : t and (e; S # v; S0) then

a) there is a G0 that extends G and types S0,

b) G0 ` v : t such that D ` t0  t,

c) v is either an abstraction, a component, a configurator, or a location that is either undefined
or refers-to a record,

d) v and S0 are record-based with relation to G, and

e) nil(S0) = ∆.
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2. Let c be an expression such that G ` c : K =) K0, let S be a heap such that, for some set
X 2 Dom(S), nil(S) ✓ {selectS(s, p) | (p : t) 2 K/ [ K�} ] X and G types S.

Let s be a partially linked object s such that it complies with K and its partially linked object type
is [[R� K/ ) P� K.]] and s and S are record-based with relation to G:

If s; c; S + s0; S0 then

a) there is G0 typing S0 and extending G,

b) s0 is a partially linked object that extends s and complies with K0. Its partially linked object
type is [[R� K0/ ) P� K0.]], and

c) s0 and S0 are record-based with relation to G0, and

d) nil(S0) ✓ {selectS0(s, p) | (p : t) 2 K0/ [ K0�} ] X.

Proof. The proof is carried out by induction on the two cases of the lemma. On the first case,
we prove it by induction on the size of the evaluation derivations and by analysis of the last
rule used. We use the second case when needed and its conditions are met. We show, in the
cases that evaluate to wrong, that these rules are never applicable.

Case: (Eval Value)

The conclusions of the theorem hold with G0 = G, S0 = S, and v = lx : d.e or v = LX  d.e.
G ` v : t with G ` t  t by definition of subtyping, Definition 5.10. We also have that
nil(S0) = ∆ and that both v and S are record-based.

Case: (Eval Application)t

In this case, with e1(e2); S # v; S0, we know by Rule (Eval Application), that: a) e1; S # lx : t.e; S0,
b) e2; S0 # v2; S00, and c) e[x v2]; S00 # v; S000. On the typing derivation, the only plausible last
rule for G ` e1(e2) : s is Rule , with the premises: d) G ` e1 : t ! s and e) G ` e2 : t.

Taking d) and a), by induction hypothesis we conclude that there is a G0 extending G and
typing S0, such that f) G0 ` lx : t.e : t0 ! s0 with G0 ` t0 ! s0  t ! s. By Lemma 3.24
(weakening) on e) we conclude that G0 ` e2 : t, which together with b), by induction hypothesis,
there is a G00 extending both G0 and G and typing S00 such that g) G00 ` v2 : t00 with G00 ` t00  t

and nil(S00) = ∆. From f), by Lemma 3.24 (weakening) and Rule (Val Abstraction) we have that
G00, x : t ` e : s and by Lemma 3.28 (substitution) with g) we have that h) G00 ` e[x v2] : s0 with
G00 ` s0  s. Taking h) and c), by induction hypothesis we have that there is G000 extending G00

and typing S000, such that v is typed G000 ` v : s and v is either an abstraction or a location that is
either undefined or refers-to a record, and nil(S000) = ∆.

The application of induction hypothesis to the different premises and the application of
Lemma 3.28 ensures that v and S000 are record-based.

Case: (Eval Record)
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When the last rule is (Eval Record) we have the hypothesis [`i = ei
i21..n]; S0 # l; S0 with S0 =

Sn[li 7! vi
i21..n][l 7! {`i = li

i21..n}] and G ` [`i = ei
i21..n] :{|`i : ti

i21..n|}. By the Rules (Val Record)
and (Eval Record), we have that a) G ` ei : ti and b) ei; Si�1 # vi; Si with i 2 1..n. By iterating
the induction hypothesis with a) and b), and using Lemma 3.24 (weakening) to adjust the typ-
ing environment in the hypothesis, we reach the conclusion that, for all i 2 1..n, there is a Gi

extending Gi�1 and typing each Si, with G0 = G such that Gi ` vi : t0i with Gi ` t0i  ti and
nil(Si) = ∆. So, by transitivity, we have that Gn types Sn and extends G with nil(Sn) = ∆. By
Rule (Val Record Value) and Definition 2.21 we have that G0 = Gn, l : {|`i : ti

i21..n|} types S0 and
that G0 ` l : {|`i : ti

i21..n|} with relation to S0. We have that l is a location that refers-to a
record and nil(S0) = ∆. The resulting heap is also record-based since all the introduced values
are record-based (by induction hypothesis).

Case: (Eval Assign)

In this case, from e1.` := e2, by Rule (Eval Assign), we have that a) e1; S # l; S0 with l

0 =
derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}, and b) e2; S0 # v; S00. By Rule (Val Assign), we have
that G ` (e1.` := e2) : s is supported by c) G ` e1 : {| . . . , ` : s, . . . |} and d) G ` e2 : s. Thus,
from a) and c), by induction hypothesis we know that there is a G0 extending G and typing S0

such that G0 ` l : {| . . . , ` : s, . . . |}, and nil(S0) = ∆. Notice that record types are only related by
equivalence. By Definition 2.21 we conclude that S0(derefS0(l)) = {. . . , ` = l

00, . . .} and that
G ` S0(derefS0(l)) : {| . . . , ` : s, . . . |}. By rule (Val Record) we conclude that e) G0 ` l

00 : s. From
b), by Lemma 3.24 (weakening) we obtain G0 ` e2 : s, and by induction hypothesis together
with d) we have that there is a G00 extending G0 and typing S00 such that f) G00 ` v : s0 with
G00 ` s0  s, and nil(S00) = ∆. G0 types S00[l 7! v] and the result of the assignment expres-
sion is v, and v is not nil we conclude this case with nil(S00[l 7! v]) = ∆ and v satisfying the
conclusions of the theorem. Value v is record-based and it is introduced inside a record, so the
resulting heap S00[l 7! v] is also record-based.

Case: (Eval Select)

If the last rule used is (Eval Select) then the expression e.` can be typed by two possible rules.
In both cases we have that a) e1; S # l; S0 with l

0 = derefS0(l) and S0(l0) = {. . . , ` = l

00, . . .}.
The subcases are:

Subcase: (Val Select)

Now, in this case we have that c) G ` e : {| . . . , ` : t, . . . |}. From a) and c), by induction hypothesis
we know that there is a G0 extending G and typing S0 such that G0 ` l : {| . . . , ` : s, . . . |} and
nil(S0) = ∆. Notice again that record types are only related by equivalence. By Definition 2.21
we conclude that for some l

0 = derefS0(l) we have S0(l0) = {. . . , ` = l

00, . . .} and that G `
S0(l0) : {| . . . , ` : s, . . . |}. By Rule (Val Record) we conclude that e) G0 ` l

00 : s. By Definition 2.21
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we conclude that G0 ` S0(l00) : s. Notice that nil(S0) = ∆. The resulting value results from
consulting a record in a record-based heap, so, it is also record-based.

Subcase: (Val Select Interface)

In this case we know that c) G ` e : {. . . , ` : t, . . .} and therefore, by induction hypothesis (from
a) and c) ), that e1 yields an interface typed value (l), G ` t0  {. . . , ` : t, . . .}. By inspection
of the type system (Definition 3.18) we see, by Rule (Val Select Interface), that G ` l : {| . . . , ` :
t, . . . |} and then the reasoning follows by applying Definition 2.21 and Rule (Val Record) as in
the subcase above.

Case: (Eval Compose)

We have the typing G ` compose e : K/ ) K. supported by G ` e : ∆ =) K where K� = ∆.
The evaluation hypothesis is compose e; S # comp(c); S0 where e; S # conf(t, c); S0. By induc-
tion hypothesis we have that there is a G0 extending G, that types S0 and G0 ` conf(t, c) :
∆ =) K and nil(S0) = ∆. Notice that configurator types are only related by equivalence.
By Rule (Val Configurator Value)r we know that G0 ` c : t and that t = ∆ =) K, and by Rules
(Val Compose) and (Val Composition Value) we conclude that G0 ` comp(c) : K/ ) K.. with G0

extending G and typing S0, and with the resulting value being a component value. From the
application of the induction hypothesis we also conclude that nil(S0) = ∆ and that the value
comp(c) is record-based.

Case: (Eval New)

The hypothesis G ` new e with `r
j := ej

j21..n : {`p
i : si

i21..n} is obtained by Rule (Val New) with
the premises G ` e : t with t = {`r

j : tj
j21..m} ) {`p

i : si
i21..n}. new is evaluated by Rule

(Eval New), thus, if new e with `r
j := ej

j21..m; S # l; S0, then we must have e; S # comp(c); S0. By
induction hypothesis we have that there is a G0 extending G such that G0 ` comp(c) : t0 with
G0 ` t0  t and nil(S0) = ∆.

Now, notice that the presentation order of the premises does not reflect the real depen-
dence between them. For technical reasons, the plug-assignments must be considered first in
this proof. By iteratively applying Lemma 4.11 (substitution), the induction hypothesis, and
Lemma 4.10 (weakening) on the typing and evaluation judgements of each plug-assignment
expression, (G ` ei : ti) and (ei; Si�1 # vi; Si), we obtain that for all i 2 1..n we have Gi extending
Gi�1 and typing Si such that Gi ` vi : t0i with Gi ` t0i  ti and nil(Si) = ∆. Notice that all vi and
Si are record-based.

By Lemma 4.10 (weakening) on the typing of comp(c) and Rule (Val Composition Value) we
have Gn ` c : ∆ =) K and K� = ∆, with type t = K/ ) K. thus K/ = {`j : tj

j21..m}. Notice that
the judgement above applies c to the empty instance (0; c; Sn + s; Sn+1), and that nil(Sn) = ∆
meets the conditions of the second part of the lemma with X = ∆. In this case, 0 complies with
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the resource list ∆ and has type [[{} ) {}]]. By induction hypothesis on the second case of
the lemma, we have that there is a Gn+1 extending Gn and the resulting instance s is compliant
with K with the partial type [[K/ ) K.]]. We know that the locations of the required ports are
{li

i21..n} = {selectS0(s, `) | (` : t) 2 K/} and that nil(S0) ✓ {selectS0(s, `) | (` : t) 2 K/}.
Gn+1 types Sn+1 and the locations in s/ = {`i = li

i21..n} are in Sn. From the compliance
of s with K, Definition 3.23, and Rule (Val Record) we know that Gn+1 ` s : {| . . . , `p

j : sj
j21..m|}

where K. = {`p
j : sj

j21..m} and by Rule (Val Interface), we have a G0 = Gn+1, l : K., extending
G, and typing Sn+1[l 7! s][li 7!vi

i21..n]. We finally have that l is a location that refers-to an
object, which is a record, such that G0 ` l : K. with K. = {`p

j : sj
j21..m}. Finally, since vi 6= nil

for all i 2 1..n we have that nil(Sn+1[l 7! s][lj 7!vj
j21..m]) = ∆ with s being the newly created

instance. Notice that l and Sn+1[l 7! s][lj 7!vj
j21..m] are record-based.

Case: (Eval Reconfig)

If the last rule used is (Eval Reconfig) then we must have
a) reconfig x = e1[e2] with `i := fi

i21..n
in e3 else e4; S # v; S000

and b) G ` reconfig x = e1[e2] with `i := e0i
i21..n

in e3 else e4 : d.
From b), by Rule (Val Reconfig), we have that G ` e1 : K =) K0 and from a), by Rule

(Eval Reconfig), we have e1; S # conf(t0, c); S0. By induction hypothesis, we conclude that
there is a G0 that extends G and types S0 such that G0 ` conf(t0, c) : K =) K0, which, by
Rule (Val Configurator Value), leads to t0 = K =) K0 and G0 ` c : t0. Notice that configu-
rator types are only related by equivalence. From b), by Rule (Val Reconfig), we also have that
G ` e2 : t. By Lemma 4.10 (weakening) we obtain G0 ` e2 : t, and e2; S0 # l; S0 with S0(l) = s.
By induction hypothesis we conclude that there is a G00 which extends G0 and types S0 such that
G00 ` l : t0 with G00 ` t0  t.

Again, from a), by Rule (Eval Reconfig), we now know that s//K and therefore, by Lemma 4.9,
we know that s complies with K and should have the partial linked object type [[∆) t]].

The evaluation follows on the plug assigment expressions. By iterating Lemma 4.10 (weak-
ening) and the induction hypothesis for all the expressions ei, typed by Gi ` ei : si, we obtain
that for each i there is a Gi that extends Gi�1, with G0 = G00 typing each Si such that Gi ` vi : s0i
with Gi ` s0i  si.

Then, we have that s; c; Sn + s0; S00. By induction hypothesis on the second part of the
lemma (the application of a configurator) we have that there is a G000 which extends G00 and that
the resulting instance, s0, complies with K0 and has the partial type [[K0/ ) K0. � t]] and by
Definition 3.21, its instance type is K0. � t.

Let G0000 = G000, l0 : (t� K0.). Again, from b), by Rule (Val Reconfig) and Lemma 4.10 (weak-
ening), we obtain G0000, x : (t�K0.) ` e3 : d and by Lemma 4.11 (substitution) with the side condi-
tion G0000 ` l

0 : (t�K0.). We conclude c) G0000 ` e3[x l

0] : d. So, from a), by Rule (Eval Reconfig),
we have e3[x l

0]; Sn+1[l0 7! s0][li 7!vi
i21..n] # v; S0000, and with c), by induction hypothesis,
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we obtain the final result that there is a G0000 such that G0000 ` v : d0 with G0000 ` d0  d and G0000

extends G000 and types S0000.
Finally, the occurrence of nil values in the heap follows the reasoning used in the instantia-

tion process. In the first case, all nil values introduced by the new required ports are replaced
by non-nil values, so we prove that nil(S0000) = ∆.

Case: (Eval Reconfig Else)

The second evaluation possibility for a reconfiguration follows without applying the config-
urator to the instance and therefore the typing of the resulting value v results by induction
hypothesis on the typing derivation of e4.

Case: (Eval Type Application)

If the last rule is (Eval Type Application) the for the expression ehti we have the typing judge-
ment, whose premise must be a) D ` e : 8Xt s and the evaluation judgement b) ehti; S # v; S00.
The premises for b) are, c) e; S # LX  t.e0; S0 and d) e0[X t0]; S0 # v; S00. By induction hy-
pothesis we know that there is a G0 which extends G and types S0 and G0 ` LX  t.e0 : 8Xt s0

such that G0 ` 8Xt s  8Xt s0. From the polymorphic case of S (Definition 6.12) we know
that G0, X  t ` s0  s. By Rule (Val Type Abstraction) on a) we know that G0, X  t ` e0 : s.
Since G ` t0  t, by Lemma 6.20 (weakening) we have G0 ` t0  t, and by Lemma 6.19
(substitution) we have that e) G0 ` e0[X t0] : s0[X t0] and by Lemma 6.18 (substitution) we
have that G0 ` s0[X t0]  s[X t0].

From e) and d), by induction hypothesis, we have that there is a G00 that extends G and types
S00, such that G00 ` v : s00 with G00 ` s00  s0[X t0] and v is one of the possible values admitted
in the lemma. The induction hypothesis on both cases indicates that nil(S00) = ∆. Notice that v
and S000 are record-based.

When composition operations are involved the reasoning is also similar, but handling dif-
ferent value forms and using Rule (Val Configurator Value) to correctly type the results.

Case: (Eval Requires)r

The typing hypothesis for this case is G ` (requires ` : I) : s with s = ∆ =) {` • I, ` / I} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value)r, we
have G0 ` conf(s, requires ` : I) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Provides)r

The typing hypothesis for this case is G ` (provides ` : t) : s with s = ∆ =) {` � t, ` . t} where
the expression requires ` : t evaluates to a configurator. By Rule (Val Configurator Value)r, we
have G ` conf(s, provides ` : t) : s with G0 = G and S0 = S with nil(S0) = ∆.
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Case: (Eval Plug)r

The typing hypothesis for this case is G ` plug (p1 : t1) into (p2 : t2) : s with
s = ({p2 � t2, p1 • t1} =) {p1 • t1}) where the expression plug (p1 : t) into (p2 : t) eval-
uates to a configurator. By Rule (Val Configurator Value)r, we have G ` conf(s, plug (p1 :
t1) into (p2 : t2)) : s with G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Method Block)r

The typing hypothesis for this case is G ` xK[`i : ti = ei
i21..n] : s with

s = K =) K, {x • {`i : ti
i21..n}} where the expression xK[`i : ti = ei

i21..n] evaluates to a con-
figurator. By Rule (Val Configurator Value)r, we have G ` conf(s, xK[`i : ti = ei

i21..n]) : s with
G0 = G and S0 = S with nil(S0) = ∆.

Case: (Eval Uses)r

The evaluation of this expression produces a configurator where e is replaced by its resulting
value, x[e : t ) s]; S # conf(d, x[v : t ) s]); S0. The typing judgment implies G ` x[e : t ) s] :
∆ =) K with t = {`r

i : ti
i21..n}, s = {`p

j : sj
j21..m} and K = {x • s, x.`r

i � ti
i21..n, x.`p

j • sj
j21..m}.

We have that |G| ` e : t ) s and e; S # v; S0, which by induction hypothesis on the first
part of the lemma implies that there is a |G0| extending |G| such that |G0| ` v : t0 ) s0 with
|G0| ` t0 ) s0  t ) s and nil(S0) = ∆.

We conclude, by Rule (Val Configurator Value)r, that |G0| ` conf(d, x[v : t]) : ∆ =) K
with d = ∆ =) K and by Lemma 4.10 (weakening) that there is a G0 extending G and
G0 ` conf(d, x[v : t]) : ∆ =) K.

Case: (Eval Sequence)

By induction hypothesis we reach the conclusion that there is a G0 extending G and typing S0

such that G0 ` conf(s, c1) : s with s = (K =) K0, Kc) and nil(S0) = ∆. Also by induction
hypothesis, there is G00 extending both G0 and G and typing S00 such that G00 ` conf(s0, c2) : s0

with s0 = (Kc, K00 =) K000) and nil(S00) = ∆. By Rule (Val Configurator Value) we conclude
that G00 ` conf(s00, (c1; c2)) : s00 with s00 = K, K00 =) K0, K000.

We follow by proving that well-typed expressions never evaluate to wrong.

Case: (Wrong Call)

For an application to be well-typed we must have G ` e1(e2) : s. Then, by inspection of the
type system, we conclude that the only typing rule that may derive this judgment is Rule
(Val Application), and therefore we have a) G ` e1 : t ! s and b) G ` e2 : s. We also have
that c) e1; S # v; S0 which by induction hypothesis lets us conclude that there is a G0 typing
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S0 such that G ` v : t ! s and v is an abstraction. Therefore if an application expression is
well-typed, the Rule (Wrong Call) is never applicable.

Case: (Wrong Assign)

If G ` e1.` := e2 : t then by Rule (Eval Assign) we know that a) G ` e1 : {| . . . , ` : t, . . . |}. The
evaluation hypothesis has the premise b) e1; S # v; S0. Taking a) and b), by induction hypothesis
we know that there is G0 typing S0 and extending G such that G ` v : {| . . . , ` : t, . . . |} and v must
be a location leading to a record. Thus Rule (Wrong Assign) is never applicable to well-typed
assignment expressions.

Case: (Wrong Assign 2)

Following the reasoning from the previous case, we have G ` l : {| . . . , ` : t, . . . |} and that l is a
location leading to a record. By Definition 2.21 we know that G ` S(l) : {| . . . , ` : t, . . . |} which
by Rule (Val Record) must contain the label ` and therefore Rule (Wrong Assign 2) is also never
applicable.

Case: (Wrong Select). Similar.

Case: (Wrong Select 2). Similar.

Case: (Wrong Compose)

If G ` compose e : K/ ) K. then we know that G ` e : ∆ =) K by induction hypothesis we
have a G0 extends G and types S0 and that v is a value such that G ` v : ∆ =) K. This value can
only be a configurator value. So wrong is never issued by Rule (Wrong Compose).

Case: (Wrong New)

If G ` new e with `r
j := ej

j21..m : s, by Rule (Val New), we have that G ` e : t ) s and that
e; S # v; S0. By induction hypothesis we obtain that there is a G0 extending G and typing S0 such
that v is a component value (other possible values have different types). This is contradicts the
application of (Wrong New).

Case: (Wrong Sequence)

If G ` e1; e2 : K, K00 =) K0, K000 then G ` e1 : K =) K0, Kc and, as e1; S # v; S we know, by
induction hypothesis, that there is G0 extending G and typing S0 such that v is a configurator
value with G0 ` v : K =) K0, Kc. Once again, we find a contradiction.

Case: (Wrong Sequence 2). Similar.

Case: (Wrong Reconfig)

By induction hypothesis on the premises typing and evaluating e1, we know that there is a G0

that extends G and types S0 such that e1 evaluates to a value v typed by G0 ` v : K =) K0 that
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is either an abstraction, a component, a configurator, or a location that refers-to a record.
By our typing relation we conclude that this is a configurator conf(K =) K0, c). So, Rule
(Wrong Reconfig) is never applicable.

Case: (Wrong Reconfig 2) and (Wrong Reconfig 3)

From the previous case we know that the value to which e1 evaluates is a configurator, and if
e2 is typed by an interface, and e2; S0 # v; S0. by induction hypothesis we know that it must
be a location that is either undefined or refers-to a record. So, Rules (Wrong Reconfig 2) and
(Wrong Reconfig 3) are never applied.

Case: (Wrong Type App)

In this case we have that ehti; S # wrong; S0 because e; S # v; S0 and v 6= LX  t0.e0. We also
know that the expression is well typed, i.e. D ` eht0i : s[X t0] and by backward application of
Rule (Val Type Application) we have D ` e : 8Xt s with D ` t0  t. By inspection of the type
system we see that the only values that are typed with second-order types are type abstractions.
Therefore, Rule (Wrong Type App) is never applicable on well-typed expressions.

The second part of the lemma states that the application of a configurator to an instance
causes an effect consistent with the type of the operation. This proof is done by induction on
the height of the derivations and by case analysis of the last application rule used. We verify
that the type information in the instances is, at any time, sound with the global typing of the
heap. We use the first part of the lemma when necessary.

Case: (App Provides)r

In this case we have an expression typed G ` (provides ` : t) : ∆ =) {` � t, ` . t} and an in-
stance s = (r, e, p)P that complies with ∆. The resulting instance, s0 = (r, e, p� {` = l})P,l:t,
trivially complies, by Definition 3.23, with the resource set {` � t, ` . t} and the typing environ-
ment G0 = G, l : t which also types the heap S0 = S[l 7! nil]. The resulting value is well-typed
according to Rule (Val Object).

Since the demanded resources in the configurator type is empty we have that nil(S) ✓ X for
some X. By Rule (App Provides)r we know that selectS0(s0, `) = l and that S0(l) = nil. More, l
is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So, {selectS0(s0, `) | (` :
t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds to the expected
results. With relation to the partially linked object type, we have that if the initial type of s is
[[t ) s]] then the partial type of s0 is [[t ) s� {` : t}]].

Case: (App Requires)r

In this case we have the typing judgment G ` (requires ` : t) : ∆ =) {` • t, ` / t} as hypothesis
and an instance s = (r, e, p)P that complies with ∆. The resulting instance, s0 = (r � {` =
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l}, e, p)P,l:t, trivially complies, by Definition 3.23, with the resource set {` • t, ` / t} and the
typing environment G0 = G, l : t, which also types the heap S0 = S[l 7! nil]. The resulting
value is well-typed according to Rule (Val Object).

Since the demanded resources in the configurator type is empty we have that nil(S) ✓ X for
some X. By Rule (App Requires)r we know that selectS0(s0, `) = l and that S0(l) = nil. More, l
is the only new location in S0 with relation to S and K0/ [ K0� = {` : t}. So, {selectS0(s0, `) | (` :
t) 2 K0/ [ K0�} = {l} and therefore nil(S0) ✓ {l} [ X which corresponds to the expected
results. With relation to the partially linked object type, we have that if the initial type of s is
[[t ) s]] then the partial type of s0 is [[t � {` : t}) s]].

Case: (App Uses)r

If the last evaluation rule is (App Uses)r then we have a) s; x[v : t]; S + s0; S0 and also
b) G ` x[v : t] : ∆ =) K with K = {x • {`p

j : s0j
j21..m}, x.`r

i � t0i
i21..n, x.`p

j • s0j
j21..m} where

t = {`r
i : ti

i21..k}) {`p
j : sj

j21..m}.
From b), by Rule (Comp Uses), we have that |G| ` v : t, and since the only kind of values

typed in this way are components, we also have that v = comp(c) with |G| ` comp(c) : t. By
Rule (Val Composition Value) we known that |G| ` compose c : t and from Rule (Val Compose)
we know c) |G| ` c : ∆ =) K0 with K0� = ∆ and t = (K0/ ) K0.).

From a), by Rule (App Uses)r, we know that (new v); S # l; S0. Since v evaluates to itself
causing no changes to the heap, Rule (Eval Value), and there are no plug assignments to be
considered, the evaluation of new v is supported, by Rule (Eval New), on d) 0; c; S + s00; S00 with
S0 = S00[l 7! s00].

Since the set of demanded resources in the type assigned in b) (∆ =) K) is empty, we know,
from the conditions of the lemma, that there is a set X such that nil(S) ✓ X. From c) and d), by
induction hypothesis on the second case of the lemma, we have that there is a |G0| that types
S00 and that the resulting value, s00, is compliant with K0 with the partially linked object type
[[K0/ =) K0.]] with relation to |G0|. Remember that the initial instance is 0 and therefore its
partial object type is [[{}) {}]].

The instance resulting from applying x[v : t] to s is therefore s0 = (r, e� {x = l}, p)P,l:K0. ,
see (App Uses), and the resulting heap is S0. They are both well typed with relation to |G00| =
|G0|, l : K0. and by weakening with relation to G00 (by adding the elements taken from G to
produce |G|).

More, the instance (r, e� {x = l}, p)P,l:K0. is, according to Definition 3.23, compliant with
K. The induction hypothesis also tells us that nil(S00) ✓ {selectS00(s, `) | (` : t) 2 (`r

i : ti)i21..n} [
X with K0/ = {`r

i : ti
i21..k}. Which, in the involving composition context, can be written by

dereferrencing x, nil(S0) ✓ {selectS00(s0, p) | (p : t) 2 K�} [ X where K� = {x.`r
i : ti

i21..n}.
The partial type of the resulting object remains unchanged since no required or provided

ports are added to the instance.
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Case: (App Method Block)

If G ` xK[`i : ti = vi
i21..n] : K =) K, {x • {`i : ti

i21..n}}, then by Rule (Comp Method Block), we
know that for all i 2 1..n, |G|, x : {|`i : ti

i21..n|}, K• ` vi : ti. Since (r, e, p)P is compliant with K
and vi[(r, e, p)P][x l] denotes the substitution of the available names in the current instance
(r, e, p)P by its locations, which are typed in G, by Lemma 4.10 (weakening) and Lemma 4.11
(substitution), we obtain G, x : {|`i : ti

i21..n|} ` vi[(r, e, p)P] : ti for all i 2 1..n (|G| correctly types
the instance). Let G0 = G, l : {|`i : ti

i21..n|} and by Lemma 4.10 (weakening) and 4.11 (substi-
tution) we have that G0 ` vi[(r, e, p)][x l] : ti for all i 2 1..n. So, we have that G0, li : ti

i21..n

types the resulting heap S0 = S[l 7! {`i = li
i21..n}][li 7!vi[(r, e, p)][x l] i21..n].

Since (r, e, p)P is compliant with K this makes the instance, (r, e� {x = l}, p), compliant
with K0 = K, {x • {`i : ti

i21..n}}. No references are created in the heap that lead to nil, hence
nil(S0) = nil(S), and by considering the set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2 K/ [
K�}[ X we have that nil(S0) ✓ {selectS(s, `) | (` : t) 2 K0/ [ K0�}[ X which is the same set. As
in the previous case, the partial object type remains unchanged.

Case: (App Plug)

If G ` plug (p1 : t) into (p2 : t) : ({p2 � t, p1 • t} =) {p1 • t}) only the unsatisfied inner re-
quirements change, So K0� ✓ K�, with K = {p2 � t, p1 • t} and K0 = {p1 • t}. However, the
resulting instance is the same and by Definition 3.23, s is compliant with K0. On the other hand,
the heap is changed to make the connection between the source and the target of the plug opera-
tion. From the lemma’s hypothesis we know that nil(S) ✓ {selectS(s, `) | (` : t) 2 K/ [K�}[X.
S(selectS(s, p2)) = nil, hence nil(S[selectS(s, p2) 7! selectS(s, p1)]) ✓ {selectS(s, `) | (` : t) 2
K0/ [ K0�} [ X.

Case: (App Sequence)

We first prove that the resulting instance is compliant with the type. The typing judgement
D ` e1; e2 : K, K00 =) K0, K000 is supported by the premises D ` e1 : K =) K0, Kc and D `
e2 : K0c, K00 =) K000. By induction hypothesis on the second case of the lemma, together with the
application of e1 to an instance s compliant with K we reach an instance s0 which is compliant
with K0, Kc. Since s0 extends s it is also compliant with K00 and by Lemma 4.10 (weakening)
and induction hypothesis on the second case of the lemma together with the evaluation of e2

we conclude that s00 is compliant with K000. Since it extends s and s0 we conclude that it is also
compliant with K0.

Now concerning the nil values in the heap. In the case of s; (c1; c2); S + s00; S00 with D `
(e1; e2) : K, K00 =) K0, K000 we have that there is a set X such that nil(S) ✓ {selectS(s, `) | (` : t) 2
(K, K00)/ [ (K, K00)�}[X. By rewriting this definition we obtain nil(S) ✓ {selectS(s, `) | (` : t) 2
K/ [ K�} [ X0 with X0 = {selectS(s, `) | (` : t) 2 K00/ [ K00�} [ X. Given the application of the
first premise s; c1; S + s0; S0 typed D ` e1 : K =) K0, Kc, by induction hypothesis, we know that
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nil(S0) ✓ {selectS(s, `) | (` : t) 2 (K0, Kc)/ [ (K0, Kc)�} [ X0. Which is the same as nil(S0) ✓
{selectS(s, `) | (` : t) 2 K0/ [K0�}[ {selectS(s, `) | (` : t) 2 Kc/ [Kc�}[ {selectS(s, `) | (` : t) 2
K00/ [ K00�} [ X. Again, by rearranging the definition we have nil(S0) ✓ {selectS(s, `) | (` :
t) 2 K00, Kc/ [ K00, Kc�} [ X00 with X00 = {selectS(s, `) | (` : t) 2 K0/ [ K0�} [ X. Given the
second premise evaluated by s; c1; S + s0; S0 and typed by D ` e2 : Kc, K00 =) K000, by induction
hypothesis we know that nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X00. As the
locations in X00 corresponding to the labels in K0 are already in this final set we conclude that
nil(S00) ✓ {selectS(s, `) | (` : t) 2 K0, K000/ [ K0, K000�} [ X.
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Appendix B

ComponentJ

In this section we present the programming language componentJ by means of simple exam-
ples and make a parallel with the lc model language whenever it is convenient. The general
structure of a standalone componentJ file is a sequence of static declarations, which include: the
import of Java types and exceptions, the declaration of port interfaces, component interfaces,
and components, and an expression that gets executed in the context of these declarations. The
complete syntax of componentJ is depicted in Appendix B.5.

B.1 Hello World

The first program we introduce here is the classic program “Hello World!”. This example illus-
trates the basic construction, composition and scripting mechanisms at a small scale. We start
by declaring a port interface IHello with a method hello returning a string:

port in ter face I H e l l o {
str ing h e l l o ( ) ;

}

Notice that a port interface declaration roughly corresponds to a Java interface and also that
type string is primitive in componentJ. We then define of a component Hello which provides a
service specified by interface IHello in a port p:

component Hel lo {
provides I H e l l o p ;
methods m {

str ing h e l l o ( ) {
return ” He l lo World ! ” ;

}
}
plug m into p ;

}
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The actual implementation of the provided service is defined in the inner method block m

which is connected to the declared provided port by a plug operation. The component Hello can
then be instantiated to an instance of type

object in ter face THel lo {
provides I H e l l o p ;

}

and its method hello in port p invoked in the following componentJ fragment:

THel lo o = new Hel lo ;
o . p . h e l l o ( )

Although this expression yields the expected string value it does not meet the expectations
of a classic “Hello World!” example. componentJ does not have global variable definitions and
does not provide primitive i/o operations. Therefore, we must rely on external functionality
to actually produce some output. In the next excerpt, port interface IPrint specifies the needed
functionality and component PrintHello adapts Hello defined above to print the message:

port in ter face I P r i n t {
void p r i n t ( str ing ) ;

}
port in ter face I P r i n t H e l l o {

void h e l l o ( ) ;
}
component inter face CHello {

provides I H e l l o p ;
}
component P r i n t H e l l o {

requires I P r i n t out ;
provides I P r i n t H e l l o p ;
uses CHello h = Hel lo ;
methods m {

void h e l l o ( ) {
out . p r i n t ( h . p . h e l l o ( ) ) ;

}
}
plug m into p ;

}

Notice that component PrintHello we’ve just created has a required port out which refers to a
not yet available implementation of port interface IPrint . It is used inside the component and
will be available whenever the component’s implementation is used. PrintHello is a compound
component whose architecture integrates an inner component Hello and a method block for
scripting code, in this case taking the result of method hello in port h.p and printing it in the
port p. Method block m is linked to the provided port p in order to export it.
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Now, to use PrintHello, we need to link its required port to a service that indeed provides
a method print which receives a string as argument. To actually print the message in a con-
sole we use a native java component providing this functionality; consider that a component
Console exists and that it provides a port out typed IPrint . We can then instantiate PrintHello in the
following way:

c = new Console ;
. . .
o = new P r i n t H e l l o [ c . out in out ] ;
o . p . h e l l o ( ) ;

The expression new C[o in p] instantiates C and connects the reference o to the required port p.
Hence, the plug assignment of port c.out, of a new Console object, to the required port out of the
new instance of PrintHello, o, “configures” the behaviour of this particular instance. So, if Console

indeed provides access to a system console the intended message gets printed.
Other configurations are possible depending on the functionality provided at instantiation

time. For instance, we could use a component Dialog, also providing a port out with type IPrint ,
that opens a dialogue box in a graphic display and shows up the message. Then, the result of

d = new Dialog ;
. . .
o = new P r i n t H e l l o [ d . out in out ] ;
o . p . h e l l o ( ) ;

is a dialogue box on some screen yielding the “Hello World!” message.

B.2 Dynamic Composition

We now illustrate dynamic composition in componentJ by elaborating on the previous exam-
ple. Our goal is to define a way of uniformly extending any console component, one that
implements IPrint in a port out, with HTML formatting tools. Consider that the following inter-
face:

port in ter face IHTML {
void openTag ( str ing ) ;
void closeTag ( str ing ) ;

}

represents the HTML formatting tools available. In the context of an HTML editor, one can
design a component that accepts plain character inputs in one port (to be called by a keyboard
event handler) and formatting commands in another (to be connected to a toolbar event han-
dler):

component inter face CHTMLConsole{
provides IHTML html ;
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provides I P r i n t out ;
}

We can then define a method that takes a console component and produces another component
which combines basic character input with formatting. This factory method is defined in the
following port interface:

port in ter face IHTMLWrapper {
CHTMLConsole wrap ( CConsole ) ;

}

and the corresponding implementation is as follows:

component HTMLWrapper {
provides IHTMLWrapper p ;
methods m {

CHTMLConsole wrap ( CConsole C) {
return compose {

provides IHTML html ;
provides I P r i n t out ;
uses CConsole c = C;
methods m {

void openTag ( str ing t ) {c . out . p r i n t ( ”<” + t + ”>” ) ; }
void closeTag ( str ing t ) {c . out . p r i n t ( ” </ ” + t + ”>” ) ; }

}
plug c . out into out ;
plug m into html ;

} ;
}

}
plug m into p ;

}

Notice that method wrap returns a component value whose inner element C is only instanti-
ated at runtime. Any basic console component passed to this method is wrapped in a new
composition implementing the formatting functionality by encoding HTML code in the output
text.

Now, and given a component interface CHTMLConsole and an object interface HTMLConsole to
type such components and instances:

object in ter face CHTMLConsole {
provides IHTML html ;
provides I P r i n t out ;

}
object in ter face THTMLConsole {

provides IHTML html ;
provides I P r i n t out ;

}
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The following fragment would simply display our greeting message with the expected format-
ting.

CHTMLWrapper w = new HTMLWrapper ;
CHTMLConsole c = w. p . wrap ( Console ) ;
THTMLConsole o = new c ;
o . html . openTag ( ” html ” ) ;
o . html . openTag ( ” h1 ” ) ;
o . out . p r i n t ( ” He l lo World ! ” ) ;
o . html . closeTag ( ” h1 ” ) ;
o . html . closeTag ( ” html ” ) ;

In a text based console the result would be “<html><h1>Hello World!</h1></html>”.
These examples illustrate the usage of componentJ in the definition of both static and dy-

namic compositions. Although very simple they capture the essential aspects of the component
programming in componentJ. Some more examples are also available in the componentJ distri-
bution package.

We now describe the interoperability mechanisms between Java and componentJ.

B.3 Interoperability with Java

The integration of componentJ with the Java platform, and in particular with Java natively
defined components, is achieved by means of a set of a minimal run-time support and by
a set of classes and interfaces automatically generated by the componentJ compiler based on
componentJ declarations.

Our prototype compiler works by generating the java code that manages component val-
ues at run-time; this involves declaring and creating new component instances and being able
to combine components at run-time. We map componentJ entities as closer as possible to Java
counterparts, e.g. port types are mapped directly to java interfaces, method blocks are mapped
to classes and component instances are mapped to objects that give access to other objects
(method blocks) by dereferencing a port name. The successive port connections are resolved
at instantiation-time so that methods are at the distance of one derefereciation step. However,
not every componentJ entities have a Java counterpart as it is the case of components and com-
ponent types: components are implemented in singleton classes with factory methods for the
instantiation process, and component values are all typed alike in the context of Java programs.
Hence, explicit type conversions and wrapping are necessary to use them safely.

From componentJ to Java Our prototype compiler uses componentJ declarations to generate
interconnection code; it generates client stubs from component types to allow a Java program
to apply type coercions to components and instances, thus accessing their ports in a type safe
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way. Component types are also used to produce skeleton classes to help writing native Java
components that conform to a particular type. A skeleton is an abstract class implementing
all the needed functionality, thus allowing for a fully operational native component to be im-
plemented by extending such a skeleton and adding the intended Java code in the subclass.
An empty example of a component class is also generated automatically to illustrate a few
conventions.

From Java to ComponentJ Java types and exceptions are definitely useful when defining pro-
grams using the two languages. As componentJ explicitly excludes the notion of class (a type at-
tached to one particular implementation) we chose to import java classes and interfaces (which
may use class names in their definition) as opaque types explicitly imported by the program-
mer. As the current implementation of componentJ does not implement any notion of packages
(for components), this type import facility also allows for the usage of types stored in packages.
A local alias is created in order to use them in componentJ programs. The same happens with
exceptions which, from the point of view of componentJ, can only be used in the method head-
ers. There is no explicit exception handling in the current version of componentJ other than
considering them in method typing.

Separate compilation is supported by the encoding of componentJ into Java by using the
reflection mechanism of the JVM. Each type declaration and component declaration is therefore
encoded in Java code and retrieved from its bytecode representation. Therefore, no particular
associations between filenames and components is enforced. The name of a file is only used if it
includes a componentJ final expression, in this case the name is used to create a class whose main

function “is” the expression. In some cases, to retrieve type information not directly encodable
in Java types we use explicit annotations on the generated Java entities.

B.4 Type System

componentJ type language includes a limited subset of the Java primitive types, interface types
(called port interfaces), component types (component interfaces), and object types (object in-
terfaces). It also includes arrays of any of such types above. Unbounded type abstraction is
associated with port interfaces and bounded type abstraction is associated with components
and component interfaces. The reason for this distinction is that components values can be
polymorphic and ports can not. The instantiation of a component requires for its complete
type instantiation and therefore ports are only manipulated after type instantiated.

For port interfaces, type equivalence (and subtyping) is based on the explicit hierarchy of
types created by the explicit extension of port interfaces. At the level of objects and components
we implement a structural subtyping relation miming the relation of lc : polymorphic compo-
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nent types are related according to the F subtyping discipline (which is more general than the
kernel-Fun discipline and is decidable because it is based on the name-based subtyping of port
interfaces). Type recursion is also based on type names.

Consider an hypothetic port interface named Point, and the following samples of type dec-
larations which illustrate type abstraction, type application and type extension mechanisms:

port in ter face I L i s t <X> {
void addF i r s t (X ) ;
X remove ( i n t ) ;
X get ( i n t ) ;

}
port in ter face I L i s t L a s t <X> extends I L i s t <X> {

void addLast (X ) ;
}
component inter face T P o i n t L i s t <X extends Point> {

provides I L i s t <X> l i s t ;
}
component inter face TL i s t <X> {

provides I L i s t L a s t <X> l i s t ;
provides I I t e r a t o r <X> i t e r a t o r ;

}

From these declarations the componentJ type system can derive that TList is a subtype of
TPointList. Observe that, from the point of view of type safe substitution [], this relation makes
sense: a list component of type TList, that can be parameterised with any type (not necessarily
only objects representing points) and that provides more than the simple IList interface, fits in
a context where a value of type TPointList is expected.

The implementation of a complete componentJ framework is an engineering problem be-
yond the scope of this work. It includes, besides the compiler: a run-time support infrastructure
with global naming services, searching mechanisms based on typing, a supporting component
library whose elements range from basic components to factory components that enforce and
reuse programming patterns like the one illustrated in [83].

One aspect worth mentioning with relation to componentJ is the one that relates dynamic
loading and strong typing. The dynamic loading of component values implies the crossing
of the frontier between the untyped world of binary components and the strongly typed en-
vironment of componentJ programs. The identification, loading and authentication facilities
provided by any underlying framework for componentJ are crucial for the success of such a
language. Hence, any run-time infrastructure for componentJ should ensure at linking time
that the actual type of the loaded component matches the type expected by the componentJ

program.
Both of these aspects were out of the scope of this experiment.
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B.5 Syntax

We here present the complete componentJ syntax. We use the usual extended BNF notation:
for option (|), repetition (* and +), optional blocks (?). We present terminal nodes between
quotes (””) and assume given non-terminals for identifiers (id), boolean, integer, float, and
string literals. The repetition in simple name lists assumes comma separation (not in statement
lists). The syntax is as follows:

Program : : = ( ( TypeImport | TypeDeclarat ion | ComponentDeclaration ) ) ⇤ E?
TypeImport : : = requires type Name as i d

| requires exception Name as i d
TypeDeclarat ion : : = port in ter face i d ( ”<” I d L i s t ”>” )? ” = ” TypeId ” ; ”

| port in ter face i d ( ”<” I d L i s t ”>” )? extends TypeId⇤ ” { ” MethodHeader⇤ ” } ”
| component inter face i d ” = ” TypeId ” ; ”
| component inter face i d ( ”<” ( i d ( extends Type )?)+ ”>” )? ” { ” Por t ⇤ ” } ” )
| object in ter face i d ” { ” ( Prov idedPor t ” ; ” )⇤ ” } ”

ComponentDeclaration : : = component i d ComposeExpressionBody
MethodHeader : : = Type i d ” ( ” Type⇤ ” ) ” ( throws i d + )? ” ; ”
Name : : = i d ( ” . ” i d )⇤
Type : : = ( Pr im i t i veType | TypeId ) ( ” [ ] ” )?
Pr im i t i veType : : = void | i n t | short | long | boolean | f l o a t | double | str ing

TypeId : : = i d ( ”<” Type⇤ ”>” )?
S : : = E ” ; ” | Type i d ( ” = ” E )? ” ; ”

| i f (E) S ( else S)? | while (E) S | ” { ” S⇤ ” } ” | return (E)? ” ; ” | ” ; ”
E : : = E ” = ” E | E ” | | ” E | E ”&&” E | ” ! ” E | E ” == ” E | E ” != ” E | E ”<” E | E ”>” E

| E ”<=” E | E ”>=” E | E ” + ” E | E ”�” E | E ” ⇤ ” E | E ” / ” E | ”�” E | E ”%” E
| i d | E. i d | E. i d (E⇤ ) | E” [ ”E” ] ”
| I n t e g e r L i t e r a l | F l o a t L i t e r a l | Boo leanL i t e ra l | S t r i n g L i t e r a l
| new E”<” Type⇤ ”>” ” [ ” (E in i d )⇤ ” ] ”
| compose ComposeExpressionBody

ComposeExpressionBody : : = ( ”<” ( i d ( extends Type )?)+ ”>” )? ” { ” Composit ionOperat ion⇤ ” } ”
Composit ionOperat ion : : = Por tDec la ra t i on | Uses | MethodBlock | Plug
Por tDec la ra t i on : : = RequiredPort | ProvidedPort
RequiredPort : : = requires Type i d ” ; ”
Prov idedPort : : = provides Type i d ” ; ”
Uses : : = uses Type i d ” = ” E ” ; ”
MethodBlock : : = methods i d ” { ” ( Type i d ” ; ” )⇤ ( Method )⇤ ” } ”
Plug : : = plug PlugName into PlugName ” ; ”
PlugName : : = i d ( ” . ” i d )?
Method : : = Type i d ” ( ” i d ⇤ ” ) ” ( ” throws ” Id+ )? ” { ” S⇤ ” } ”
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