
Interpretation and Compilation of
Programming Languages

Part 6 - Imperative languages

João Costa Seco

April 16, 2014

In this lecture we discuss the main features of imperative languages, and
how we can define a semantic function in a language with state variables.

We support the fundamental notions of memory and memory operations,
which are independent from the operations on the execution environment.
We address the important concepts of L-value and R-values and the implicit
coercion mechanisms usually used in languages. Important notions like alias-
ing and memory cell lifetime are also addressed.

We present language constructs usually associated to imperative lan-
guages, like loops and sequencing of commands. We discuss how important
typing is in the efficient treatment of state variables, and motivate for the
existence of stack and heap variables. We build an imperative language with
mutable cells, and define its operational and typing semantics.

1 Imperative languages
Programming languages are many times divided into the world of impera-
tive and functional languages (among other language paradigms). The main
distintive feature between these worlds is the presence (or predominance) of
side effects. Imperative programs operate by iteratively changing the state
(memory) of a machine, while functional programs operate by inductively
(recursively) defining the results of computations. For instance, the factorial
of a natural number can be computed iteratively (e.g. in Javascript), where
the result can only be understood by simulating the execution, and analysing
the intermediate states.

function factorial(n) {

1

int f = 1;
int i = 1;
while(i <= n) {

f = f * i;
i = i + 1;

}
return f;

}

Or it can be recursively (inductively) defined in OCaml, as follows

let rec factorial n = if n = 0 then 1 else n * factorial (n-1)

Or in Haskell using a case analysis style,

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)

which corresponds more closely to the mathematical notion of the factorial
function. Whilst the first example is based on the key notions of state vari-
ables and sequences of statements (or commands), the second relies on the
key mechanism of recursion. In pure functional languages, a given expression
always yields the same result, no matter when, or how many times it is eval-
uated. The same does not happen in imperative languages, where results are
obtained by a succession of state changes, and depends on its initial state.

2 Memory model
In order to define the semantics of imperative languages, it is crucial to define
a model of the memory, an abstraction that focuses on the key interactions
of a language semantics and memory. The intuitive notion of memory is a
(mutable) mapping from memory location identifiers to values. A memory is
a dynamic (runtime) data structure maintained by the operational semantics
function. This notion is independent and complementary to the notion of
runtime environment.

The memory model we define next is an abstraction for the memory layer
of a program. It abstracts the notions of memory allocation and deallocation,
and management of its contents. The presented abstraction can be seen as
the memory management layer of a virtual machine or operating system.
It can, for instance, isolate memory management, monitoring, and garbage
collection mechanisms.

2

interface Memory {
RefValue new(Value v);
void free(RefValue r);
void set(RefValue r, Value v);
Value get(RefValue r);

}

Figure 1: Java interface for a memory data type.

Consider that a memory abstraction maintains a (potentially) infinite
number of mutable memory cells. The main operations are memory allo-
cation, setting/getting values to/from memory locations, and deallocation.
One key notion, necessary in this model, are memory location identifiers,
also known as memory references or pointers. Programming languages sup-
port a variety of memory manipulation mechanisms, from Java references,
OCaml variables, to C and C++ low-level pointers, where, besides the basic
operations, arithmetic operations are also allowed.

Memory references are language (runtime) values whose meanings are
given by concrete memories. A memory can therefore be defined by an ab-
stract data type, with name Mem and the following constructs:

new : Mem × Value → Ref ×Mem

free : Mem × Ref → Mem

set : Mem × Ref × Value → Mem

get : Mem × Ref → Value

Which corresponds to the Java interface of Figure 1, that can be instantiated
in an imperative way by an object that manages a memory. A possible
instantiation of such interface is a singleton class that manages a global
memory. In the definition of Figure 1 we consider the inductively defined
type Value, and a subtype RefValue that denotes memory locations (see
Figure 3). Consider the simple implementation of interface Memory, defined
in Figure 2, where memory locations in the operational semantics are directly
represented by values of class RefValue.

The operational semantics of an imperative language is based on a com-
bination of an evaluation environment and a memory. The evaluation envi-
ronment keeps the bindings of identifiers to their denotations, which is fixed
during their life time. The memory maintains the contents of memory cells.

3

class MemoryImpl implements Memory {

static Memory mem = new Memory();

private Memory() {}

RefValue new(Value v) { return new RefValue(v); }
void free(RefValue r) { /*No need in a GC language */ }
void set(RefValue r, Value v) { r.set(v); }
Value get(RefValue r) { return r.get(); }

}

Figure 2: Sketch of a Java class implementing a memory.

class RefValue implements Value {
Value content;

RefValue(Value content) {...}
}

Figure 3: Java reference values.

Denotations kept in the environment may include memory locations. Fig-
ure 5 depicts a sample environment and memory in the marked program spot
of Figure 4.

Recall that the direct manipulation of memory references is a crucial
mechanism to allow the construction of dynamically allocated data struc-
tures. It also opens the door to the essential scenarios where there are more
than one path from a local (stack) variable to a memory location (e.g. trans-
verse a linked list, define a graph, etc.). This effect is called aliasing, and it
can also be the source of programming errors. Check the function revert in
Figure 6, that copies the contents of an array to another, in the reverse index
order. If this function is called using a single array as actual parameters
(where a and b refer to the same locations), then the final contents of the
array (a) will not be as expected.

Memory allocation in imperative languages is found in many different
places, and can be categorised according to the kind of memory handling
mechanisms, the life time of memory cells, and the way cells are managed.
The declaration of a local variable, of int type, in C, and the declaration of
an imperative variables in OCaml, are completely different. The allocation

4

const int TEN = 10;

int main(void) {
int s = 0;
int a[TEN] = {1,2,3,4,5,6,7,8,9};
int *b = a;

for(int i = 0; i < TEN; i++) {
s = s + *b; // <--
b++;

}
printf("%d\n",s);

}

Figure 4: Aliasing example.

Ambiente
TEN 10
main . . .
s `0
a `1
b `2
i `3

printf . . .

Memória
`0 0
`1 {1, 2, . . .}
`2 `1
`3 0

Figure 5: Environment and memory snapshot of the program in Figure 4

of an object in Java or in C++ are also different. In C++, an object can be
allocated in the stack or explicitly in the heap. Also, allocation of arrays is
different in Java or in C.

Other differences can observed in the way memory cells are accessed. For
instance, C expression x=x+1 contains two different occurrences of x, with two
distinct denotations. The denotation in the left-hand side of the assignment
denotes the memory location being modified, and the denotation on the right-
hand side is the content of the memory location associated to identifier x.
There is an implicit coercion between the memory location and its contents,
that depends on the evaluation context. Languages like (C, Java, C#, etc.,
are examples of this category. We name values that denote a memory cell,
as L-values, and R-values to the remaining values. The implicit conversion,
from L-value to R-value, is performed according to the evaluation context.
An equivalent expression in OCaml, that treats reference accesses (variables)
explicitly, is the following: x:=!x+1. Expression !x denotes the content of the

5

void revert(int *a, int* b, int size) {
for(int i = 0; i < size; i++) {

a[i] = b[size-1-i];
}

}

Figure 6: Função revert.

reference denoted by x. In section ?? of an appendix to this document you
may find the semantics of a language with implicit dereference of variables. In
general, an L-value is converted to its R-value when its use context demands
for its contents and not the memory location itself. However, consider the
expression a[a[2]]:=a[1], where expression a[2] and a[1] are converted
to an R-value. In order to statically determine the coercion points, there is
a need for a prior type analysis.

A simpler alternative to implicit dereference of variables, can be defined
by forcing the explicit allocation and deallocation of variables.

An example, is the OCaml language, or the use of heap memory in C
(malloc and free). The expression above would be written as follows:
a[!a[2]] := !a[1].

3 Language CALCState
We now present an imperative programming language called CALCState ex-
tending the language CALCI with commands and operations directly con-
nected memory manipulation and the typical loop structures of imperative
programming.

6

num : Integer → CALCState

add : CALCState × CALCState → CALCState

sub : CALCState × CALCState → CALCState

mul : CALCState × CALCState → CALCState

div : CALCState × CALCState → CALCState

id : String → CALCState

decl : String × CALCState × CALCState → CALCState

var : CALCState → CALCState

assign : CALCState × CALCState → CALCState

deref : CALCState → CALCState

free : CALCState → CALCState

seq : CALCState × CALCState → CALCState

while : CALCState × CALCState → CALCState

If : CALCState × CALCState × CALCState → CALCState

The semantics of this language is based on a memory model, whose oper-
ations where already explored (see section ??). Notice that in the syntax of
this language, we have only one syntactical category (expressions). This is
usually not the case in main-stream imperative languages, where (ideally) the
effects on the memory are accomplished by commands (or statements), and
where expressions are “pure” (do not cause effects on the state). Languages
that separate commands from expressions usually belong to the family of
Algol-derived languages. To keep the language more uniform and simpler we
keep only one category, and define a language belonging to the so-called ML
derived languages (only with expressions).

We introduce an expression to allocate a new state variable (a memory
cell containing a language value) var, an expression to set a new value to an
existing state variable, assign, an expression to retrieve the value of a state
variable, deref, and an expression that releases the occupied memory, free.
These are the expressions that actually produce an effect in the state of the
memory. Notice that we abstract the occupied memory by each value, and
assume an infinite number of available memory cells.

Given that our language has effects, it is important that its semantics
specifies the exact order of evaluation of each sub-component of each language
expression. In terms of general specification we can add an extra parameter to
our semantic function to denote the current memory state, and give meaning
to the denotations that may be stored in the environment. On the other
hand, since results may now include memory locations, these results only

7

have meaning with relation to a memory. So, we define the signature of the
evaluation function as follows:

eval : CALCState × ENV ×MEM → Result ×Mem
Where the Result set is now extended to include references.

Result , Integer ∪ Boolean ∪ Ref
Notice that all interpreters (including native code) make use of a memory
abstraction, that is in charge of memory management mechanisms, like allo-
cation, protection, and even garbage collection.

Consider the code in Figure 7 where the type loc is abstracted (defined
in the memory module for instance). Notice that the order of execution is
deterministically defined by the data dependency between the results and
the parameter representing the memory.

In the case of expression Add (e,e’) the evaluation of expression e is
performed with relation to the initial memory (mem) and its effects are reg-
istered in the resulting memory (mem’). The sub-expression e’ is evaluated
with relation to that memory (mem’) modifying the memory that is yielded
as result of the addition expression (mem’’).

Notice that an implementation of an interpreter of language CalcState, us-
ing an imperative language with a suitable memory management mechanism,
like Java or OCaml, it is enough (and easier) to use the native mechanisms
(see Figures 8 and 9).

References can be managed (and implemented) in several different ways.
If one uses an imperative language as the base for the interpreter, then the
chaining of state changes is implicitly placed in the host language (Java).
RefValue values (Figure 9) represented by objects act as memory cells.

4 Typing State Variables
In order to trap execution errors related to memory manipulation, in a sim-
ple an efficient way, we must adopt restrictions that are common in typed
imperative languages. The most important is that a state variable only con-
tains values of one single type. This leads to a set of types defined by the
abstract data type in Figure 10,

Exercise 1. Define the type semantics of the given language.

8

type loc = ...

type value =
Num of int

| Bool of bool
| Ref of loc

let rec eval exp env mem =
match exp with

...
| Add (e,e’) ->

let (v1,mem’) = eval e env mem in
let (v2,mem’’) = eval e’ env mem’ in
(Num ((toNum v1)+(toNum v2)),mem’’)

...
| Var e ->

let (v,mem’) = eval e env mem in
let (r,mem’’) = new_loc mem’ v in
(r,mem’’)

| Assign e e’ ->
let (r,mem’) = eval e env mem in
let (v,mem’’) = eval e’ env mem’ in
let mem’’’ = set_loc mem’ r v in
(v,mem’’’)

| Deref e ->
let (r,mem’) = eval e env mem in
(get_loc mem’ r,mem’)

| Free e ->
let (r,mem’) = eval e env mem in
let mem’’’ = free_loc mem’ r v in
(Num 0,mem’’)

Figure 7: Semantics using explicit memory management.

9

type value =
Num of int

| Ref of value ref

let rec eval exp env =
match exp with

...
| Add (e,e’) ->

let v1 = eval e env in
let v2 = eval e’ env in
Num ((toNum v1)+(toNum v2)

...
| Var e ->

let v = eval e env in
let r = ref v in r

| Assign (e,e’) ->
let r = eval e env in
let v = eval e’ env in
(toRef r) := v

| Deref e ->
let r = eval e env in !(toRef (r))

| Free e -> Num 0 (* Não é necessário *)

Figure 8: Semantics using references in OCaml.

10

interface Value {}

class IntValue implements Value {
public final int n;

IntValue(int n) { this.n = n; }
}

class RefValue implements Value {
Value v;

RefValue(Value v) { this.v = v; }
Value get() { return v; }
void set(Value v) { this.v = v; }

}

class ASTVar implements ASTNode {
ASTNode exp;
ASTVar(ASTNode exp) { this.exp = exp; }

Value eval(Env<Value> env) {
return new RefValue(exp.eval(env));

}
}

Figure 9: Semantics using references in Java.

type ty =
IntType

| BoolType
| RefType of ty

Figure 10: Types for imperative languages

11

	Imperative languages
	Memory model
	Language CALCState
	Typing State Variables

