
Typeful Updates on
Reactive Live Web Programming?

Miguel Domingues and João Costa Seco

CITI and Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Abstract. We introduce a core reactive and imperative programming
language for data-centric applications, that supports dynamic upgrades
of both code and data. We use a monadic structure to control the auto-
matic propagation of changes through a data-flow graph, thus allowing
for imperative constructs to be safely used in a reactive context.
Our approach enables the construction of rich and reactive user inter-
faces, while supporting a core and uniform reconfiguration mechanism
for both application logic and persistent state. This is well-suited for de-
signing new development tools to support the agile deployment of web
applications. We provide a flexible programming style, where applica-
tions are incrementally built and maintained by sequences of verified
construction operations, on live instances of software systems.
We present an operational semantics and a monadic type system that
ensure the soundness of change propagation through the data-flow graph,
which includes a convergence result and the correctness of dynamic up-
date of graph dependencies in the presence of reconfiguration actions.

1 Introduction

Agile development frameworks and fast deployment methodologies are gaining
popularity, especially in the domain of web applications. However, these tech-
niques often require a large amount of time dedicated to redefine and refactor
existing code. Integrated platforms and smart programming environments give
semi-automatic support to soundly modify parts of an application. Neverthe-
less, they are not providing a real incremental mechanism for software systems.
Another challenge that is gaining importance, is how to design software architec-
tures that easily propagate changes occurring in the application persistent data
layer and present them in user interfaces [1,5]. Traditional layered and hetero-
geneous architectures for web applications, usually forces this reactive behavior
of applications to be defined by ad-hoc, and hand-crafted code. Implementing
this kind of reactive behavior is even more complex in the context of distributed
and collaborative applications, where several users interact and compete for the
same application code and data. In data-centric web applications, users expect
their interface to be up-to-date when other users modify some data. Our atten-
tion is drawn to the problem of how to make the evolution of data-centric web

? Technical Report (extended version with proofs) - October, 2013

2 Miguel Domingues and João Costa Seco

applications less time consuming and error prone, especially when the reactive
behavior is explicitly programmed.

We envision a style of incremental programming [6,17,22] that captures a set
of core construction operations over a live program instance [5]. Our approach
allows for developers to continuously evolve code [7,10,18], and reconfigure the
underlying data schema accordingly [2,12]. We introduce a possible instantiation
of such programming environment by means of a core reactive and imperative
programming language, suitable for building data-centric applications, that sup-
ports dynamic reconfiguration of both application code and data.

Our language, defines three essential top-level operations that support the
declaration of state variables, pure data transformation expressions, and execu-
tion of imperative monadic actions. Intuitively, these elements correspond to an
application’s persistent state, data querying and manipulation code, and han-
dling of stateful operations associated to user interface events, respectively. The
language follows a “push”-reactive operational semantics [11]. Persistent state
modifications are implicitly and automatically propagated, updating previously
computed values of pure data transformation elements. The application’s data-
flow graph is shaped by a monadic structure, in such a way that imperative code
is separated and change propagation is disciplined. Hence, allowing for impera-
tive constructs to be safely used in a reactive context, and ensuring the absence
of infinite propagation loops.

In summary, we provide a flexible style of live programming, where applica-
tions are incrementally built and maintained by sequences of verified operations.
Upon reconfiguration, the data-flow dependency graph is dynamically updated to
ensure that propagation of changes remains sound. To the best of our knowledge,
this is the first work presented combining reactivity and imperative constructs,
with a statically verified dynamic reconfiguration mechanism.

Our key contributions can be summarized as follows:

– We define a novel core reactive and imperative language, that supports dy-
namic reconfiguration and targets the domain of data-centric applications.

– A reactive operational semantics that supports the propagation of changes
through a data-flow dependency graph, and allows for reconfiguration of
both code and data.

– A monadic type system that statically ensures that both propagation of
changes and dynamic reconfiguration happens without breaking type safety.

– Provable type preservation and progress properties, including the conver-
gence of change propagation, to mathematically ensure the soundness of the
whole model.

The remainder of this paper is structured as follows. Section 2 introduces
our programming language and illustrates the reconfiguration capabilities of our
language, by means of two simple examples. Section 3 formally presents the
our core reactive and imperative programming language, with its operational
semantics and type system. Section 4 states the soundness properties of our
language, and also sketches the corresponding proofs. Sections 5 and 6 provide
a comparison with related work and provide a final discussion on our work.

Typeful Updates on Reactive Live Web Programming 3

2 Reactive Web Programming

Our computational model is designed to host a running instance of a data-centric
application, comprising both state and code. We define an incremental and re-
active programming environment for data-centric applications, by providing a
set of top-level software construction operations. These operations allow the
safe definition and deployment of new programming elements, and basic inter-
action with the application. The application state may be inspected at any time
through a set of visible names denoting language values. Intuitively, these visible
names represent access points to be linked to elements of a user interface (cf.
web pages). Internally, visible names denote either state variables or (values of)
expressions on other visible names, representing pure data transformations. We
define a monadic model where state variables can be only be updated by explicit
execution of (monadic) action values at the application’s top-level. Pure data
transformation names react automatically and implicitly to changes in other
visible names. Changes are propagated through the name dependency graph,
revisiting all data transformation names that need to be re-evaluated. For the
sake of simplicity, we have not optimized the propagation of changes, like for in-
stance [6]. The semantic separation provided by the monadic approach, ensures
termination of the propagation of changes.

The language top-level operations comprise the declaration/redefinition of
state variables (var) and pure data transformation expressions (def), and the
execution of imperative monadic operations (do). For instance, if we apply the
following sequence of operations to an empty state

var a = 0

def b = a + 1

def c = b + a
do action { a := a + 1 }

We obtain access to three visible names a, b, and c denoting values 0, 1, and 1,
respectively, before the do operation, and 1, 2, and 3, after the do operation. On
changing state variable a with the execution of the action value containing the
assignment a := a+1, the values denoted by b and c are automatically updated.
Recall that the contents of state variables can only be changed by the execution
(do) of monadic action values. Pure data transformation definitions (def), are
reactively updated when their defining values change. Notice that initializer ex-
pressions in state variables (var), and assignment expressions are ignored in the
visible names dependency graph, and do not get re-evaluated during propagation
of changes. This is an abstract model for data-centric applications, where state
variables correspond to the application’s persistent data layer, and pure data
transformation definitions correspond to the application’s logic (e.g. queries).
The complementary monadic action values contain sequences of delayed assign-
ments whose effect may depend on state. They are used to represent the set of
allowed imperative interactions with the application, which can be associated
to active elements like buttons or links, and can be seen as a surrogate for user
interface events.

4 Miguel Domingues and João Costa Seco

7:11 PM

Hi all! Just arrived !!

Post message

Hi there! wanna go out tonight?
Paul

10

Cool! Where to?
Henry

0

Let’s go to the movies!
Mary

3

Great idea, Startrek is on again!
Paul

8

Fig. 1. Bulletin Board User Interface.

Top-level operations are incrementally interpreted to declare/redefine visible
names. For instance, the execution of the following operation in the prior state

def b = a + 2

redefines name b’s expression, thus causing the propagation of its new value,
resulting in the denoted values 1, 3, and 4, for names a, b, and c, respectively.

Besides top-level operations, we introduce a second syntactic level that de-
fines a pure functional expression language, a simply typed lambda-calculus con-
veniently extended with base values and collections. These constructions are ad-
equate to define data-centric applications, where we model database tables as
state variables containing collections. We arbitrarily extend the language with
extra orthogonal constructs for illustration purposes (e.g. records, conditionals).
For the sake of simplicity, assignment expressions are syntactically restricted to
the definition expressions of the special monadic action values.

Consider the small motivational example of a simple bulletin board appli-
cation, whose user interface is illustrated in Figure 1. There are several user
interface elements that result from querying and transforming the persistent
state of the application (the list of messages). Other elements are designed to
update the state, like button “Post” and the thumbs-up icons in the list. The
code snippet shown in Figure 2 defines this example application in our language.
We define the persistent state of the application (state variable messages), some
auxiliary definitions (definitions size, new and like), and the visible user interface

Typeful Updates on Reactive Live Web Programming 5

varmessages =

id : 0,
author : “Paul”,
message : “Hi there! ...”,
likes : 10

 ::[...]

var user = “Henry”

def size = iter(messages, 0, x.y.(y + 1))

def new = λa.λm.action { messages := messages@[

id : size,
author : a,
message : m,
likes : 0

] }

def like = λi.action { messages :=

iter(messages, [], x.y.y@[x.id = i ?

id : x.id,
author : x.author,
message : x.message,
likes : x.likes+ 1

 : x]) }

def wall = iter(messages, [], x.y.y@[

{
message : x,
incLikes : like x.id

}
])

def post = λm.(new user m)

Fig. 2. Bulletin Board Code.

elements (definitions wall and post). Notice that state variable messages elements
are records containing the number of “likes” for each message (field likes), be-
sides the message id, the author’s name, and the message text. For the sake of
simplicity, we store the current logged user in state variable user.

We next add some auxiliary definitions: size is defined by iterating state vari-
able messages and its value is always kept up-to-date with relation to the contents
of the state; new is defined to denote an abstraction that returns an action value.
When executed, this action adds a new record to the messages collection, whose
values are instantiated by the application of new. Note that although new uses
the size name in its action, monadic actions contain delayed expressions and
do not get re-evaluated. Therefore, when the state variable messages is updated
by executing the action in new, it causes a propagation of changes to size. The
propagation is not forwarded to the action produced by new since the usage
of size is inside the monadic action. Similarly, the abstraction like returns an
action that increments the field likes of one element of collection messages.
Finally, wall denotes a collection based on messages with an extra (computed)
field denoting a closure, which is an action (incLikes). This collection (wall)
corresponds to the list of messages present in the user interface of Figure 1. In
wall, each closure incLikes corresponds to the active thumbs-up icon on each
list element. An event triggered on one of such icons represents a do operation
on the corresponding action, which is linked to that particular message, and
has effect on state variable messages when pressed, thus refreshing the list in the
user interface. Notice also that an explicit execution of an action resulting from

6 Miguel Domingues and João Costa Seco

varwhoLikes =

{
name : “Henry”,
msgId : 0

}
::[]

varmsgText = iter(messages, [], x.y.y@[

id : x.id,
author : x.author,
message : x.message

])

def new = λa.λm.action { msgText := msgText@[

id : size,
author : a,
message : m

] }

def like = λi.action { whoLikes := whoLikes@[

{
name : user,
msgId : i

}
] }

def countLikes = λi.iter(whoLikes, 0, x.y.(x.msgId = i ? (y + 1) : y))

def messages = iter(msgText, [], x.y.y@[

id : x.id,
author : x.author,
message : x.message,
likes : countLikes x.id

])

Fig. 3. Bulletin Board Reconfiguration.

abstraction new, updates the value of size, and also the list of messages shown in
the interface through name wall. The event triggered by pressing button “Post”
(post) in Figure 1 can be simulated in Figure 2 by the top-level operation

do (post “Hi all! Just arrived !!”)

In summary, by adding a new message or clicking a thumbs-up icon on a message,
the state variable messages is modified, which in turn causes the propagation of
changes to the top-level names that depend on it (e.g. size and wall), causing the
application names to react and refresh the user interface.

2.1 Incremental Programming

We now proceed to illustrate how we can keep developing our running example
application. A common case in agile methodologies is to start with a simple data
model, and gradually evolve it.

Consider that a new requirement was added to store the users that have
“liked” messages, instead of simply counting the occurrences. Figure 3 depicts
the incremental reconfiguration operations that need to be applied to achieve
this. We start by creating a new state variable (whoLikes) in the application
state to store the relation between messages and users. We next create a simpler
version of message list, based on name messages (id, author, and message), and
store it in a new state variable msgText.

Given the reconfigured state, we now redefine the necessary existing top-level
names to reach our goal. The insertion of a message (new) is modified to add
an element of the new type to msgText instead of messages. The abstraction

Typeful Updates on Reactive Live Web Programming 7

a, b, c, . . . ∈ N
x, y, z, . . . ∈ V

P ::= O1, . . . ,On (Program)

O ::= def a = e (Definition)
| var a = e (Variable)
| do e (Do Action)

e ::= x (Variable)
| λx:τ.e (Abstraction)
| e e′ (Application)
| b (Base Values)
| a (Name)
| e op e′ (Binary Op.)
| [e1, . . . , en] (Collection)
| iter(e, e′, x.y.e′′) (Iterate)
| match e with x::xs→ e′ : e′′ (Match)
| action { a := e } (Action)

Fig. 4. Programming Language.

like is redefined is such a way that it updates the whoLikes collection, instead
of messages. We declare an auxiliary top-level name countLikes that, for a given
message identifier i returns the number of “likes” for that particular message.
Finally, the top-level name messages is redefined to point to the new state vari-
ables. Notice that the information in messages is the same, but it is now obtained
from two state variables msgText and whoLikes (indirectly through countLikes).
The reconfiguration happens incrementally, and seamlessly with relation to the
elements used in the user interface in Figure 1 (wall and post), that remain
unchanged and operating as before.

This simple language enables an incremental and live programming style,
achieved by reconfiguration of applications without disrupting the operation
and consistency of code and data. Interferences due to data duplication can be
questioned in intermediate states of the reconfiguration, but that problem is out
of the scope of this paper, and should be addressed in future work. We now
describe the formal developments of our programming language.

3 Programming Language

Our programming language, presented in Figure 4, consists in top-level declara-
tion and interaction operations (O), and a monadic λ-calculus as its functional
core (e). We assume given an infinite set of names N , and an infinite set of
variables V. Top-level operations include the declaration or redefinition of state
variables (var a = e) in the application name space, associated to a top-level
name a, with initial value denoted by expression e. Another kind of top-level op-
eration is the declaration or redefinition of pure data transformation expressions

8 Miguel Domingues and João Costa Seco

(def a = e) which associates the top-level name a to the value of expression
e with relation to the current state. Functional core expressions in top-level
operations may use previously declared top-level names. Finally, the top-level
operation do e represents the explicit execution of a monadic action denoted by
expression e.

In our functional core we include abstraction λx:τ.e and application e e′ fol-
lowing call-by-value evaluation. For the sake of simplicity we assume the usual
sets of base values (b) (i.e. strings, integers, etc.) and corresponding operators
(op). Top-level names (a) in expressions are indistinguishably and implicitly co-
erced to their denotations. To better convey the scenario of data-centric applica-
tions we extend the base monadic λ-calculus with collections, with constructor
[e1, . . . , en], and corresponding operations. The iterator iter(e, e′, x.y.e′′) denotes
the fold-left operation on the collection denoted by expression e, and the iterated
expression e′′. Variable x denotes the current value in the collection, and vari-
able y denotes either the value of expression e′′ in the previous iteration, or the
initial value given by expression e′ in the first iteration. The collection destructor
match e with x::xs → e′ : e′′ denotes the value of expression e′′ in the case of
expression e denoting the empty collection, and the value of expression e′ in the
case of a collection with at least one element x and tail xs. An action { a := e } is
a monadic value containing a sequence of delayed assignments to state variables.
Action values are the only admissible values for expressions in do operations.

A program (P) in our language is a sequence of top-level operations that can
be issued to a programming environment where a live instance (state and code)
resides and evolves.

3.1 Operational Semantics

We define a reactive operational semantics for our programming language by
means of two layered small-step reduction relations. We first define the reduc-
tion on program configurations (S;P;L), where S is a state mapping top-level
names (a) to triples with the form (e, o, s), with e an expression, whose free top-
level names range over the domain of S, and o the current denotation for the
expression, that can be either undefined (�) or a computed value (v). We write
S[a 7→ (e, o, s)] to denote a state S where a is associated with (e, o, s). When a
top-level name a has a denotational value � means that a’s expression is being
evaluated for the first time. Finally, with s a set of top-level names, representing
the names that depend on name a and need to be updated when denotation o
changes in the state. We call s the subscribers of a.

The language values and denotations are defined by

v ::= b
| x
| λx:τ.e
| [v1, . . . , vn]
| action { s1, . . . , sn }

Typeful Updates on Reactive Live Web Programming 9

that besides the usual base values, variables, λ-abstractions, and collections of
values, we also define monadic action values. They are values representing state
transformations, triggered only at top-level by a do operation.

In a program configuration (S,P,L), P represents the sequence of top-level
operations to be evaluated, and L denotes the queue of top-level names that
are scheduled to be updated. The reduction relation on program configurations,
written (S;P;L) −→ (S ′;P ′;L′), is defined by the rules in Figure 5. It is based
on a reduction relation for expression configurations (S; e), written as S; e −→ e′,
that specifies how expression e reduces to expression e′ with relation to state S.
It is defined by the rules in Figure 6. To completely understand the semantics
we need some auxiliary abbreviations and definitions.

We define ψ(S[a 7→ (e, o, s)], a) = s to denote the subscribers of a. If a 6∈
dom(S) then ψ(S, a) = ∅. The set of free top-level names used in an expression,
written σ(e), is defined by

σ(v) , ∅ v 6= λx.e

σ(λx.e) , σ(e)

σ(a) , {a}
σ(e e′) , σ(e) ∪ σ(e′)

σ(e op e′) , σ(e) ∪ σ(e′)

σ([e1, . . . , en]) , σ(e1) ∪ . . . ∪ σ(en)

σ(iter(e, e′, x.y.e′′)) , σ(e) ∪ σ(e′) ∪ σ(e′′)

σ

(
match e with
x::xs→ e′ : e′′

)
, σ(e) ∪ σ(e′) ∪ σ(e′′)

Notice that monadic actions are values, and hence the top-level names used
by expressions in assignments are ignored in the above definition. This is because
changes are not propagated to actions, and assignments are never re-evaluated.
Finally, subscribe(S, a, e) denotes a state derived from S where a is added to the
subscribers of all names in σ(e), and removed from the subscribers of all other
names. This is used to keep all subscribers up-to-date.

subscribe(S, a, e) , {b 7→ (e′, v, s ∪ {a}) | b ∈ σ(e) ∧ S(b) = (e′, v, s)}
∪ {b 7→ (e′, v, s \ {a}) | b 6∈ σ(e) ∧ S(b) = (e′, v, s)}

The rules in Figure 5 define the reduction relation for program configurations
(S,P,L), which is based on the reduction relation on expressions defined by the
rules in Figure 6. The reduction is designed to execute an operation in P at a
time, modifying state S and L accordingly. The general idea is to use the queue
L to express reactivity, where rules R – DEFINITION, R – VARIABLE, and R – DO

ACTION signal that a name must be re-evaluated; and R – COMPUTE is responsible
for updating a value in the state. In the end, we signal all subscribers of a to be
re-evaluated. Notice that top-level operations only reduce in an empty queue.

Rules R – DEFINITION and R – VARIABLE both add or replace a declared name,
in their initial state, and signal that it must be evaluated, by placing it in
the queue. In the case of a def operation the state is updated to refresh all
dependencies of a (see above for the definition of subscribe(S, a, e)), and the new
set of subscribers for name a is maintained the same in the final state (ψ(S, a)).
In the case of a newly declared name, subscribers will be set to the empty set.

10 Miguel Domingues and João Costa Seco

(R – DEFINITION)

S ′ = subscribe(S, a, e) s = ψ(S, a)

(S;def a = e,P; []) −→ (S ′[a 7→ (e,�, s)];P; [a])

(R – VARIABLE)

s = ψ(S, a)

(S;var a = e,P; []) −→ (S[a 7→ (e,�, s)];P; [a])

(R – COMPUTE)

S(a) = (e, o, s) S; e −→∗ v′

(S;P; a::L) −→ (S[a 7→ (e, v′, s)];P;L@s)

(R – DO ACTION)

S; e −→∗ action { s1, . . . , sn }
(S;do e,P; []) −→ (S;doaction { s1, . . . , sn },P; [])

(R – DO SKIP)

(S;doaction { · },P; []) −→ (S;P; [])

(R – DO ASSIGN)

S(a) = (e′′, v, s)

(S;doaction { a := e, a′ := e′ },P; []) −→ (S[a 7→ (e, v, s)];doaction { a′ := e′ },P; [a])

Fig. 5. Program Operational Semantics.

In the case of a var operation there is no need to update the state with new
subscribers, because imperative operations (initialization and assignments) do
not cause propagation of changes.

Rule R – COMPUTE is the only place where values in the state are actually
updated. As a result all subscribers (s) of the updated name being computed
are placed in the queue for re-evaluation. Notice that R – COMPUTE and R – DO

ACTION, depend on a full reduction of the reduction relation on expressions to
proceed. So, the convergence result of program reduction depends on termina-
tion of the reduction for expressions. Rule R – COMPUTE dequeues a name and
evaluates the corresponding expression, updating the state with the result. This
propagates the new value through the data dependency graph. By adding the
subscribers of a name we are using a data-driven (“push”-reactive) approach, as
opposed to a demand-driven (lazy) approach [11].

The top-level do operation is reduced only when it encloses an action value.
Such value is reached by the next reduction rules. Rule R – DO ACTION, reduces
expression e in operation do e to an action value. Rule R – DO ASSIGN executes
the first assignment in an action value by overwriting the expression in the
program configuration, assigned name a, with the new expression e, and adding
the name a to the queue, thus forcing the evaluation of the newly overwritten
expression. Finally, R – DO SKIP ignores the empty action { · }, and continues
with the execution of the remaining program P.

Note that, the only reduction rule that does not require an empty queue
is R – COMPUTE. This means that we always propagate the pending changes

Typeful Updates on Reactive Live Web Programming 11

(R – E-CONTEXT)

S; e −→ e′

S; E [e] −→ E [e′]

(R – NAME)

S(a) = (e, v, s)

S; a −→ v

(R – APPLICATION)

S; (λx.e) v −→ e{v/x}

(R – BINARY OP.)

v′′ = [[v op v′]]

S; v op v′ −→∗ v′′

(R – ITERATE NIL)

S; iter([], v, x.y.e) −→ v
(R – ITERATE)

S; iter(v::vs, v′, x.y.e) −→ iter(vs, e{v/x}{v′/y}, x.y.e)

(R – MATCH NIL)

S; (match [] with x::xs→ f : g) −→ g

(R – MATCH)

S; (match v::vs with x::xs→ f : g) −→ f{v/x}{vs/xs}

Fig. 6. Expression Operational Semantics.

through the data-flow graph first, until we reach an empty queue. Our type
system establishes enough conditions such that we can prove convergence of the
update process (see Section 4). In particular, reconfigurations can only happen
when no evaluation is taking place. Reduction terminates when reaching a final
program configuration of the form (S; ·; []).

The reduction relation on expressions, defined by the rules in Figure 6, is
based in contexts defined as follows

E ::= E op e
| v op E
| E e
| (λx.e) E
| [v1, . . . , vi, E , ei+2, . . . , en]
| iter(E , e, x.y.e′)
| iter(v, E , x.y.e)
| match E with x::xs→ e : e′

and rule R – E-CONTEXT specifies the usual deep expression reduction. Rule (R –

NAME) specifies the implicit dereference of a top-level name, reducing it to the
corresponding value in state S. R – APPLICATION implements the usual reduction
of a call-by-value application. Reduction of binary operations (R – BINARY OP.)
is abstracted from the system. The rules dealing with collection iteration (R –

ITERATE NIL, R – ITERATE) are specified as expected. Collection destruction (R –

MATCH NIL and R – MATCH) is also straight-forward.

3.2 Type System

Our type language is presented in Figure 7, comprising a representative for basic
types β, function types τ → τ ′, types for homogeneous collections (τ∗), and the
monadic type Action for all action values.

Our type system is divided into a set of interdependent typing judgements to
type programs, expressions, and statements. All typing use a common definition

12 Miguel Domingues and João Costa Seco

τ ::= β (Basic types)
| τ → τ ′ (Function type)
| τ∗ (Collection type)
| Action (Action type)

Fig. 7. Type Language.

of typing environments Γ , which are mappings from variables to types (τ), and
names to type annotations. Type annotations are either of the form defδ(τ) to
describe data transformation names, or they are of the form var(τ) to describe
state variables. The set δ in a type annotation defδ(τ) gathers all the name
dependencies of the expression associated to the annotated name. We do not keep
a record of the data dependencies of the state variables’ initializer expression.

The typing judgment for programs, written Γ ` P asserts that the sequence
of top-level operations that composes program P is well-typed, with relation to
the typing environment Γ . In this case, the domain of Γ contains only names.
The typing relation on programs is defined by the rules in Figure 8. The typing
of top-level operations depends on a second typing judgment, for expressions,
written Γ ; δ ` e : τ that asserts that expression e has type τ with relation to the
typing environment Γ , and conservatively uses, at most, the set of names δ. An
invariant of our type system is that δ ⊆ dom(Γ). Finally, the typing judgment
for assignments (statements), written: Γ ; δ ` a := e asserts that the assignment
a := e is well-typed with relation to the typing environment Γ and using at most
the set of names δ. This judgment is kept separate for the sake of simplicity and
extensibility of the type system with other imperative operations. The rules for
expressions and assignments are presented in Figure 9.

The typing rules for programs, in Figure 8, follow the general structure of
sequentially examining the top-level operations in a program. A premise to the
majority of typing rules regarding name declarations (def or var operations), is
that the declared name cannot be part of a subexpression’s dependencies (a 6∈ δ).
This is checked to ensure the absence of circular definitions through the state
and data transformations.

In the case of declaration operations, the typing rules are designed to analyze
four different cases. The (first) declaration of a name, the redefinition of a name
while maintaining the type of the associated expression, the redefinition of a
name with type modification, and the replacing of a state variable definition by
a data transformation definition. The first case (where a 6∈ dom(Γ)) is covered
by rules T – VARIABLE and T – DEFINITION which, after typing subexpression e
with dependencies δ, and ensuring the absence of circular dependencies (through
condition a 6∈ δ), proceed with an enriched typing environment to type the
remaining program. The second case, where a reconfiguration happens without
changing the type of the expression, is covered by rules T – UPDATE VAR E and T –

UPDATE DEF E. The interesting case happens in the case of the definition of data

Typeful Updates on Reactive Live Web Programming 13

(T – VARIABLE)

Γ ; δ ` e : τ a 6∈ dom(Γ) a 6∈ δ Γ, a : var(τ) ` P
Γ ` var a = e,P

(T – DEFINITION)

Γ ; δ ` e : τ a 6∈ dom(Γ) a 6∈ δ Γ, a : defδ(τ) ` P
Γ ` def a = e,P

(T – UPDATE VAR E)

Γ ; δ ` e : τ a 6∈ δ Γ, a : var(τ) ` P
Γ, a : var(τ) ` var a = e,P

(T – UPDATE DEF E)

Γ ; δ′ ` e : τ a 6∈ δ′ Γ, a : defδ′(τ) ` P
Γ, a : defδ(τ) ` def a = e,P

(T – UPDATE VAR T)

Γ ; δ ` e : τ ′ a 6∈ δ τ 6= τ ′ a 6∈ ρ(Γ) Γ, a : var(τ ′) ` P
Γ, a : var(τ) ` var a = e,P

(T – UPDATE DEF T)

Γ ; δ′ ` e : τ ′ a 6∈ δ′ τ 6= τ ′ a 6∈ ρ(Γ) Γ, a : defδ′(τ
′) ` P

Γ, a : defδ(τ) ` def a = e,P

(T – UPDATE VAR-DEF)

Γ ; δ ` e : τ a 6∈ δ Γ, a : defδ(τ) ` P
Γ, a : var(τ) ` def a = e,P
(T – DO)

Γ ; δ ` e : Action Γ ` P
Γ ` do e,P

Fig. 8. Typing Rules for Programs.

transformation (T – UPDATE DEF E) where the old dependencies (δ) registered
in Γ are replaced by the new dependencies (δ′) given by the new expression e.
This is enough information to continue avoiding circular name dependencies in
the following operations. Since the type is maintained, old dependencies are still
sound. The third case corresponds to modifying the type of a visible name. In
this case we need an extra restriction, which is that no other name definition
must depend on the name being redefined, (a 6∈ ρ(Γ)). Where ρ(Γ) denotes the
union of all sets δ in a typing environment Γ .

ρ(Γ, a : defδ(τ)) , ρ(Γ) ∪ δ
ρ(Γ, a : var(τ)) , ρ(Γ)

ρ(Γ, x : τ) , ρ(Γ)

ρ(·) , ∅

This condition forces that reconfigurations, involving several names and changing
types, must be performed in such an order that no broken dependencies ever exist
in the application. Finally, the conditions necessary to replace a state variable
definition by a data transformation definition, covered by rule T – UPDATE VAR-

DEF, are similar to previous cases. However, the remaining program must be
typed knowing the new dependencies of the reconfigured name. The dual case is
not as simple because, unlike the case above, it would require the re-computing

14 Miguel Domingues and João Costa Seco

(T – NAME–D)

Γ, a : defδ′(τ); δ ∪ δ′ ∪ {a} ` a : τ
(T – NAME–V)

Γ, a : var(τ); δ ∪ {a} ` a : τ

(T – VARIABLE)

Γ, x : τ ; δ ` x : τ
(T – BASE VALUE)

Γ ; δ ` b : β

(T – ABSTRACTION)

Γ, x : τ ; δ ` e : τ ′

Γ ; δ ` λx:τ.e : τ → τ ′

(T – APPLICATION)

Γ ; δ ` e : τ → τ ′ Γ ; δ ` e′ : τ

Γ ; δ ` e e′ : τ ′

(T – BINARY OP.)

Γ ; δ ` e : τ Γ ; δ ` e′ : τ ′ op: τ → τ ′ → τ ′′

Γ ; δ ` e op e′ : τ ′′

(T – ITERATE)

Γ ; δ ` e : τ∗ Γ ; δ ` e′ : τ ′ Γ, x : τ, y : τ ′; δ ` e′′ : τ ′

Γ ; δ ` iter(e, e′, x.y.e′′) : τ ′

(T – MATCH)

Γ ; δ ` e : τ∗ Γ, x : τ, xs : τ∗; δ ` e′ : τ ′ Γ ; δ ` e′′ : τ ′

Γ ; δ `match e with x::xs→ e′ : e′′ : τ ′

(T – COLLECTION)

Γ ; δ ` ei : τ

Γ ; δ ` [e1, . . . , en] : τ∗

(T – ACTION)

Γ ; δ ` ai := ei
Γ ; δ ` action { a := e } : Action

(T – ASSIGN)

Γ, a : var(τ); δ ` e : τ

Γ, a : var(τ); δ ∪ {a} ` a := e

Fig. 9. Typing Rules for Expressions and Assignments.

all dependencies in Γ . In the example of Section 2, we show that several steps
are needed to refactor de data layer of an application, always maintaining the
type soundness between all the elements.

The typing of a top-level operations of the form do e, covered by rule T – DO,
requires that expression e is typed with type Action. Notice that expression e
denotes an action value, whose effect is not re-evaluated by change propagation,
hence the dependencies of e (δ) are ignored in the bookkeeping process.

The typing rules for expressions, depicted in Figure 9, are quite straight-
forward. Notice that there is extra information (δ) to store the set of name
dependencies of the expression. The most interesting cases are the axiom for
names of definitions (T – NAME–D), where dependencies must transitively include
the declared dependencies of that particular name, and the axiom for names of
state variables (T – NAME–V), that do not depend on other names, and where
resulting dependencies must only include the name itself. Notice that δ includes
at least the actual real name dependencies of the typed expression. In all other
cases, dependencies are simply propagated through the derivation.

4 Type Safety

We next present the formal framework for proving type safety and change prop-
agation convergence, included in a subject reduction and progress theorems.

Typeful Updates on Reactive Live Web Programming 15

Γ | · ` ·

Γ ; δ ` e : τ Γ ; δ ` v : τ Γ, a : defδ(τ) | Γ ′ ` S
S, a 7→ (e, v, s) ` [a] δ ⊆ dom(Γ) s ⊆ dom(Γ ′)

Γ | a : defδ(τ), Γ ′ ` S, a 7→ (e, v, s)

Γ ; δ ` e : τ Γ, a : defδ(τ) | Γ ′ ` S
S, a 7→ (e,�, s) ` [a] δ ⊆ dom(Γ) s ⊆ dom(Γ ′)

Γ | a : defδ(τ), Γ ′ ` S, a 7→ (e,�, s)

Γ, a : var(τ), Γ ′; δ ` e : τ Γ, a : var(τ), Γ ′; δ′ ` v : τ Γ, a : var(τ) | Γ ′ ` S
S, a 7→ (e, v, s) ` [a] s ⊆ dom(Γ ′)

Γ | a : var(τ), Γ ′ ` S, a 7→ (e, v, s)

Γ ; δ ` e : τ Γ, a : var(τ) | Γ ′ ` S S, a 7→ (e,�, s) ` [a] s ⊆ dom(Γ ′)

Γ | a : var(τ), Γ ′ ` S, a 7→ (e,�, s)

Fig. 10. Typing Rules for States.

The results presented here follow the standard syntactic approach [21], and are
proved by induction on the length of the typing derivations, we provide here a
proof sketch when relevant and present the full proofs in Appendix B.

To build the necessary formal background, we start by defining the notion
of well-formed queue with relation to a state, written S ` L. It asserts that the
subscription relation in state S establishes a well-founded order on names. This
implies that a well-formed queue can reach the empty queue just by following
the subscriber relation in state S.

Definition 1 (Well-Formed Queue). A queue L is well-formed with relation
to a state S, written S ` L, if it can be inductively defined by the rules

s = ψ(S, a) S ` L@s

S ` a::L
S ` []

If this property is maintained during the execution we conclude that there
are no dependency cycles in the state.

We next define the notion of well-typed state that should also be preserved
by the operational semantics. The typing judgment for states, written Γ | Γ ′ `
S asserts that all names a in a state S have a corresponding name in typing
environment Γ ′. The rules that define it are given in Figure 10. The typing
environment Γ (disjoint from Γ ′) describes the names necessary to type the
expressions in state S. Notice that dom(S)#dom(Γ) and that the expressions in
S are typed in Γ , which again forces a well-founded order on names in the state,
by inspection of the data dependencies. The typing of a state implies the typing
of all enclosed expressions, and also a well-founded order on names, through
name dependency relation contained in typing environment Γ .

16 Miguel Domingues and João Costa Seco

The technique of statically imposing an order on names in the typing pro-
cess resembles the ordered logic approach [15]. We syntactically track the order
defined according to the usage of names, i.e. a name only uses names on the
left-hand side (hence δ ⊆ dom(Γ) for def cases), and a name is only used by
names on its right-hand side (hence s ⊆ dom(Γ ′) for both def and var cases).
Since the subscribers of a are on the right hand side (Γ ′) and also in state S, we
may state that for the given evaluation state the queue is well-formed, written
S, a 7→ (e, o, s) ` [a].

We can now define a typing relation for program configurations, written
Γ ` (S;P;L), if the state S and program P are well-typed and the queue L is
well-formed.

· | Γ ` S Γ ` P S ` L
Γ ` (S;P;L)

Moreover, an expression configuration (S; e) is well-typed with relation to a
typing environment Γ , written Γ ` (S; e), if the state S is well-typed and the
expression e is also well-typed.

· | Γ ` S Γ ; δ ` e : τ

Γ ` (S; e)

Given these premiliminary definitions we can state the soundness properties en-
sured by our type system and operational semantics. We next state the progress
and type preservation properties for expressions.

Lemma 1 (Expressions Progress). For all expression configurations (S; e)
and typing environments Γ , if Γ ` (S; e) and Γ ; δ ` e : τ and for all a ∈ δ we
have S(a) = (e′′, v, s), then either e is a value, or there is an expression e′ such
that S; e −→ e′.

Notice that in order to ensure progress we need to establish that all names poten-
tially used (δ) are defined. Later we keep an invariant of program configurations,
that only one name can be undefined at a time (�) and it is not used in e.

Lemma 2 (Expressions Type Preservation). For all expression configu-
rations (S; e) and typing environments Γ , if Γ ` (S; e) and Γ ; δ ` e : τ and an
expression reduction S; e −→ e′, then Γ ; δ ` e′ : τ .

Lemma 1 and Lemma 2 define type safety for expressions. We next define
progress and preservation properties for programs.

Theorem 1 (Progress of Programs). For all program configurations (S;P;L)
if Γ ` (S;P;L) and ∀a ∈ dom(S). (S(a) = (e,�, s) ⇒ L = [a]), then there
is a program configuration (S ′;P ′;L′) such that (S;P;L) −→ (S ′;P ′;L′) and
∀a ∈ dom(S ′). (S ′(a) = (e,�, s)⇒ L′ = [a]).

To ensure the condition of the preservation result for expressions, that no used
names can be undefined, we add the extra invariant asserting that the only one
name in the state whose denotation can be undefined (�), and that only happens
if it is the only element of the queue.

Typeful Updates on Reactive Live Web Programming 17

In order to prove the convergence of the evaluation queue, we introduce
a measure on names corresponding to the number of all names that must be
refreshed on update. In this way we can prove that our measure always decreases
during evaluation, and that well-typed programs always reach an empty queue.

Definition 2 (Name Length). We define the length of a name a with relation
to a state S, written mS (a), as follows:

mS (a) , 1 +
∑

si∈ψ(S,a)

mS (si)

Definition 3 (Queue Length). We define the length of a queue L with rela-
tion to a state S, written, mS (L), as the sum of the lengths of all its names.

Intuitively, the length of a name represents the number of computation steps
needed to propagate an update through the data-flow graph. The length of a
queue, represents the computation steps needed to reach an empty queue. We
now need to relate the typing relation of program configurations and the defi-
nition of the measuring function for a particular queue (mS (L) ↑). This result
is built around the intermediate results that ensure the absence of dependency
cycles in the state. We interchangeably use the measure on names, and the lifted
relation for queues without loss of precision.

Lemma 3 (Length Defined). For all configurations (S;P;L), and typing en-
vironments Γ , if Γ ` (S,P,L) then mS (L) ↑.

Proof. By induction and following the ordering of names provided by the typing
relation on states.

Lemma 4 (Preservation & Convergence). For all configurations (S;P;L)
and (S ′;P ′;L′), and typing environments Γ , if Γ ` (S,P,L) and (S;P;L) −→
(S ′;P ′;L′) then, there is a typing environment Γ ′, such that:

i. Γ ′ ` (S ′,P ′,L′), and
ii. if L 6= [] then mS (L′) < mS (L).

Proof. By induction on the program reduction (S;P;L) −→ (S ′;P ′;L′). We
prove for all possible program reductions, with most cases using the definitions
of well-typed program configuration and state. The most involved cases are for
R – DEFINITION, R – VARIABLE, which involve an inversion property in the typing
of states, and R – COMPUTE, where we need to consider the cases of top-level
definitions and variables, and carefuly reconstruct well-typed states and queues.
(See Appendix B for the full proof.)

Theorem 2 (Programs Type Preservation). For all configurations (S;P;L)
and (S ′;P ′;L′), and typing environments Γ , if Γ ` (S,P,L) and (S;P;L) −→
(S ′;P ′;L′) then, there is a typing environment Γ ′, such that Γ ′ ` (S ′,P ′,L′).

18 Miguel Domingues and João Costa Seco

Proof. Follows directly from case 1 of Lemma 4.

Theorem 3 (Queue Convergence). For all configurations (S;P;L) and
(S ′;P ′;L′), and typing environments Γ , if Γ ` (S,P,L) then (S;P;L) −→∗
(S ′;P ′; []).

Proof. Follows directly from case 2 of Lemma 4 and Theorem 1 with the de-
creasing measure mS (L).

In summary, the main results we extract from the operational semantics
and type system are type safety of programs (Theorem 1 and Theorem 2), and
convergence of the update process (Theorem 3).

5 Related Work

Data-flow programming languages have been extensively studied in the past,
many of them are summarized in a survey [11]. The pure data-flow model con-
siders that every node is pure and without side effects. Likewise, in our language,
a node defined by a top-level operation (def or var) does not have side effects.
Many data-flow languages explore parallel computation by computing several
non-interfering nodes simultaneously. Although we do not explore this in the
present approach, we believe that it is possible and interesting to extend our
operational semantics with a dependency analysis between top-level names to
allow parallel propagation of changes.

Adaptive Functional Programming (AFP) [1] uses an underlying dependency
graph and a change propagation algorithm to adapt the output when input
changes. Based on the dependency graph, the algorithm builds a priority queue
of nodes, and executes until the queue is emptied. AFP encodes this algorithm
into traces in the operational semantics. We use a similar technical approach,
wher propagation is also encoded into operational semantics by the queue, and R

– COMPUTE reduction rule. A reduction step with R – COMPUTE takes a name from
the queue, computes its new value and add its subscribers to the queue, which
corresponds to a trace in AFP. Our approach goes further by allowing the re-
definition of top-level names, which dynamically changes the dependency graph,
hence dependencies between top-level names may change upon reconfiguration.

Reactive systems [8,13,14,16] maintain an ongoing interaction with their en-
vironment just like web applications maintain an interaction with users and data
repositories. These reactive systems are based on the notions of instants (when
a system reacts) and activations (what causes a reaction). In our language, ac-
tivations correspond to the execution of monadic actions, that cause the system
to react. By joining the data-flow properties of our language together with the
dependency between top-level names, we are able to encode reactivity. This reac-
tivity is implicitly abstracted by the evaluation queue, i.e. when the queue is not
empty the system is reacting, until it reaches an empty queue and the system
waits for a new activation. Imperative Reactive languages [3,4,9] combine the

Typeful Updates on Reactive Live Web Programming 19

reactive setting with the imperative paradigm. Although, these works combine
reactivity with main-stream imperative programming languages, which demands
a high degree of expertise to develop reactive programs. Usually, these extensions
require programs to be developed with special and explicit constructs to enable
reactivity. Functional Reactive Programming is also an area where several ap-
proaches have been proposed [13,16,19,20]. However, neither of these approaches
combine reactivity with a verified dynamic reconfiguration mechanism as the one
presented in our language.

Several works on dynamic reconfiguration and incremental computation of
software systems have already been proposed [7,10,18]. These solutions are mostly
designed for imperative programming languages. For instance [10] provides dy-
namic updates in programs by explicitly defining update regions. When the
execution of a program reaches an update region, and if a dynamic update is
available, then it is applied. In our approach we do not explicitly define update
regions, but since they can only occur on top-level names we restrict them to
only occur at their execution level, meaning that they cannot occur while a top-
level name’s value is being computed. In our proposed language we also combine
reactivity with dynamic configuration. When a top-level element is redefined,
we also update the dependencies between names, meaning that during execu-
tion the graph dynamically changes, while maintaining the typing invariants. To
the best of our knowledge we are unaware of any work that supports dynamic
reconfiguration in reactive and imperative programming languages.

6 Final Remarks

We have presented the syntax, operational semantics and type system for a core
reactive and imperative programming language, that supports dynamic reconfig-
uration of both code and data. Besides supporting dynamic reconfiguration, our
operational semantics also supports reactivity by propagating changes that occur
in state variables through a dependency graph of top-level names. Meaning that
visible names, are always up-to-date with respect to the persistent state of an
application. Our type system statically ensures that both data propagation and
reconfiguration happens without breaking type safety. We have also stated prov-
able type preservation and progress theorems for programs, including a queue
convergence result.

We believe that this is a suitable core model for an agile development tool
that assists on the development of data-centric reactive applications. We can
expect high productivity gains provided by such a programming environment
that, at each construction step and refactoring action, ensures the consistency
of code and underlying data.

Our future roadmap includes extensions related to control sharing to sup-
port collaborative developments. Other interesting features, related to language
pragmatics, involve parallelization of the queue based on separation properties,
and the obvious optimizations of avoiding unnecessary computations.

20 Miguel Domingues and João Costa Seco

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive Functional Programming.
ACM Transactions on Programming Languages and Systems, 28(6), 2006.

2. P. Bhattacharya and I. Neamtiu. Dynamic Updates for Web and Cloud Applica-
tions. In Proceedings of APLWACA, 2010.

3. F. Boussinot. Reactive C: an extension of C to program reactive systems. Software:
Practice and Experience, 21(4), 1991.

4. F. Boussinot and J.-F. Susini. The SugarCubes tool box: a reactive Java framework.
Software: Practice and Experience, 28(14), 1998.

5. S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal, N. Tillmann,
and J. Kato. It’s Alive! Continuous Feedback in UI Programming. In Proceedings
of Programming Language Design and Implementation, 2013.

6. Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic incrementalization.
In Proceedings of Programming Language Design and Implementation, 2012.

7. D. Duggan. Type-based hot swapping of running modules. Acta Informatica, 41(4),
2005.

8. N. Halbwachs. Synchronous Programming of Reactive Systems. In Proceedings of
Computer Aided Verification, 1998.

9. M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based language for self-
adjusting computation. In Proceedings of PLDI, 2009.

10. M. Hicks and S. Nettles. Dynamic Software updating. ACM Transactions on
Programming Languages and Systems, 27(6), 2005.

11. W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in Dataflow Pro-
gramming Languages. ACM Computing Surveys, 36(1), Mar. 2004.

12. D.-Y. Lin and I. Neamtiu. Collateral Evolution of Applications and Databases. In
Proceedings of the joint international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution (Evol) workshops, 2009.

13. L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In Proceedings
of Principles and Practice of Declarative Programming, 2005.

14. H. Nilsson, A. Courtney, and J. Peterson. Functional Reactive Programming,
Continued. In Proceedings of Workshop on Haskell, 2002.

15. F. Pfenning and R. J. Simmons. Substructural Operational Semantics as Ordered
Logic Programming. In Proceedings of Logic In Computer Science, 2009.

16. R. R. Pucella. Reactive Programming in Standard ML. In Proceedings of Confer-
ence on Computer Languages, 1998.

17. G. Ramalingam and T. Reps. A categorized bibliography on incremental compu-
tation. In Proceedings of Principles of Programming Languages, 1993.

18. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:
Safe and Predictable Dynamic Software Updating. ACM TOPLAS, 29(4), 2007.

19. Z. Wan and P. Hudak. Functional reactive programming from first principles. In
Proceedings of Programming Language Design and Implementation, 2000.

20. Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In Proceedings of International
Conference on Functional Programming, 2001.

21. A. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1), 1994.

22. D. Yellin and R. Strom. INC: a language for incremental computations. In Pro-
ceedings of Programming Language Design and Implementation, 1988.

Typeful Updates on Reactive Live Web Programming 21

A Definitions

Definition 1 (Well-Formed Queue). A queue L is well-formed with relation
to a state S, written S ` L, if it can be inductively defined by the rules

s = ψ(S, a) S ` L@s

S ` a::L
S ` []

Definition 4 (Well-Typed State). A state S is well-typed with relation to
two typing environments Γ ′ and Γ ′′ with dom(Γ ′)∩dom(Γ ′′) = ∅, if Γ ′ | Γ ′′ ` S
can be inductively defined by the rules

Γ | · ` ·

Γ ; δ ` e : τ Γ ; δ ` v : τ Γ, a : defδ(τ) | Γ ′ ` S
S, a 7→ (e, v, s) ` [a] δ ⊆ dom(Γ) s ⊆ dom(Γ ′)

Γ | a : defδ(τ), Γ ′ ` S, a 7→ (e, v, s)

Γ ; δ ` e : τ Γ, a : defδ(τ) | Γ ′ ` S
S, a 7→ (e,�, s) ` [a] δ ⊆ dom(Γ) s ⊆ dom(Γ ′)

Γ | a : defδ(τ), Γ ′ ` S, a 7→ (e,�, s)

Γ, a : var(τ), Γ ′; δ ` e : τ Γ, a : var(τ), Γ ′; δ′ ` v : τ Γ, a : var(τ) | Γ ′ ` S
S, a 7→ (e, v, s) ` [a] s ⊆ dom(Γ ′)

Γ | a : var(τ), Γ ′ ` S, a 7→ (e, v, s)

Γ ; δ ` e : τ Γ, a : var(τ) | Γ ′ ` S S, a 7→ (e,�, s) ` [a] s ⊆ dom(Γ ′)

Γ | a : var(τ), Γ ′ ` S, a 7→ (e,�, s)

Definition 5 (Well-Typed Program Configuration). A program configu-
ration, written (S;P;L), is well-typed with relation to a typing environment Γ ,
if Γ ` (S;P;L) is derivable by the following rule

· | Γ ` S Γ ` P S ` L
Γ ` (S;P;L)

Definition 6 (Well-Typed Expression Configuration). An expression con-
figuration, written (S; e), is well-typed with relation to a typing environment Γ ,
if Γ ` (S; e) is derivable by the following rule

· | Γ ` S Γ ; δ ` e : τ

Γ ` (S; e)

Definition 2 (Name Length). We define the length of a name a with relation
to a state S, written mS (a), as follows:

mS (a) , 1 +
∑

si∈ψ(S,a)

mS (si)

22 Miguel Domingues and João Costa Seco

Definition 3 (Queue Length). We define the length of a queue L with relation
to a state S, written, mS (L), as the sum of the lengths of all its names.

Definition 7. We define the substitution relation for expressions inductively,
as follows:

x{v/x} , v

y{v/x} , y

a{v/x} , a

(λx.e){v/y} , λx.(e{v/y}) x 6= y

(action { a := e }){v/x} , action { a := e{v/x} }

v{x/v′} , v v 6= λx.e ∧ v 6= action { a := e }

(e f){v/x} , (e{v/x}) (f{v/x})

(e op f){v/x} , (e{v/x}) op (f{v/x})

[e1, . . . , en]{v/x} , [e1{v/x}, . . . , en{v/x}]

(iter(e, f, x.y.g)){v/z} , iter(e{v/z}, f{v/z}, x.y.g{v/z}) z 6= x ∧ z 6= y(
match e with
y::ys→ f : g

)
{v/x} ,

(
match e{v/x} with
y::ys→ (f{v/x}) : (g{v/x})

)
x 6= y

B Proofs

Lemma 5 (Substitution for Expressions). For all expression configura-
tions (S; e) and typing environments Γ , if Γ ` (S; e) and Γ, x : τ ′; δ ` e : τ and
a value v such that Γ ; δ ` v : τ ′, then Γ ` (S; e{v/x}) and Γ ; δ ` e{v/x} : τ .

Proof. By induction on the size of the typing derivation and analyzing the last
case applied.

1. Variable Substitution
(H1) Γ, x : τ ′; δ ` x : τ
(H2) Γ ; δ ` v : τ ′

(3) τ = τ ′ from (H1)
x{v/x} = v by def. of Substitution
Γ ; δ ` v : τ from (H2, 3)

2. Variable x 6= y
(H1) Γ, x : τ ′; δ ` y : τ

Γ ; δ ` v : τ ′

y{v/x} = y by def. of Substitution
Γ ; δ ` y : τ

Typeful Updates on Reactive Live Web Programming 23

3. Top-level Name
(H1) Γ, x : τ ′; δ ` a : τ
(H2) Γ ; δ ` v : τ ′

a{v/x} = a by def. of Substitution
Γ ; δ ` a : τ

4. Action
(H1) Γ, x : τ ′; δ ` action { a := e } : Action
(H2) Γ ; δ ` v : τ ′

(action { a := e }){v/x} = action { a := e{v/x} }
by def. of Substitution

i = 1, . . . , n
(3) Γ, x : τ ′; δ ` ai := ei by inv. of T – ACTION in (H1)

δ = δ′ ∪ {a}
(4) Γ, x : τ ′; δ′ ` ei by inv. of T – ASSIGN in (3)
(5) Γ ; δ′ ` ei{v/x} by I.H. with (3, H2)
(6) Γ ; δ′ ∪ {a} ` ai := ei{v/x} by T – ASSIGN in (5)

Γ ; δ ` action { a := e{v/x} } : Action by T – ACTION with (6)

5. λ-Abstraction
(H1) Γ, x : τ ′; δ ` λy.e : τy → τe
(H2) Γ ; δ ` v : τ ′

x 6= y
(λy.e){v/x} = λy.(e{v/x}) by def. of Substitution

(3) Γ, x : τ ′, y : τy; δ ` e : τe by inv. of T – ABSTRACTION in (H1)
(4) Γ, y : τy; δ ` e{v/x} : τe by I.H. with (3, H2)

Γ ; δ ` λy.(e{v/x}) : τe by T – ABSTRACTION in (4)

6. Value
(H1) Γ, x : τ ′; δ ` v′ : τ
(H2) Γ ; δ ` v : τ ′

v′{v/x} = v′ by def. of Substitution
Γ ; δ ` v′ : τ

7. Application
(H1) Γ, x : τ ′; δ ` e e′ : τ
(H2) Γ ; δ ` v : τ ′

(e e′){v/x} = (e{v/x}) (e′{v/x}) by def. of Substitution
(3) Γ, x : τ ′; δ ` e : τa → τ by inv. of T – APPLICATION on (H1)
(4) Γ, x : τ ′; δ ` e′ : τa by inv. of T – APPLICATION on (H1)
(5) Γ ; δ ` e{v/x} : τa → τ by I.H. with (H2, 3)
(6) Γ ; δ ` e′{v/x} : τa by I.H. with (H2, 4)

Γ ; δ ` (e{v/x}) (e′{v/x}) : τ by T – APPLICATION with (5, 6)

8. Binary Operation
(H1) Γ, x : τ ′′′; δ ` e op e′ : τ ′′

24 Miguel Domingues and João Costa Seco

(H2) Γ ; δ ` v : τ ′′′

(e op e′){v/x} = (e{v/x}) op (e′{v/x}) by def. of Substitution
op: τ → τ ′ → τ ′′

(3) Γ, x : τ ′′′; δ ` e : τ by inv. of T – BINARY OP. on (H1)
(4) Γ, x : τ ′′′; δ ` e′ : τ ′ by inv. of T – BINARY OP. on (H1)
(5) Γ ; δ ` e{v/x} : τ by I.H. with (H2, 3)
(6) Γ ; δ ` e′{v/x} : τ by I.H. with (H2, 4)

Γ ; δ ` e{v/x} op e′{v/x} : τ ′′ by T – BINARY OP. with (5, 6)

9. Collection
(H1) Γ, x : τ ′; δ ` [e1, . . . , en] : τ∗

(H2) Γ ; δ ` v : τ ′

[e1, . . . , en]{v/x} = [e1{v/x}, . . . , en{v/x}] by def. of Substitution
(3) Γ, x : τ ′; δ ` ei : τ by inv. of T – COLLECTION on (H1)

i = 1, . . . , n
(4) Γ ; δ ` ei{v/x} : τ by I.H. with (H2, 3)

Γ ; δ ` [e1{v/x}, . . . , en{v/x}] : τ∗ by T – COLLECTION with (4)

10. Iterator
(H1) Γ, z : τ ′; δ ` iter(e, e′, x.y.e′′) : τ
(H2) Γ ; δ ` v : τ ′

iter(e, e′, x.y.e′′){v/z} = iter(e{v/z}, e′{v/z}, x.y.e′′{v/z})
by def. of Substitution

(3) Γ, z : τ ′; δ ` e : τ ′′∗ by inv. of T – ITERATE in (H1)
(4) Γ, z : τ ′; δ ` e′ : τ by inv. of T – ITERATE in (H1)
(5) Γ, z : τ ′, x : τ ′′, y : τ ; δ ` e′′ : τ by inv. of T – ITERATE in (H1)
(6) Γ ; δ ` e{v/z} : τ ′′∗ by I.H. with (3, H2)
(7) Γ ; δ ` e′{v/z} : τ by I.H. with (4, H2)
(8) Γ, x : τ ′′, y : τ ; δ ` e′′{v/z} : τ by I.H. with (5, H2)

Γ ; δ ` iter(e{v/z}, e′{v/z}, x.y.e′′{v/z}) : τ
by T – ITERATE with (6), (7, 8)

11. Match
(H1) Γ, x : τ ′; δ `match e with y::ys→ e′ : e′′ : τ
(H2) Γ ; δ ` v : τ ′

(match e with y::ys→ e′ : e′′){v/x} =
match e{v/x} with y::ys→ e′{v/x} : e′′{v/x} by def. of Substitution

(3) Γ, x : τ ′; δ ` e : τ ′′∗ by inv. of T – MATCH on (H1)
(4) Γ, x : τ ′, y : τ ′′, ys : τ ′′∗; δ ` e′ : τ by inv. of T – MATCH on (H1)
(5) Γ, x : τ ′; δ ` e′′ : τ by inv. of T – MATCH on (H1)
(6) Γ ; δ ` e{v/x} : τ ′′∗ by I.H. with (H2, 3)
(7) Γ, y : τ ′′, ys : τ ′′∗; δ ` e′{v/x} : τ by I.H. with (H2, 4)
(8) Γ ; δ ` e′′{v/x} : τ by I.H. with (H2, 5)

Γ ; δ `match (e{v/x}) with y::ys→ (e′{v/x}) : (e′′{v/x}) : τ
by T – MATCH with (6), (7, 8)

ut

Typeful Updates on Reactive Live Web Programming 25

Lemma 1 (Expressions Progress). For all expression configurations (S; e)
and typing environments Γ , if Γ ` (S; e) and Γ ; δ ` e : τ and for all a ∈ δ we
have S(a) = (e′′, v, s), then either e is a value, or there is an expression e′ such
that S; e −→ e′.

Proof. By induction on the length of the derivation Γ ; δ ` e : τ .
1. T – NAME–D

(H1) Γ, a : defδ′(τ); δ ∪ δ′ ∪ {a} ` a : τ
(H2) Γ ` (S; a)
(H3) S(a) = (e, v, s)

S; a −→ v by R – NAME with (H3)

2. T – NAME–V

(H1) Γ, a : var(τ); δ ∪ {a} ` a : τ
(H2) Γ ` (S; a)
(H3) S(a) = (e, v, s)

S; a −→ v by R – NAME with (H3)

3. T – VARIABLE

(H1) Γ ; δ ` x : τ
x is a value

4. T – ABSTRACTION

(H1) Γ ; δ ` λx.e : τ → τ ′

λx.e is a value

5. T – APPLICATION

(H1) Γ ; δ ` e1 e2 : τ ′

(H2) Γ ` (S; e1 e2)
(3) Γ ; δ ` e1 : τ → τ ′ by inv. of T – APPLICATION in (H1)
(4) Γ ; δ ` e2 : τ by inv. of T – APPLICATION in (H1)
(5) · | Γ ` S by Definition 6 with (H2)
(6) Γ ` (S; e1) by Definition 6 with (5, 3)

S; e1 −→ e′1 ∨ e1 is a value by I.H. with (6, 3)

(7) Case: S; e1 −→ e′1
S; e1 e2 −→ e′1 e2 by R – E-CONTEXT with (7)

(8) Case: e1 is a value
(9) Γ ` (S; e2) by Definition 6 with (5, 4)

S; e2 −→ e′2 ∨ e2 is a value by I.H. with (9, 4)

(10) SCase: S; e2 −→ e′2
S; e1 e2 −→ e1 e

′
2 by R – E-CONTEXT with (8, 10)

(11) SCase: e2 is a value
e1 = λx.e′1 from (3, 8)

26 Miguel Domingues and João Costa Seco

S; (λx.e′1) e2 −→ e′1{e2/x} by R – APPLICATION with (8, 11)

6. T – BINARY OP.

(H1) Γ ; δ ` e1 op e2 : Int
(H2) Γ ` (S; e1 + e2)

op: τ → τ ′ → τ ′′

(3) Γ ; δ ` e1 : τ by inv. of T – BINARY OP. in (H1)
(4) Γ ; δ ` e2 : τ ′ by inv. of T – BINARY OP. in (H1)
(5) · | Γ ` S by Definition 6 with (H2)
(6) Γ ` (S; e1) by Definition 6 with (5, 3)

S; e1 −→ e′1 ∨ e1 is a value by I.H. with (6, 3)

(7) Case: S; e1 −→ e′1
S; e1 op e2 −→ e′1 op e2 by R – E-CONTEXT with (7)

(8) Case: e1 is a value
(9) Γ ` (S; e2) by Definition 6 with (5, 4)

S; e2 −→ e′2 ∨ e2 is a value by I.H. with (9, 4)

(10) SCase: S; e2 −→ e′2
S; e1 op e2 −→ e1 op e

′
2 by R – E-CONTEXT with (8, 10)

(11) SCase: e2 is a value
S; e1 op e2 −→ v′ by R – BINARY OP. with (8, 11)

7. T – ITERATE

(H1) Γ ; δ ` iter(e1, e2, x.y.e3) : τ ′

(H2) Γ ` (S; iter(e1, e2, x.y.e3))
(3) Γ ; δ ` e1 : τ∗ by inv. of T – ITERATE in (H1)
(4) Γ ; δ ` e2 : τ ′ by inv. of T – ITERATE in (H1)
(5) Γ, x : τ, y : τ ′; δ ` e3 : τ ′ by inv. of T – ITERATE in (H1)
(6) · | Γ ` S by Definition 6 with (H2)
(7) Γ ` (S; e1) by Definition 6 with (6, 3)

S; e1 −→ e′1 ∨ e1 is a value by I.H. with (7, 3)

(8) Case: S; e1 −→ e′1
S; iter(e1, e2, x.y.e3) −→ iter(e′1, e2, x.y.e3) by R – E-CONTEXT with (8)

(9) Case: e1 is a value
(10) Γ ` (S; e2) by Definition 6 with (6, 4)

S; e2 −→ e′2 ∨ e2 is a value by I.H. with (10, 4)

(11) SCase: S; e2 −→ e′2
S; iter(e1, e2, x.y.e3) −→ iter(e1, e

′
2, x.y.e3)

by R – E-CONTEXT with (9, 11)

(12) SCase: e2 is a value
e1 = [] ∨ e1 = [v1, . . . , vn] from (3, 9)

Typeful Updates on Reactive Live Web Programming 27

(13) SSCase: e1 = []
S; iter(e1, e2, x.y.e3) −→ e2 by R – ITERATE NIL with (13, 12)

(14) SSCase: e1 = [v1, . . . , vn]
S; iter(e1, e2, x.y.e3) −→ iter([v2, . . . , vn], e3{v1/x}{e2/y}, x.y.e3)

by R – ITERATE with (14, 12)

8. T – MATCH

(H1) Γ ; δ `match e1 with x::xs→ e2 : e3 : τ ′

(H2) Γ ` (S; match e1 with x::xs→ e2 : e3)
(3) Γ ; δ ` e1 : τ∗ by inv. of T – MATCH in (H1)
(4) Γ, x : τ, xs : τ∗; δ ` e2 : τ ′ by inv. of T – MATCH in (H1)
(5) Γ ; δ ` e3 : τ ′ by inv. of T – MATCH in (H1)
(6) · | Γ ` S by Definition 6 with (H2)
(7) Γ ` (S; e1) by Definition 6 with (6, 3)

S; e1 −→ e′1 ∨ e1 is a value by I.H. with (7, 3)

(8) Case: S; e1 −→ e′1
S; match e1 with x::xs→ e2 : e3 −→match e′1 with x::xs→ e2 : e3

by R – E-CONTEXT with (8)

(9) Case: e1 is a value
e1 = [] ∨ e1 = [v1, . . . , vn] from (9, 3)

(10) SCase: e1 = []
S; match e1 with x::xs→ e2 : e3 −→ e3

by R – MATCH NIL with (10)

(11) SCase: e1 = [v1, . . . , vn]
S; match e1 with x::xs→ e2 : e3 −→ e2{v1/x}{[v2, . . . , vn]/xs}

by R – MATCH with (11)

9. T – COLLECTION

(H1) Γ ; δ ` [e1, . . . , en] : τ∗

(H2) Γ ` (S; [e1, . . . , en])
(3) Γ ; δ ` ei : τ by inv. of T – COLLECTION in (H1)
(4) · | Γ ` S by Definition 6 with (H2)
(5) Γ ` (S; ei) by Definition 6 with (4, 3)

S; ei −→ e′i ∨ ei is a value by I.H. with (5, 3)

(6) Case: S; ei −→ e′i
e0, . . . , ei−1 are values
S; [e1, . . . , ei, . . . , en] −→ [e1, . . . , e

′
i, . . . , en] by R – E-CONTEXT with (6)

(7) Case: ei is a value
e0, . . . , en are values
[e1, . . . , en] is a value

28 Miguel Domingues and João Costa Seco

10. T – BASE VALUE

(H1) Γ ; δ ` b : β
b is a value

11. T – ACTION

(H1) Γ ; δ ` action { a := e } : Action
action { a := e } is a value

ut

Lemma 6 (Expressions Context Type Preservation). For all expression
configurations (S; E [e]) and typing environments Γ , if Γ ; δ ` e : τ ′, and Γ ; δ `
e′ : τ ′, then Γ ; δ ` E [e′] : τ .

Proof. By induction on the structure of E [e].

Lemma 2 (Expressions Type Preservation). For all expression configura-
tions (S; e) and typing environments Γ , if Γ ` (S; e) and Γ ; δ ` e : τ and an
expression reduction S; e −→ e′, then Γ ; δ ` e′ : τ .

Proof. By induction on the length of the expression reduction S; e −→ e′.
1. R – E-CONTEXT

(H1) Γ ` (S; E [e])
(H2) Γ ; δ ` E [e] : τ
(H3) S; E [e] −→ E [e′]
(4) S; e −→ e′ by inv. of R – E-CONTEXT in (H3)

(5) Case: E [e] = e op e′′

op: τ → τ ′ → τ ′′

(6) Γ ; δ ` e op e′′ : τ ′′ from (H2, 5)
(7) Γ ; δ ` e : τ by inv. of T – BINARY OP. in (6)
(8) Γ ; δ ` e′ : τ by I.H. with (7, 4)

Γ ; δ ` E [e′] : τ ′′ by Lemma 6 with (H2, 7, 8)

(9) Case: E [e] = v op e
op: τ → τ ′ → τ ′′

(10) Γ ; δ ` v op e : τ ′′ from (H2, 9)
(11) Γ ; δ ` e : τ ′ by inv. of T – BINARY OP. in (10)
(12) Γ ; δ ` e′ : τ ′ by I.H. with (11, 4)

Γ ; δ ` E [e′] : τ ′′ by Lemma 6 with (H2, 11, 12)

(13) Case: E [e] = e e′′

(14) Γ ; δ ` e e′′ : τ from (H2, 13)
(15) Γ ; δ ` e : τ ′ → τ by inv. of T – APPLICATION in (14)
(16) Γ ; δ ` e′ : τ ′ → τ by I.H. with (15, 4)

Γ ; δ ` E [e′] : τ by Lemma 6 with (H2, 15, 16)

Typeful Updates on Reactive Live Web Programming 29

(17) Case: E [e] = (λx.e′′) e
(18) Γ ; δ ` (λx.e′′) e : τ from (H2, 17)
(19) Γ ; δ ` e : τ ′ by inv. of T – APPLICATION in (18)
(20) Γ ; δ ` e′ : τ ′ by I.H. with (19, 4)

Γ ; δ ` E [e′] : τ by Lemma 6 with (H2, 19, 20)

(21) Case: E [e] = [v1, . . . , vi, e, ei+2, . . . , en]
(22) Γ ; δ ` [v1, . . . , vi, e, ei+2, . . . , en] : τ ′∗ from (H2, 21)
(23) Γ ; δ ` e : τ ′ by inv. of T – COLLECTION in (22)
(24) Γ ; δ ` e′ : τ ′ by I.H. with (23, 4)

Γ ; δ ` E [e′] : τ ′∗ by Lemma 6 with (H2, 23, 24)

(25) Case: E [e] = iter(e, e′′, x.y.e′′′)
(26) Γ ; δ ` iter(e, e′′, x.y.e′′′) : τ from (H2, 25)
(27) Γ ; δ ` e : τ ′∗ by inv. of T – ITERATE in (26)
(28) Γ ; δ ` e′ : τ ′∗ by I.H. with (27, 4)

Γ ; δ ` E [e′] : τ by Lemma 6 with (H2, 27, 28)

(29) Case: E [e] = iter(v, e, x.y.e′′)
(30) Γ ; δ ` iter(v, e, x.y.e′′) : τ from (H2, 29)
(31) Γ ; δ ` e : τ by inv. of T – ITERATE in (30)
(32) Γ ; δ ` e′ : τ by I.H. with (31, 4)

Γ ; δ ` E [e′] : τ by Lemma 6 with (H2, 31, 32)

(33) Case: E [e] = match e with x::xs→ e′′ : e′′′

(34) Γ ; δ `match e with x::xs→ e′′ : e′′′ : τ from (H2, 33)
(35) Γ ; δ ` e : τ ′∗ by inv. of T – MATCH in (34)
(36) Γ ; δ ` e′ : τ ′∗ by I.H. with (35, 4)

Γ ; δ ` E [e′] : τ by Lemma 6 with (H2, 35, 36)

2. R – NAME

(H1) Γ ` (S; a)
(H2) Γ ; δ ` a : τ
(H3) S; a −→ v
(4) S(a) = (e, v, s) by inv. of R – NAME in (H2)
(5) · | Γ ` S by Definition 6 with (H1)

Γ ; δ ` v : τ by Definition 4 with (5, 4, H2)

3. R – APPLICATION

(H1) Γ ` (S; (λx.e) v)
(H2) Γ ; δ ` (λx.e) v : τ ′

(H3) S; (λx.e) v −→ e{v/x}
(4) Γ ; δ ` λx.e : τ → τ ′ by inv. of T – APPLICATION in (H2)
(5) Γ ; δ ` v : τ by inv. of T – APPLICATION in (H2)
(6) Γ, x : τ ; δ ` e : τ ′ by inv. of T – ABSTRACTION in (4)

Γ ; δ ` e{v/x} : τ ′ by Lemma 5 with (6, 5)

30 Miguel Domingues and João Costa Seco

4. R – BINARY OP.

(H1) Γ ` (S; v op v′)
(H2) Γ ; δ ` v op v′ : τ ′′

(H3) S; v op v′ −→ v′′

(4) op: τ → τ ′ → τ ′′

Γ ; δ ` v : τ by inv. of T – BINARY OP. in (H2)
Γ ; δ ` v′ : τ ′ by inv. of T – BINARY OP. in (H2)

(5) v′′ = [[v op v′]] by inv. of R – BINARY OP. in (H3)
Γ ; δ ` v′′ : τ ′′ from (4, 5)

5. R – ITERATE NIL

(H1) Γ ` (S; iter([], v, x.y.e))
(H2) Γ ; δ ` iter([], v, x.y.e) : τ
(H3) S; iter([], v, x.y.e) −→ v

Γ ; δ ` v : τ by inv. of T – ITERATE in (H2)

6. R – ITERATE

(H1) Γ ` (S; iter(z::zs, v, x.y.e))
(H2) S; iter(z::zs, v, x.y.e) −→ iter(zs, e{z/x}{v/y}, x.y.e)
(H3) Γ ; δ ` iter(z::zs, v, x.y.e) : τ ′

(4) Γ ; δ ` z::zs : τ∗ by inv. of T – ITERATE in (H3)
(5) Γ ; δ ` v : τ ′ by inv. of T – ITERATE in (H3)
(6) Γ, x : τ, y : τ ′; δ ` e : τ ′ by inv. of T – ITERATE in (H3)
(7) Γ ; δ ` z : τ by inv. of T – BINARY OP. in (4)
(8) Γ ; δ ` zs : τ∗ by inv. of T – BINARY OP. in (4)
(9) Γ, y : τ ′; δ ` e{z/x} : τ ′ by Lemma 5 with (6, 7)

(10) Γ ; δ ` e{z/x}{v/y} : τ ′ by Lemma 5 with (9, 5)
Γ ; δ ` iter(zs, e{z/x}{v/y}, x.y.e) : τ ′ by T – ITERATE with (8, 10, 6)

7. R – MATCH NIL

(H1) Γ ` (S; match [] with x::xs→ e : e′)
(H2) Γ ; δ ` (match v::vs with f ::x→ xs : g) : τ
(H3) S; (match [] with x::xs→ e : e′) −→ e′

Γ ; δ ` e′ : τ by inv. of T – MATCH in (H2)

8. R – MATCH

(H1) Γ ` (S; match v::vs with x::xs→ e : e′)
(H2) Γ ; δ ` (match v::vs with x::xs→ e : e′) : τ ′

(H3) S; (match v::vs with x::xs→ e : e′) −→ e{v/x}{vs/xs}
(4) Γ ; δ ` v::vs : τ∗ by inv. of T – MATCH in (H2)
(5) Γ, x : τ, xs : τ∗; δ ` e : τ by inv. of T – MATCH in (H2)
(6) Γ ; δ ` v : τ by T – BINARY OP. and (4)
(7) Γ ; δ ` vs : τ∗ by T – BINARY OP. and (4)
(8) Γ, xs : τ∗; δ ` e{v/x} by Lemma 5 with (5, 6)

Γ ; δ ` e{v/x}{vs/xs} by Lemma 5 with (8, 7)

ut

Typeful Updates on Reactive Live Web Programming 31

For a given well-typed state such that · | Γ ` S, and by definition every time
that we take a name from S we swap it from the right to the left until we reach
Γ | · ` ·, we can conclude that the domains of Γ and S are equal.

Corollary 1 (Equal Domains). For all typing environments Γ and states S,
if · | Γ ` S, then dom(Γ) = dom(S).

Lemma 7 (Weakening on Well-typed States). For all states S and typing
environments Γ such that a 6∈ dom(Γ) and · | Γ ` S and Γ ; δ ` e : τ and
a 7→ (e,�, []),

a) If a 6∈ dom(Γ) and a : defδ(τ) then, · | Γ, a : defδ(τ) ` S, a 7→ (e,�, []).
b) If a 6∈ dom(Γ) and a : var(τ) then, · | Γ, a : var(τ) ` S, a 7→ (e,�, []).

Proof.
1. Definition Name

(H1) · | Γ ` S
(H2) Γ ; δ ` e : τ
(H3) a 7→ (e,�, [])
(4) Γ | · ` · by Definition 4 in (H1)
(5) Γ, a : defδ(τ) | · ` · by Definition 4
(6) a 7→ (e,�, []) ` [] by Definition 1
(7) a 7→ (e,�, []) ` [a] by Definition 1 with (6)
(8) δ ⊆ dom(Γ) from (H2)
(9) [] ⊆ ∅

(10) Γ | a : defδ(τ) ` a 7→ (e,�, []) by Definition 4 with (H2, 5, 7, 8, 9)
· | Γ, a : defδ(τ) ` S, a 7→ (e,�, []) by Definition 4 with (4)

2. Variable Name
(H1) · | Γ ` S
(H2) Γ ; δ ` e : τ
(H3) a 7→ (e,�, [])
(4) Γ | · ` · by Definition 4 in (H1)
(5) Γ, a : var(τ) | · ` · by Definition 4
(6) a 7→ (e,�, []) ` [] by Definition 1
(7) a 7→ (e,�, []) ` [a] by Definition 1 with (6)
(8) [] ⊆ ∅
(9) Γ | a : var(τ) ` a 7→ (e,�, []) by Definition 4 with (H2, 5, 7, 8)

· | Γ, a : var(τ) ` S, a 7→ (e,�, []) by Definition 4 with (4)

ut

Lemma 8 (Strengthening on Well-typed States). For all states S and
typing environments Γ ,

a) If · | Γ, a : defδ(τ) ` S, a 7→ (e,�, []) then, · | Γ ` S.
b) If · | Γ, a : var(τ) ` S, a 7→ (e,�, []) then, · | Γ ` S.

32 Miguel Domingues and João Costa Seco

Proof.
1. Definition Name

(H1) · | Γ, a : defδ(τ) ` S, a 7→ (e,�, [])
(2) Γ | a : defδ(τ) ` a 7→ (e,�, []) by Definition 4 with (H1)
(3) Γ | · ` · by Definition 4

· | Γ ` S by Definition 4 with (3, 2)

2. Variable Name
(H1) · | Γ, a : var(τ) ` S, a 7→ (e,�, [])
(2) Γ | a : var(τ) ` a 7→ (e,�, []) by Definition 4 with (H1)
(3) Γ | · ` · by Definition 4

· | Γ ` S by Definition 4 with (3, 2)

ut

Theorem 1 (Progress of Programs). For all program configurations (S;P;L)
if Γ ` (S;P;L) and ∀a ∈ dom(S). (S(a) = (e,�, s) ⇒ L = [a]), then there
is a program configuration (S ′;P ′;L′) such that (S;P;L) −→ (S ′;P ′;L′) and
∀a ∈ dom(S ′). (S ′(a) = (e,�, s)⇒ L′ = [a]).

Proof. By induction on the length of the derivation Γ ` P we prove for the case
where L = [] and L 6= [] while assuming expression reduction termination.
1. a::L 6= []

(H1) Γ ` (S;P; a::L)
(H2) ∀a ∈ dom(S). (S(a) = (e,�, s)⇒ a::L = [a])
(3) Γ ` S by Definition 5 in (H1)
(4) dom(Γ) = dom(S) by Corollary 1 with (H1)

(5) Case: a : defδ(τ) and S(a) = (e, v′, s)
(6) Γ = Γ1, a : defδ(τ), Γ2

(7) S = S2, a 7→ (e, v′, s),S1
(8) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e, v′, s) by Definition 4 in (3)

Γ1; δ ` e : τ by Definition 4 in (8)
(9) δ ⊆ dom(Γ1) by Definition 4 in (8)

(10) dom(Γ1) ⊆ dom(Γ) from (6)
δ ⊆ dom(S) from (9, 10, 4)

(11) S; e −→∗ v Assuming expression termination
(S;P; a::L) −→ (S[a 7→ (e, v, s)];P;L@s) by R – COMPUTE with (5, 11)
S ′ = S2, a 7→ (e, v, s),S1 = S[a 7→ (e, v, s)] from (7)
∀b ∈ dom(S ′). S ′(b) = (e′, v′′, s′) from (H2, 5)

(12) Case: a : defδ(τ) and S(a) = (e,�, s)
(13) Γ = Γ1, a : defδ(τ), Γ2

(14) S = S2, a 7→ (e,�, s),S1
(15) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e,�, s) by Definition 4 in (3)

Γ1; δ ` e : τ by Definition 4 in (15)
(16) δ ⊆ dom(Γ1) by Definition 4 in (15)

Typeful Updates on Reactive Live Web Programming 33

(17) dom(Γ1) ⊆ dom(Γ)
δ ⊆ dom(S) from (16, 17, 4)

(18) S; e −→∗ v Assuming expression termination
(S;P; a::L) −→ (S[a 7→ (e, v, s)];P;L@s)

by R – COMPUTE with (12, 18)
a::L = [a] from (H2, 12)

(19) S ′ = S[a 7→ (e, v, s)]
∀a ∈ dom(S ′).(S ′(a) = (e′, v′, s′)) from (19, 12)

(20) Case: a : var(τ) and S(a) = (e, v, s)
(21) Γ ′ | a : var(τ), Γ ′′ ` S ′, a 7→ (e, v, s) by Definition 4 in (3)

Γ ′, a : var(τ), Γ ′′; δ ` e : τ by Definition 4 in (21)
δ ∈ dom(S)
∀b ∈ S. S(b) = (e′, v′, s′) from (H2, 20)

(22) S; e −→∗ v′′ Assuming expression termination
(S;P; a::L) −→ (S[a 7→ (e, v′′, s)];P;L@s)

by R – COMPUTE with (20, 22)

(23) Case: a : var(τ) and S(a) = (e,�, s)
(24) Γ ′ | a : var(τ), Γ ′′ ` S ′, a 7→ (e,�, s) by Definition 4 in (3)

L = [] from (H2, 23)
Γ ′; δ ` e : τ by Definition 4 in (24)

(25) δ ⊆ dom(Γ ′) by Definition 4 in (24)
(26) dom(Γ ′) ⊆ dom(Γ)

δ ⊆ dom(S) from (25, 26, 4)
(27) S; e −→∗ v Assuming expression termination

(S;P; a::L) −→ (S[a 7→ (e, v, s)];P;L@s)
by R – COMPUTE with (23, 27)

a::L = [a] from (H2, 23)
(28) S ′ = S[a 7→ (e, v, s)]

∀a ∈ dom(S ′).(S ′(a) = (e′, v′, s′)) from (28, 23)

2. L = []
(H1) Γ ` (S;P; [])
(H2) ∀a ∈ dom(S). (S(a) = (e,�, s)⇒ L = [a])
(3) Γ ` S by Definition 5 in (H1)
(4) dom(Γ) = dom(S) by Corollary 1 with (H1)

Case: T – DEFINITION

(5) P = def a = e,P ′
(6) Γ ` def a = e,P ′ by Definition 5 in (H1) with (5)
(7) a 6∈ dom(Γ) by inv. of T – DEFINITION in (6)
(8) a 6∈ dom(S) by (7, 4)
(9) ψ(S, a) = [] by def. of ψ with (8)

(10) S ′ = subscribe(S, a, e)

34 Miguel Domingues and João Costa Seco

(S; def a = e,P ′; []) −→ (S ′[a 7→ (e,�, [])];P ′; [a])
by R – DEFINITION with (10, 9)

Case: T – VARIABLE

(11) P = var a = e,P ′
(12) Γ ` var a = e,P ′ by Definition 5 in (H1) with (11)
(13) a 6∈ dom(Γ) by inv. of T – VARIABLE in (12)
(14) a 6∈ dom(S) by (13, 4)
(15) ψ(S, a) = [] by def. of ψ and (14)

(S; var a = e,P ′; []) −→ (S[a 7→ (e,�, [])];P ′; [a])
by R – VARIABLE with (15)

Case: T – DO

(16) P = do e,P ′
(17) Γ ` do e,P ′ by Definition 5 in (H1) with (16)

Γ ; δ ` e : Action by inv. of T – DO in (17)
(18) S; e −→∗ action { a := e } Assuming expression termination

(S; do e,P ′; []) −→ (S; do action { a := e },P ′; [])
by R – DO ACTION with (18)

Case: T – UPDATE VAR E

(19) P = var a = e,P ′
(20) Γ = Γ ′, a : var(τ)

Γ ′, a : var(τ) ` var a = e,P ′ by Definition 5 in (H1) with (19)
(21) a ∈ dom(Γ ′, a : var(τ))
(22) a ∈ dom(S) by (21, 4)
(23) ψ(S, a) = s by def. of ψ and (22)

(S; var a = e,P ′; []) −→ (S[a 7→ (e,�, s)];P ′; [a])
by R – VARIABLE with (23)

Case: T – UPDATE VAR T

(24) P = var a = e,P ′
(25) Γ = Γ ′, a : var(τ)

Γ ′, a : var(τ) ` var a = e,P ′ by Definition 5 in (H1) with (24)
(26) a ∈ dom(Γ ′, a : var(τ)) by inv. of T – UPDATE VAR T in (H1)
(27) a ∈ dom(S) by (26, 4)
(28) ψ(S, a) = s by def. of ψ and (27)

(S; var a = e,P ′; []) −→ (S[a 7→ (e,�, s)];P ′; [a])
by R – VARIABLE with (28)

Case: T – UPDATE DEF E

(29) P = def a = e,P ′
(30) Γ = Γ ′, a : defδ(τ)

Γ ′, a : defδ(τ) ` def a = e,P ′ by Definition 5 in (H1) with (29)
(31) a ∈ dom(Γ ′, a : defδ(τ))
(32) a ∈ dom(S) by (31, 4)

Typeful Updates on Reactive Live Web Programming 35

(33) ψ(S, a) = s by def. of ψ and (32)
(S; def a = e,P ′; []) −→ (S[a 7→ (e,�, s)];P ′; [a])

by R – DEFINITION with (33)

Case: T – UPDATE DEF T

(34) P = def a = e,P ′
(35) Γ = Γ ′, a : defδ(τ)

Γ ′, a : defδ(τ) ` def a = e,P ′
(36) a ∈ dom(Γ ′, a : defδ(τ)) by inv. of T – UPDATE DEF T in (H1)
(37) a ∈ dom(S) by (36, 4)
(38) ψ(S, a) = s by def. of ψ and (37)

(S; def a = e,P ′; []) −→ (S[a 7→ (e,�, s)];P ′; [a])
by R – DEFINITION with (38)

Case: T – UPDATE VAR-DEF

(39) P = def a = e,P ′
(40) Γ = Γ ′, a : var(τ)

Γ, a : var(τ) ` def a = e,P
(41) a ∈ dom(Γ, a : var(τ))
(42) a ∈ dom(S) by (41, 4)
(43) ψ(S, a) = s by def. of ψ and (42)

(S; def a = e,P; []) −→ (S[a 7→ (e,�, s)];P; [a])
by R – DEFINITION with (43)

ut

Lemma 9. For all states S and typing environments Γ and Γ ′, if Γ | Γ ′ ` S
then ∀a ∈ dom(S). mS (a) ↑.

Proof.
1. Γ | · ` ·

trivially true for empty state

2. Γ | a : var(τ), Γ ′ ` S, a 7→ (e, o, s)
(1) Γ, a : var(τ) | Γ ′ ` S by Definition 4
(2) s ⊆ dom(Γ ′) by Definition 4

∀b ∈ dom(S). mS (b) ↑ by I.H. in (1)
(3) dom(Γ ′) = dom(S) from Corollary 1 with (1)
(4) s ⊆ dom(S) from (2, 3)
(5) mS (a) = 1 +

∑
b∈smS (b) by Definition 2

mS (a) ↑ from (5, 4)

3. Γ | a : def δ(τ), Γ ′ ` S, a 7→ (e, o, s)
(1) Γ, a : defδ(τ) | Γ ′ ` S by Definition 4
(2) s ⊆ dom(Γ ′) by Definition 4

∀b ∈ dom(S). mS (b) ↑ by I.H. in (1)

36 Miguel Domingues and João Costa Seco

(3) dom(Γ ′) = dom(S) from Corollary 1 with (1)
(4) s ⊆ dom(S) from (2, 3)
(5) mS (a) = 1 +

∑
b∈smS (b) by Definition 2

mS (a) ↑ from (5, 4)

ut

Lemma 3 (Length Defined). For all configurations (S;P;L), and typing en-
vironments Γ , if Γ ` (S,P,L) then mS (L) ↑.

Proof. Follows from Lemma 9 and the condition L ⊆ dom(S).

Lemma 4 (Preservation & Convergence). For all configurations (S;P;L)
and (S ′;P ′;L′), and typing environments Γ , if Γ ` (S,P,L) and (S;P;L) −→
(S ′;P ′;L′) then, there is a typing environment Γ ′, such that:

i. Γ ′ ` (S ′,P ′,L′), and
ii. if L 6= [] then mS (L′) < mS (L).

Proof. By induction on the length of the program reduction (S;P;L) −→
(S ′;P ′;L′).
1. R – DEFINITION

(H1) Γ ` (S; def a = e,P; [])
(H2) (S; def a = e,P; []) −→ (S ′[a 7→ (e,�, s)];P; [a])
(3) Γ ` def a = e,P by Definition 5 in (H1)
(4) dom(Γ) = dom(S) by Corollary 1 with (H1)
(5) S ` [] by Definition 5 in (H1)
(6) · | Γ ` S by Definition 5 in (H1)
(7) S ′ = subscribe(S, a, e) by inv. of R – DEFINITION in (H2)
(8) · | Γ ` S ′ from (6, 7)

ii. Trivially true because L = [].
i. Proven by analyzing the two sub-cases: a 6∈ dom(Γ) and a ∈ dom(Γ).

(9) Case: a 6∈ dom(Γ)
(10) a 6∈ dom(S) from (4, 9)
(11) S ′[a 7→ (e,�, s)] = S ′, a 7→ (e,�, s) from (10, 7)
(12) a 6∈ dom(S ′) from (11)
(13) Γ ; δ ` e : τ by inv. of T – DEFINITION in (3)
(14) δ ⊆ dom(Γ) from (13)
(15) Γ, a : defδ(τ) ` P by inv. of T – DEFINITION in (3)
(16) s = ψ(S, a) = [] by inv. of R – DEFINITION in (H2, 10)
(17) · | Γ, a : defδ(τ) ` S ′, a 7→ (e,�, s) by Lemma 7 with (8, 13, 11, 16)
(18) S ′, a 7→ (e,�, []) ` [] by Definition 1
(19) S ′, a 7→ (e,�, []) ` [a] by Definition 1 with (18, 16)
(20) · | Γ, a : defδ(τ) ` S ′, a 7→ (e,�, s)

Γ, a : defδ(τ) ` (S ′[a 7→ (e,�, s)];P, [a])
by Definition 5 with (20, 15, 19, 11)

Typeful Updates on Reactive Live Web Programming 37

(21) Case: a ∈ dom(Γ)
a ∈ dom(S ′) from (4, 21)
S ′(a) = (e′, o, s)

(22) SCase: e and e′ have equal types (T – UPDATE DEF E)
Γ = Γ1, a : defδ(τ), Γ2

S ′ = S ′2, a 7→ (e′, o, s),S ′1
(23) Γ1, Γ2; δ′ ` e : τ by inv. of T – UPDATE DEF E in (3)
(24) a 6∈ δ′ by inv. of T – UPDATE DEF E in (3)
(25) Γ1, a : defδ(τ), Γ2 ` P by inv. of T – UPDATE DEF E in (3)
(26) Γ1 | a : defδ(τ), Γ2 ` S ′2, a 7→ (e′, o, s) by Definition 5 in (8)
(27) δ′ ⊆ dom(Γ1)
(28) Γ1 | a : defδ′(τ), Γ2 ` S ′2, a 7→ (e,�, s) from (26, 27)
(29) S ′2[a 7→ (e,�, s)] ` [a] by Definition 4 in (28)
(30) · | Γ1, a : def δ′(τ), Γ2 ` S ′[a 7→ (e,�, s)] by Definition 4 with (28)
(31) S ′[a 7→ (e,�, s)] ` [a] from (29, 30)

Γ ` (S ′[a 7→ (e,�, s)];P; [a]) by Definition 5 with (30, 25, 31)

(32) SCase: e and e′ have different types (T – UPDATE DEF T)
(33) Γ = Γ ′, a : defδ′(τ

′)
(34) Γ ′; δ ` e : τ by inv. of T – UPDATE DEF T in (3)
(35) a 6∈ δ by inv. of T – UPDATE DEF T in (3)
(36) a 6∈ ρ(Γ ′) by inv. of T – UPDATE DEF T in (3)
(37) S ′ = S ′′, a 7→ (e′, o, s)
(38) Γ ′ | a : defδ′(τ

′) ` a 7→ (e′, o, s) by Definition 4 with (8, 36)
(39) δ′ ⊆ dom(Γ ′) by Definition 4 with (38)
(40) s ⊆ ∅ by Definition 4 with (38)
(41) s = [] from (40)
(42) · | Γ ′ ` S ′′ by Lemma 8 with (8, 33, 37)
(43) δ ⊆ dom(Γ ′) from (34)
(44) a 7→ (e, w, s) ` [a] by Definition 1 with (41)
(45) · | Γ ′, a : defδ(τ) ` S ′′, a 7→ (e,�, s) by Lemma 7 with (42, 34, 44)
(46) S ′′, a 7→ (e,�, s) = S ′[a 7→ (e,�, s)] from (37)
(47) · | Γ ′, a : defδ(τ) ` S ′[a 7→ (e,�, s)] from (45, 46)
(48) Γ ′, a : def δ(τ) ` P by inv. of T – UPDATE DEF T in (3)
(49) S ′[a 7→ (e,�, s)] ` [a] from (44)

Γ ′, a : defδ(τ) ` (S ′[a 7→ (e,�, s)];P; [a])
by Definition 5 with (47, 48, 49)

2. R – VARIABLE

(H1) Γ ` (S; var a = e,P; [])
(H2) (S; var a = e,P; []) −→ (S ′[a 7→ (e,�, s)];P; [a])
(3) Γ ` var a = e,P by Definition 5 in (H1)
(4) dom(Γ) = dom(S) by Corollary 1 with (H1)

S ` [] by Definition 5 in (H1)
(5) · | Γ ` S by Definition 5 in (H1)

38 Miguel Domingues and João Costa Seco

ii. Trivially true because L = [].
i. Proven by analyzing the two sub-cases: a 6∈ dom(Γ) and a ∈ dom(Γ).

(6) Case: a 6∈ dom(Γ)
a 6∈ dom(S) from (4, 6)

(7) S ′[a 7→ (e,�, s)] = S, a 7→ (e,�, s) from (6)
(8) Γ ; δ ` e : τ by inv. of T – VARIABLE in (3)

δ ∈ dom(Γ) from (8)
(9) Γ, a : var(τ) ` P by inv. of T – VARIABLE in (3)

(10) s = ψ(S, a) = [] by inv. of R – VARIABLE in (3)
(11) · | Γ, a : var(τ) ` S, a 7→ (e,�, s) by Lemma 7 with (5, 8, 7, 10)
(12) S ′, a 7→ (e,�, []) ` [] by Definition 1
(13) S ′, a 7→ (e,�, []) ` [a] by Definition 1 with (12, 10)

Γ, a : var(τ) ` (S ′[a 7→ (e,�, s)];P; [a])
by Definition 5 with (11, 9, 13, 7)

(14) Case: Case a ∈ dom(Γ)
a ∈ dom(S) from (4, 14)
S(a) = (e′, o, s)

(15) SCase: e and e′ have equal types (T – UPDATE VAR E)
Γ = Γ1, a : var(τ), Γ2

S = S ′s, a 7→ (e′, o, s),S ′1
(16) Γ1, Γ2; δ′ ` e : τ by inv. of T – UPDATE VAR E in (3)
(17) a 6∈ δ′ by inv. of T – UPDATE VAR E in (3)
(18) Γ1, Γ2, a : var(τ) ` P by inv. of T – UPDATE VAR E in (3)
(19) Γ1 | a : var(τ), Γ2 ` S ′2, a 7→ (e′, o, s) by Definition 4 in (5)
(20) Γ1 | a : var(τ), Γ2 ` S ′2, a 7→ (e,�, s) from (19)
(21) S ′2[a 7→ (e,�, s)] ` [a] by Definition 4 in (20)
(22) · | Γ1, a : var(τ), Γ2 ` S ′[a 7→ (e,�, s)] by Definition 4 with (20)
(23) S[a 7→ (e,�, s)] ` [a] from (21) in (22)

Γ ` (S[a 7→ (e,�, s)];P; [a]) by Definition 5 with (22, 18, 23)

(24) SCase: e and e′ have different types (T – UPDATE VAR T)
(25) Γ = Γ ′, a : var(τ ′)
(26) Γ ′; δ ` e : τ by inv. of T – UPDATE VAR T in (3)
(27) a 6∈ δ by inv. of T – UPDATE VAR T in (3)
(28) a 6∈ ρ(Γ ′) by inv. of T – UPDATE VAR T in (3)
(29) S = S ′′, a 7→ (e′, o, s)
(30) Γ ′ | a : var(τ) ` a 7→ (e′, o, s) by Definition 4 with (5, 28)
(31) s ⊆ ∅ by Definition 4 with (30)
(32) s = [] from (31)
(33) · | Γ ′ ` S ′′ by Lemma 8 with (5, 25, 29)
(34) a 7→ (e, w, s) ` [a] by Definition 1 with (32)
(35) · | Γ ′, a : var(τ) ` S ′′, a 7→ (e,�, s) by Lemma 7 with (33, 26, 34)
(36) S ′′, a 7→ (e,�, s) = S ′[a 7→ (e,�, s)] from (29)
(37) · | Γ ′, a : var(τ) ` S ′[a 7→ (e,�, s)] from (35, 36)

Typeful Updates on Reactive Live Web Programming 39

(38) Γ ′, a : var(τ) ` P by inv. of T – UPDATE DEF T in (3)
(39) S ′[a 7→ (e,�, s)] ` [a] from (34)

Γ ′, a : var(τ) ` (S ′[a 7→ (e,�, s)];P; [a])
by Definition 5 with (37, 38, 39)

3. R – COMPUTE

(H1) Γ ` (S;P; a::L)
(H2) (S;P; a::L) −→ (S[a 7→ (e, v′, s)];P;L@s)
(3) · | Γ ` S by Definition 5 in (H1)
(4) Γ ` P by Definition 5 in (H1)
(5) S ` a::L by Definition 5 in (H1)

S(a) = (e, o, s) by inv. of R – COMPUTE in (H2)
(6) S; e −→∗ v′ by inv. of R – COMPUTE in (H2)

We consider the cases o = v ∨ o = � and a : defδ(τ) ∨ a : var(τ).

(7) Case: o = v and a : defδ(τ)
Γ = Γ1, a : defδ(τ), Γ2

(8) S = S2, a 7→ (e, v, s),S1
(9) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e, v, s) by Definition 4 in (3)

(10) Γ ; δ ` e : τ by Definition 4 in (9)
Γ ; δ ` v : τ by Definition 4 in (9)

(11) Γ1, a : defδ(τ) | Γ2 ` S2 by Definition 4 in (9)
(12) S2, a 7→ (e, v, s) ` [a] by Definition 4 in (9)
(13) δ ⊆ dom(Γ1) by Definition 4 in (9)
(14) s ⊆ dom(Γ2) by Definition 4 in (9)
(15) Γ ; δ ` v′ : τ by Lemma 2 with (10, 6)
(16) S2, a 7→ (e, v′, s) ` [a] from (12)
(17) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e, v′, s)

by Definition 4 with (10, 15, 11, 16, 13, 14)
(18) · | Γ1, a : defδ(τ), Γ2 ` S2, a 7→ (e, v′, s),S1 by Definition 4 with (17)

S[a 7→ (e, v′, s)] = S2, a 7→ (e, v′, s),S1 from (8)
(19) S ` L@s by Definition 1 in (5)

Γ ` (S[a 7→ (e, v′, s)];P;L@s) by Definition 5 with (18, 4, 19)

(20) Case: o = � and a : defδ(τ)
Γ = Γ1, a : defδ(τ), Γ2

(21) S = S2, a 7→ (e,�, s),S1
(22) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e,�, s) by Definition 4 in (3)
(23) Γ ; δ ` e : τ by Definition 4 in (22)
(24) Γ1, a : def δ(τ) | Γ2 ` S2 by Definition 4 in (22)
(25) S2, a 7→ (e,�, s) ` [a] by Definition 4 in (22)
(26) δ ⊆ dom(Γ1) by Definition 4 in (22)
(27) s ⊆ dom(Γ2) by Definition 4 in (22)
(28) Γ ; δ ` v′ : τ by Lemma 2 with (23, 6)
(29) S2, a 7→ (e, v′, s) ` [a] from (25)

40 Miguel Domingues and João Costa Seco

(30) Γ1 | a : defδ(τ), Γ2 ` S2, a 7→ (e, v′, s)
by Definition 4 with (23, 28, 24, 29, 26, 27)

(31) · | Γ1, a : defδ(τ), Γ2 ` S2, a 7→ (e, v′, s),S1 by Definition 4 with (30)
S[a 7→ (e, v′, s)] = S2, a 7→ (e, v′, s),S1 from (21)

(32) S ` L@s by Definition 1 in (5)
Γ ` (S[a 7→ (e, v′, s)];P;L@s) by Definition 5 with (31, 4, 32)

(33) Case: o = v and a : var(τ)
Γ = Γ1, a : var(τ), Γ2

(34) S = S2, a 7→ (e, v, s),S1
(35) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e, v, s) by Definition 4 in (3)
(36) Γ ; δ ` e : τ by Definition 4 in (35)

Γ ; δ ` v : τ by Definition 4 in (35)
(37) Γ1, a : var(τ) | Γ2 ` S2 by Definition 4 in (35)
(38) S2, a 7→ (e, v, s) ` [a] by Definition 4 in (35)
(39) s ⊆ dom(Γ2) by Definition 4 in (35)
(40) Γ ; δ ` v′ : τ by Lemma 2 with (36, 6)
(41) S2, a 7→ (e, v′, s) ` [a] from (38)
(42) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e, v′, s)

by Definition 4 with (36, 40, 37, 41, 39)
(43) · | Γ1, a : var(τ), Γ2 ` S2, a 7→ (e, v′, s),S1 by Definition 4 with (42)

S[a 7→ (e, v′, s)] = S2, a 7→ (e, v′, s),S1 from (34)
(44) S ` L@s by Definition 1 in (5)

Γ ` (S[a 7→ (e, v′, s)];P;L@s) by Definition 5 with (43, 4, 44)

(45) Case: o = � and a : var(τ)
Γ = Γ1, a : var(τ), Γ2

(46) S = S2, a 7→ (e,�, s),S1
(47) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e,�, s) by Definition 4 in (3)
(48) Γ ; δ ` e : τ by Definition 4 in (47)
(49) Γ1, a : var(τ) | Γ2 ` S2 by Definition 4 in (47)
(50) S2, a 7→ (e,�, s) ` [a] by Definition 4 in (47)
(51) s ⊆ dom(Γ2) by Definition 4 in (47)
(52) Γ ; δ ` v′ : τ by Lemma 2 with (48, 6)
(53) S2, a 7→ (e, v′, s) ` [a] from (50)
(54) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e, v′, s)

by Definition 4 with (48, 52, 49, 53, 51)
(55) · | Γ1, a : var(τ), Γ2 ` S2, a 7→ (e, v′, s),S1 by Definition 4 with (54)

S[a 7→ (e, v′, s)] = S2, a 7→ (e, v′, s),S1 from (46)
(56) S ` L@s by Definition 1 in (5)

Γ ` (S[a 7→ (e, v′, s)];P;L@s) by Definition 5 with (55, 4, 56)

4. R – DO ACTION

(H1) Γ ` (S; do e,P; [])
(H2) (S; do e,P; []) −→ (S; do action { a := e },P; [])

ii. Trivially true because L = [].

Typeful Updates on Reactive Live Web Programming 41

i. Is proved below.
(3) · | Γ ` S by Definition 5 in (H1)
(4) Γ ` do e,P by Definition 5 in (H1)
(5) S ` [] by Definition 5 in (H1)
(6) S; e −→∗ action { a := e } by inv of R – DO ACTION in (H1)
(7) Γ ; δ ` e : Action by inv. of T – DO in (4)
(8) Γ ` P by inv. of T – DO in (4)
(9) Γ ; δ ` action { a := e } : Action by Lemma 2 with (7, 6)

(10) Γ ` do action { a := e },P by T – DO with (9, 8)
Γ ` (S; do action { a := e },P; []) by Definition 5 with (3, 10, 5)

5. R – DO ASSIGN

(H1) Γ ` (S; do action { a := e, a′ := e′ },P; [])
(H2) (S; do action { a := e, a′ := e′ },P; []) −→

(S[a 7→ (e, v, s)]; do action { a′ := e′ },P; [a])
ii. Trivially true because L = [].
i. Is proved below.

(3) · | Γ ` S by Definition 5 in (H1)
(4) Γ ` action { a := e, a′ := e′ },P by Definition 5 in (H1)
(5) Γ ; δ ` action { a := e, a′ := e′ } : Action by inv. of T – DO in (4)
(6) Γ ` P by inv. of T – DO in (4)
(7) Γ ; δ′ ∪ {a} ` a := e by inv. of T – ACTION in (5)

δ = δ′ ∪ {a} from (7)
(8) a : var(τ) ∈ Γ by T – ASSIGN with (7)
(9) Γ ; δ ` a′i := e′i i = 1, . . . , n by inv. of T – ACTION in (5)

(10) Γ ; δ ` action { a′ := e′ } by T – ACTION with (9)
(11) Γ ` do action { a′ := e′ },P by T – DO with (10, 6)
(12) S(a) = (e′′, v, s) by inv. of R – DO ASSIGN in (H2)

Γ = Γ1, a : var(τ), Γ2

(13) S = S2, a 7→ (e′′, v, s),S1
(14) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e′′, v, s) by Definition 4 in (3)
(15) Γ1, a : var(τ) | Γ2 ` S2 by Definition 4 in (14)
(16) Γ1, a : var(τ), Γ2; δ′′ ` v : τ by Definition 4 in (14)
(17) S2, a 7→ (e′′, v, s) ` [a] by Definition 4 in (14)
(18) s ⊆ dom(Γ2) by Definition 4 in (14)
(19) Γ1, a : var(τ), Γ2; δ′ ` e : τ by inv. of T – ASSIGN in (7)
(20) S2 ` s by Definition 1 in (17)
(21) S2, a 7→ (e, v, s) ` [a] by Definition 1 in (20)
(22) Γ1 | a : var(τ), Γ2 ` S2, a 7→ (e, v, s)

by Definition 4 with (19, 16, 15, 21, 18)
(23) · | Γ ` S[a 7→ (e, v, s)] by Definition 4 in (22)
(24) S[a 7→ (e, v, s)] = S2, a 7→ (e, v, s),S1 from (13)
(25) S[a 7→ (e, v, s)] ` [a] from (21, 24)

Γ ` (S[a 7→ (e, v, s)]; do action { a′ := e′ },P; [a])
by Definition 5 with (23, 11, 25)

42 Miguel Domingues and João Costa Seco

6. R – DO SKIP

(H1) Γ ` (S; do action { · },P; [])
(H2) (S; do action { · },P; []) −→ (S;P; [])

ii. Trivially true because L = [].
i. Is proved below.

(3) Γ ` do action { · },P by Definition 5 in (H1)
(4) Γ ` P by inv. of T – DO in (3)
(5) · | Γ ` S by Definition 5 in (H1)
(6) S ` [] by Definition 5 in (H1)

Γ ` (S;P; []) by Definition 1 with (5, 4, 6)

ut

Theorem 2 (Programs Type Preservation). For all configurations (S;P;L)
and (S ′;P ′;L′), and typing environments Γ , if Γ ` (S,P,L) and (S;P;L) −→
(S ′;P ′;L′) then, there is a typing environment Γ ′, such that Γ ′ ` (S ′,P ′,L′).

Proof. Follows directly from case 1 of Lemma 4.

Theorem 3 (Queue Convergence). For all configurations (S;P;L) and (S ′;P ′;L′),
and typing environments Γ , if Γ ` (S,P,L) then (S;P;L) −→∗ (S ′;P ′; []).

Proof. Follows directly from case 2 of Lemma 4 and Theorem 1 with the de-
creasing measure mS (L).

	Typeful Updates onReactive Live Web Programming
	Introduction
	Reactive Web Programming
	Incremental Programming

	Programming Language
	Operational Semantics
	Type System

	Type Safety
	Related Work
	Final Remarks
	Definitions
	Proofs

