
Interpretation and Compilation of
Programming Languages

Part 5 - Name declaration and binding (II)

João Costa Seco

March 26, 2014

In this lecture we discuss how we can define a semantic function in a lan-
guage with variables (identifiers), that complies with the substitution prin-
ciple, but does not require the rewriting of the abstract syntax tree.

We support the fundamental notions of binding and scope, by an auxiliary
data structure, called environment, that maps identifiers to its meanings. We
then study a type semantics for the language with identifiers, using the exact
same data structure.

1 Evaluation Environment
The nested declaration of identifiers defines a mapping from identifiers to
denotations, and at each point in a program or expression, a subset of these
mappings is valid and visible. We call these subsets, the environment of an
expression. Environments are actually observable in two situations. In a
debugger, we can usually observe the visible identifiers and their values. In
integrated development environments (IDE), the functionality called intel-
lisense, that stands for context-aware code completion, is usually an instance
of a typing environment.

Consider the code of Figure 1 written in C (C99). The evaluation envi-
ronment of expression j+y contains the denotations of identifiers f, x (pa-
rameter), z, e j. Note that variable x, which is local in the loop, is not
visible in this initializer expression, but is visible in the statement z += x.
The declaration of the local variable shadows the parameter’s (x) binding.
Notice that a function declaration is implicitly recursive in C, hence identifier
f is visible within the function body.

1



int f(int x)
{

int z = x+1;
for(int j=0; j<10; j++){

int x=j+y;
z += x;

}
return z;

}

Figure 1: Code sample.

2 Operational semantics
In the previous lecture we defined the language CALCI, and an operational
semantics for closed expressions. That definition is based on a substitution
function that ensures the invariant, that expressions are closed. Expressions
are evaluated, by evaluating (closed) sub-expressions.

An environment is a data structure that allows the definition of an oper-
ational semantics for open expressions.

I : CALCI × ENV → Integer

This function is defined on pairs of expressions and environments, to deno-
tations. We define an extended invariant, stating that all free names in the
evaluating expression are included in the domain of the environment. The
function is defined for closed pairs, and its definition mimics the substitution
based definition.

We define the semantics of each construct in a compositional way, main-
taining the semantics of the expressions of language CALC, and define the
semantics for the new expressions, the declaration of an identifier (decl x =
E in E ′) and the corresponding use (x). The definition of the operational
semantics is based on the environment. The environment is used to keep
the current environment up-to-date. We define the following operations on
environments:

new : Void → ENV

beginScope : ENV → ENV

endScope : ENV → ENV

find : ENV × String → Integer

assoc : ENV × String × Integer → ENV

2



let rec eval e env =
match e with
| Number n -> n
| Add (l,r) -> (eval l env) + (eval r env)
| Sub (l,r) -> (eval l env) - (eval r env)
| Mul (l,r) -> (eval l env) * (eval r env)
| Div (l,r) -> (eval l env) / (eval r env)

| Id s -> find s env
| Decl (s,l,r) ->

let v = eval l env in
let new_env = begin_scope env in
let new_env’ = assoc s v new_env in
eval r new_env
(* end_scope new_env *)

Figure 2: Operational semantics CALCI

Given a data structure such as this, we define the semantics using OCaml
in Figure 3. In the case of the use of an identifier (x), the denotation is
directly retrieved from the environment. In the case of an identifier decla-
ration, the denotation of an expression decl x = E in E ′ is given by the
denotation of expression E ′, given an environment where identifier x is as-
sociated to the denotation of expression E (Instead of replacing it in place).
The find operation (find x env) is used to get the denotation of identifier.
The operation (assoc x v env) is used to create a new environment where
identifier x is associated to the denotation v.

The scope of nested identifiers is represented in the layered structure of
the environment data-structure. The begin_scope function initiates a new
(inner) empty layer, and function assoc enriches that inner layer with a
new association. Notice that, given the functional character of the OCaml
language, the call to end_scope function is unnecessary.

An environment keeps information in a way, convenient for a recursive
transversal of the AST where scopes, in a stack-like way (first-in, first-out).
The recursive nature of the AST processing is accompanied by pushing it
into the environment stack, it shadows the bindings of the outer scopes.

When using an imperative language like Java, we can represent its ab-
stract data type through a generic interface like the one in Figure 3. We
abstract the type of the denotation by the generic type, allowing it to sup-
port different semantic functions like evaluation, typing, and compilation.

3



interface Environment<T> {
Environment<T> beginScope();
Environment<T> endScope();
T find(String x);
void assoc(String x, T value);

}

Figure 3: Interface of an environment in Java

By using an environment, we can implement method eval of the nodes
of the AST (ASTNode) by means of the (sample) code in Figure 4.

In the programming language CALCI above, each declaration defines a
new scope, and new environment block, containing the definition of a sin-
gle identifier. The scoping rules of all languages, can be represented by
variants of this environment data type. We can allow more than one dec-
laration by layer, recursive declarations, type declarations, etc.. The opera-
tions beginScope and endScope define the scope of identifiers, and operation
assoc binds an identifier to a denotation, ensuring the absence of repetitions.

Figure 7 illustrates the semantics of a declaration decl for several iden-
tifiers. In this case function beginScope defines a new scope, and function
assoc creates new bindings in the “closest” environment layer. Notice the
iterative processing of the declaration lists, defined in OCaml by the function
fold_left of the List module (see the official documentation for details).

4



class ASTNum {
int n;
...
Value eval(Environment<Value> env) {

return IntegerValue.value(n);
}

}

class ASTAdd {
ASTNode left, right;
...
Value eval(Environment<Value> env) {

return IntegerValue.add(left.eval(env),right.eval(env));
}

}

class ASTId {
String x;
...
Value eval(Environment<Value> env) {

return env.find(x);
}

}

class ASTDecl {
String x;
ASTNode def, body;
...
Value eval(Environment<Value> env) {

Environment<Value> newEnv;
int value, result;

value = def.eval(env);
newEnv = env.beginScope();
newEnv.assoc(x,value);
result = body.eval(newEnv);
//assert env == newEnv.endScope();
return result;

}
}

Figure 4: Operational semantics for language CALCI using Java

5



type ast = ...
| Id of string
| Decl of (string * ast) list * ast

...

let rec eval e env =
match e with
| Number n -> n
| Add (l,r) -> (eval l env) + (eval r env)
| Sub (l,r) -> (eval l env) - (eval r env)
| Mul (l,r) -> (eval l env) * (eval r env)
| Div (l,r) -> (eval l env) / (eval r env)

| Id s -> find s env
| Decl (decls,r) ->

let f = fun env (x,l) ->
let v = eval l env in
let new_env = assoc x v env in new_env

in
let new_env = beginScope env in
let last_env = List.fold_left f env decls in
let result = eval r last_env in
assert (env = endScope new_env) ;
result

Figure 5: Operational semantics of CALCI with multiple declarations.

6



let rec typecheck e env =
match e with
| Number n -> IntType
| Add (e,e’) ->

(match typecheck e env, typecheck e’ env with
IntType, IntType -> IntType

| _,_ -> None)

| Decl (x,e,e’) -> typecheck e’ (assoc x (typecheck e env) env)
| Id(x) -> find x env ;;

Figure 6: Typing of VALI.

public Type typecheck(Environment<Type> env) throws TypeException {
Type t = definition.typecheck(env);

Environment<Type> new_env = env.beginScope();
new_env.assoc(id,t);
Type result = body.typecheck(new_env);
new_env.endScope();
return result;

}

Figure 7: Typing of VALI.

3 Typing using environments
Take the programming language VAL presented in previous lectures, and its
typing procedure. Consider the extension of that language with identifiers
(declaration and use), called VALI. Typing is a semantic function that is de-
fined in the cases of the language expressions, like the operational semantics.
Although the operational semantics and typing of some expressions are dif-
ferently, according to its domain, the typing of identifier declarations and use
is also defined in a very similar way. The rules for these expression essentially
establish the scoping and visibility rules of identifiers, that are common to
evaluation and typing functions. The difference is located in the denotation
held by the (typing) environment.

The implementation using a language like Java takes the advantage of
generic types, and adapts the kind of denotation is used in this semantic
function.

7



4 Soundness of typing with identifiers
The typing of a language is defined in such a way that execution errors
trapped in the definition of the operational semantics, do not occur in well-
typed programs. We can use a version of the substitutivy principle, that
ensures that substitution of identifiers by values in well-typed expressions
(or programs), preserves typing.

We will recall this discussion in a future lecture.

8


	Evaluation Environment
	Operational semantics
	Typing using environments
	Soundness of typing with identifiers

