
Interpretation and Compilation of
Programming Languages

Part 4 - Name declaration and binding

João Costa Seco

March 26, 2014

In this lecture we discuss a fundamental component of programming lan-
guages, which is the notion of variable. The notion of variable (from a math-
ematical point of view) allows for the expression of computations and proper-
ties by abstracting the actual components. Note that the notion of variable,
in this context, is different from the notion of state variable, which is linked
to the use of memory in imperative languages.

Variables as introduced in this lecture are a generic mechanism, important
in all languages to define (name) language abstractions like state variables,
functions, classes, etc..

We introduce the fundamental notions of binding, scope, and environ-
ment, occurrences of identifiers, open expressions, and closed expressions.

We introduce the fundamental declaration operation and the notion of
scope of a variable and evaluation environment. Also, we define the semantics
of a small language with declarations, in three different steps. This is a way
of studying the difference between dynamic and static binding of variables.

In the end we define a type semantics for the language with declarations
that ensures that no runtime errors occur related to undefined variables.

1 Literals and variables
The semantics of a programming language with variables must be defined in
such a way that the denotation for a variable is determined according to its
declaration. We follow the fundamental principle of substitution, that states

the semantics of an expression, containing declarations of vari-
ables (or identifiers), should yield the same result that the expres-

1



sion obtained by replacing all variables by the expressions used to
define them (or their meanings).

Consider the non-terminals of a programming language, many denote some a
value, are literals or variables. From now on we call identifiers to variables to
avoid any possible misunderstandings when state variables are introduced.

On the one hand, literals always denote the same value, independent from
the evaluation context, (e.g. true, false, [], 1, 1.0, 0xFF, NULL) and, on the
other hand, the denotation of identifiers (e.g. x, System.out , printf ) depend
on the evaluation context. For instance in the programming language C,

printf("Hello, %s", name);

The effect of the statement above depends, not only on the meaning of iden-
tifier name, but also on the denotation of the identifier printf. On the other
hand, the string literal "Hello, %s" denotes the same array of characters
independently of the evaluation context.

2 Binding and scope
In order to define the semantics of a language with identifiers we first need
to understand the notion of binding. A binding is established between the
declaration, and a set of occurrences of an identifier. In order to follow
the substitution principle, the binding of an identifier must be fixed in all
executions of a particular program.

Along with the declaration, each language establishes the fragment of
code where each declared identifier is visible, i.e. where all occurrences of a
declared identifier are bound to its declaration. This is known as the scope
of an identifier.

The scope of an identifier (of its declaration) is the syntactically context
where an occurrence of the identifier is bound to it. As a consequence, the
scope of an identifier is the fragment where the corresponding denotation can
be found deterministically. For instance, the function definition in C language
(C99) of Figure 1, there are several occurrences of identifiers:

• of identifier f, that denotes the function being defined. The scope of
identifier f is the remaining file and the body of the current definition.

• of identifier x, that denotes a function parameter, that is considered as
a local variable initialised with the argument value. The scope of the
parameter is the body of the function. In this case the scope excludes
the scope of identifier x declared inside the loop.

2



int f(int x)
{

int z = x+1;
for(int j=0; j<10; j++){

int x=j+y;
z += x;

}
return z;

}

Figure 1: Scope (C).

• of identifier z, that denotes a local variable. Its scope are all state-
ments following its declaration, inside the function body. Note that
the initialiser expression is not included in the scope.

• of identifier j, that denotes the loop’s control variable. Its scope is the
condition of the loop, the increment expression, and the body of the
loop (in C99). It is not visible outside the loop.

• of identifier x, that denotes a local variable inside the loop. Its scope
are the statements that follow its declaration, inside the loop. In this
case, it is the assignment in the next line. It is not visible outside the
loop, and its scope shadows the function parameter x.

In many imperative languages, like C or Java, the declaration of identifiers
is linked with the definition of state variables. The universal principal of
static binding, that states that the denotation of an identifier does not change
during its lifetime is still true. In this case, the denotation of the identifier
that we refer to is the given memory location. Although its contents may
change, the actual memory address is maintained.

Most languages also provide mechanisms that detach the declaration of
identifiers from the definition of its denotations. Function prototypes in C,
class prototypes in Java, module interfaces in OCaml, etc.

In functional languages like OCaml, the declaration of an identifier is, in
general, linked to its definition in a let expression, of the form let x = E
in E’. In this case, the scope of identifier x is expression E’.

Consider the code in Figure 2 containing a function declaration at the
interpreter top level where:

• the scope of identifier f contains all expressions in the remainder of the
file, or given in the interpreter’s top-level.

3



let f x = let y = x-1 in y*x

Figure 2: Scope (OCaml)

• identifier x is a parameter and its scope is the function body.

• identifier y is visible in expression y*x.

This kind of declaration is explicit and primitive, and taking advantage of
the fact that functions are first-class values in OCaml. In other languages
declaration is syntactically connected to definitions (e.g. functions in C).

Notice that a let declaration in OCaml is not recursive. For that purpose,
in the OCaml language there is an explicit construct (let rec).

3 Language CALCI
We now define a new language, that extends language CALC, and supports
the primitive identifier declaration and use of identifiers. We introduce a
declaration of identifiers with the concrete syntax:

decl x = E in E ′

where identifier x is associated to the denotation of expression E and its
scope is expression E ′. The identifier expression has the given denotation in
its scope. The constructions of language CALCI are defined by the abstract
data type:

1. num : Integer → CALCI

2. add : CALCI × CALCI → CALCI

3. sub : CALCI × CALCI → CALCI

4. mul : CALCI × CALCI → CALCI

5. div : CALCI × CALCI → CALCI

6. id : String → CALCI

7. decl : String × CALCI × CALCI → CALCI

The Haskell data type, depicted in Figure 3, that represents all CALCI
programs.

4



data CALCI =
Num Int

| Add CALCI CALCI
| Sub CALCI CALCI
| Mul CALCI CALCI
| Div CALCI CALCI

| Id String
| Decl String CALCI CALCI
deriving Show

Figure 3: Tipo de dados CALCI

3.1 Open and closed expressions

It is only possible to assign a denotation to an arbitrary expression if we
know exactly what is the denotation of each identifier in it.

The occurrences of an identifier in an expression can be classified in three
different ways:

• A binding occurrence is an occurrence at the declaration point. It
is the source of all bindings for that identifier declaration.

• A bound occurrence is an occurrence of an identifier within the scope
of a declaration. Each bound occurrence is linked to one particular
declaration.

• A free occurrence is an occurrence that is not linked to any declara-
tion.

An expression with no free occurrences is called a closed expression,
otherwise it is called an open expression. Take the examples of the closed
code fragments in Figure 4. In these cases, we can deterministically obtain
a denotation without any further context information. In the cases of open
expressions, in Figure 5, we cannot determine a denotation. The denotation
of such expressions depends on the denotation of its free identifiers, as follows:

• x+f(2) depends on the value of identifier x and identifier f. In this case
f should denote a function that takes an integer value as argument.

• expression y + let x = 2*y in x+3 depends on the denotation of
identifier y.

5



1+2*3

3+let x = 1 in x+3

int sqr(int x) {
return x*x;

}

Figure 4: Closed expressions

x + f(2)

y + let x = 2*y in x+3

int do_it(int x) {
for(int i = 0; i<TEN; i++)

printf("%d\n",i);
}

Figure 5: Open expressions

• The definition of function do_it depends on the denotation of identifier
TEN and the denotation of identifier printf (it’s code).

In order to formally define the notion of free and closed expressions, we
compute the set of free identifiers of an expression. A closed expression has
an empty set of free identifiers, it is otherwise open.

The inductive definition for the set of free identifiers for language CALCI
is the following:

Definition 3.1 (Free identifiers). The set of free identifiers, written free(E),
is inductively defined by the cases:

free(num(n)) = {}
free(add(E,E ′)) = free(E) ∪ free(E ′)
free(sub(E,E ′)) = free(E) ∪ free(E ′)
free(mul(E,E ′)) = free(E) ∪ free(E ′)
free(div(E,E ′)) = free(E) ∪ free(E ′)
free(id(x)) = {x}
free(decl(x,E,E ′)) = free(E) ∪ (free(E ′)\{x})

We have that free(decl x = y+1 in x+z) = {y, z} and that free(decl x =
1 in x+ 2) = {}.

6



3.2 Operational Semantics for CALCI

The operational semantics for language CALCI is defined for closed expres-
sions as in previous lectures.

Taking the substitution principle as guide we have that the denotation of
an expression is obtained by replacing the occurrences of an identifier by its
denotation.

In the case of expressions of the form decl x = E in E ′, the denotation
is the same as expression E ′{E/x}, that is obtained by replacing all free
occurrences of identifier x in E ′ by expression E. Note that if expression
decl x = E in E ′ is closed (and we assume that it is), the only free iden-
tifier that can occur in expression E ′, is x. So, expression E ′{E/x} must be
closed.

We define the operational semantics through the Haskell code in Figure 6.
Notice that the semantics of expressions of language CALC remains un-

touched, and that the semantics of the declaration is defined by the substi-
tution of the identifier by the expression. Note also that the denotation of
a (free) identifier is an error. The semantics is only defined for closed ex-
pressions and that expression Id x is open. The semantics depends on the
substitution function of identifiers by expressions.

Definition 3.2 (Substitution). Function subst(E, x,E ′) is inductively de-
fined by the cases:
subst(E, x, num(n)) = num(n)
subst(E, x, add(E ′, E ′′)) = add(subst(E, x,E ′), subst(E, x,E ′′))
subst(E, x, sub(E ′, E ′′)) = sub(subst(E, x,E ′), subst(E, x,E ′′))
subst(E, x, mul(E ′, E ′′)) = mul(subst(E, x,E ′), subst(E, x,E ′′))
subst(E, x, div(E ′, E ′′)) = div(subst(E, x,E ′), subst(E, x,E ′′))
subst(E, x, id(y)) = E (with x = y)
subst(E, x, id(y)) = id(y) (with x 6= y)
subst(E, x, decl(y, E ′, E ′′)) = decl(y, subst(E, x,E ′), E ′′) (with x = y)
subst(E, x, decl(y, E ′, E ′′)) = decl(y, subst(E, x,E ′), subst(E, x,E ′′)) (with x 6= y)

Consider the substitution function and the following example and the fol-
lowing example: decl y = 3 in x + y. The substitution of identifier x by
expression y+1, with denotation of y being 0. The result of the substitution
is expression decl y = 3 in (y + 1) + y with denotation 7. Intuitively, we
expected the denotation 4 for the expression. The discrepancy comes from
the fact that the binding of identifier y, in expression y+1, was captured by
another declaration with denotation 3 instead of 0.

7



To avoid the capturing of identifiers we need to rename the declared iden-
tifiers. Note that expression decl x = E in E ′ is equivalent to decl x′ =
E in E ′{x′/x}.

The code in Figure 7 implements this semantics. Note that in the case of
the declaration, the declared identifier is replaced by a fresh identifier.

In this piece of code, a new identifier is ensured by function newId based
on monad StateMaybe (see appendix), It should be ensured by a simple
counter in Java or C. This substitution with capturing of identifiers is more
common than we might think at first. It occurs often in cases like sequential
loading of Javascript files in an HTML file, where coincidences of names can
occur.

8



eval :: CALCI -> StateMaybe Int Int

eval (Num n) = return n

eval (Add e e’) =
do
l <- (eval e)
r <- (eval e’)
return (l+r)

eval (Sub e e’) =
do
l <- (eval e)
r <- (eval e’)
return (l-r)

eval (Mul e e’) =
do
l <- (eval e)
r <- (eval e’)
return (l*r)

eval (Div e e’) =
do
l <- (eval e)
r <- (eval e’)
if r == 0 then raise_error
else return (div l r)

eval (Decl x e e’) =
eval e’’
where e’’ = subst e x e’

eval (Id x) = raise_error

Figure 6: operational semantics of CALCI (capturing)

9



eval’ :: CALCI -> StateMaybe Int Int

eval’ (Num n) = return n

eval’ (Add e e’) =
do
l <- (eval’ e)
r <- (eval’ e’)
return (l+r)

eval’ (Sub e e’) =
do
l <- (eval’ e)
r <- (eval’ e’)
return (l-r)

eval’ (Mul e e’) =
do
l <- (eval’ e)
r <- (eval’ e’)
return (l*r)

eval’ (Div e e’) =
do
l <- (eval’ e)
r <- (eval’ e’)
if r == 0 then raise_error
else return (div l r)

eval’ (Decl x e e’) =
do
x’ <- newId
e’’ <- return (subst (Id x’) x e’)
eval’ (subst e x’ e’’)

eval’ (Id x) = raise_error

Figure 7: operational semantics CALCI (capture avoiding)

10


	Literals and variables
	Binding and scope
	Language CALCI
	Open and closed expressions
	Operational Semantics for CALCI


