
Interpretation and Compilation of
Programming Languages

Part 2 - Syntax and Semantics

João Costa Seco

March 12, 2014

In this lecture we discuss two fundamental aspects of the programming
language design: syntax (concrete and abstract) and semantics. We discuss
how the syntax of a programming language can be represented in an induc-
tive data type, hence defining programs as structured values. We proceed
to define the semantics of a small programming language by means of an
interpreter function, implemented by an inductive algorithm. We introduce
the first programming language, comprising basic values, that we will use as
running example in all entire course lectures.

1 Syntax and Semantics
Syntax and semantics are two important aspects of the design process of a
programming language. A programming language is defined by combining
a set of syntactic constructs, which is assigned a semantic meaning. The
most important issue in programming language research is, no doubt, at the
abstract level, and consists in devising constructs (abstract syntax) whose
semantics are better suited to solve the problem in hands. But, when de-
veloping a programming language, targeted at effectively building systems,
one has to carefully consider both the abstract and concrete syntaxes. Issues
like keyword choice, operator priority, indentation sensitivity , etc., must be
considered.

The syntax of a language can be studied from two complementary per-
spectives. The concrete syntax of a programming language refers to the
actual (formal and precise) representation of programs, as text files, box di-
agrams, flow charts, or some UI builder screens. The abstract syntax of
a programming language defines the essence and structure of each language

1

S : := . . . | i f E then S e l s e S | i f E then S | . . .

Figure 1: Ambiguous grammar for conditional statements

construct. This can immediately be mapped into data types that can be
manipulated by programs (interpreters and compilers).

The syntax of a language is the first mechanism of establishing the expres-
siveness of a language, by allowing or limiting the use of a certain number of
language constructs and their combinations. In this course we will primarily
focus on text-based languages, at the concrete syntax level, but note that all
concepts, techniques, and tools can be applied to other kind of languages.

2 Concrete Syntax
The concrete syntax of a programming language defines the set of artefacts
accepted as syntactically correct programs of the language. The notion of
a “legal” program of a given programming language is incrementally refined
by other layers. Instances of such refinements can be well-typed programs,
programs that satisfy a formal specification, programs that succeed on unit
or integration tests, etc..

We now focus on having a precise definition of the concrete syntax for
a programming language, which can be used to produce the first layer of a
compiler or interpreter front-end. Issues like syntactic ambiguity are relevant
at this stage. For instance, the code fragment in Figure 2 needs to be ex-
plicitly disambiguated. A grammar fragment for conditional statements, like
the one in Figure 1, does not clearly identify which conditional statement
contains the else branch in line 5. In languages like C or Java, the rule is
to associate the else branch to the nearest if statement. If indentation is
considered, in languages like Python or Haskell, the resulting derivation tree
would be different.

Other examples are illustrated in the Ruby language code fragment Fig-
ure 3, where name can be used in distinct ways. An identifier with the form
@name is syntactically different from an identifier with the form name. The
former denotes an object instance variable, and the latter denotes a local
variable, finally, the occurrence of name in a string literal, using a #{...}
section, is in fact an occurrence of the object instance variable.

Both situations regard syntactic issues of a particular language, which we

2

1 i f (x > 0)
2 i f (x < 10)
3 return x ;
4 e l s e return 10 ;

Figure 2: Syntactic ambiguity in a C-like language.

class Hello
def init(name)

@name = name
end

def hello
puts "Hello #{@name}!"

end
end

Figure 3: Syntactic detail of use of identifiers in Ruby.

will now start to deal with.
Consider our first programming language (VAL), that allows basic op-

erations on integer and boolean values. The concrete syntax of language
VAL includes the terminal tokens that represent integer literals (num), and
boolean literals (true). Recall the BNF specification language, and inspect
the grammar given in Figure 4 for language VAL.

Our first concern is to define the language concrete syntax and corre-
sponding parser. We first need to define all the terminals (operators and
keywords), and its non-terminals, which define all the allowed structures
(expressions or programs). We also need to eliminate, by design, all the am-
biguities of the language. In the language above, it is necessary to carefully
define the priorities and associativity of all the operators and language con-
structs. Consider for instance, an expression like 1 == 2 + 3, written with-
out parenthesis. According to the grammar in Figure 4, it has two possible
derivation trees, that corresponds to either (1 == 2) + 3, or 1 == (2 + 3).
The former is not the intuitive structure for the expression, the latter is
clearly the intended expression. The same can be said about an expression
like 1−2+3, where the associativity of the operators is important. In this
case, we consider that the correct derivation tree is given by (1−2)+3. We
can express that kind of priority and associativity properties by redesigning
the grammar as depicted in Figure 5.

3

E : := num | E ’+ ’ E | E ’− ’ E | E ’∗ ’ E | E ’/ ’ E
| E ’<=’ E | E ’< ’ E | E ’> ’ E | E ’>=’ E | E ’==’ E
| ’ t r u e | ’ f a l s e ’ | E ’ and ’ E | E ’ or ’ E | ’ not ’ E
| ’ i f ’ E ’ then ’ E ’ e l s e ’ E
| ’ (’ E ’) ’

Figure 4: VAL concrete syntax.

E : := D | ’ i f ’ E ’ then ’ E ’ e l s e ’ E
D : := A | D ’ or ’ A
A : := C | A ’ and ’ C
C : := P | C ’<=’ P | C ’< ’ P | C ’> ’ P | C ’>=’ P | C ’==’ P
P : := T | P ’+ ’ T | P ’− ’ T
T : := N | T ’∗ ’ F | T ’/ ’ F
N : := F | ’ not ’ F
F : := num | ’ t r u e | ’ f a l s e ’ | ’ (’ E ’) ’

Figure 5: Rewritten grammar for VAL language

Notice that keywords and operators are used inside ’...’ , num denotes
all integer literals, and non-terminals are given by capital letters. Terminals
are accepted, and translated into a data type (token), by the lexical analyser
(lexer). The language sentences, or programs, are accepted and translated
into a data type by the syntactical analyser (parser). Lexing and parsing
techniques are out of the scope of this course, and further reading are advised
using for instance [AP02]. To bootstrap further work on lexing and parsing,
refer to lab assignment 1.

3 Abstract syntax
The result of the syntactical analysis is, not only the acceptance of a program,
but an abstract representation that can be manipulated and transformed.
This representation is fairly independent from the actual form of the lan-
guage constructs. It retains the essential characteristics of the language, by
representing its structure and subcomponents of each language construct.

We call it the abstract syntax of the language, a data structure that al-
lows the definition of an algorithm over programs. We represent it as an
inductive abstract data type, a recursive and compositional definition, that
allows the definition of recursive and compositional algorithms over it. Inter-
preters, compilers, and program verification algorithms are good examples of

4

/* ListInt.h */

typedef struct ListInt ListInt;

ListInt* nil();
ListInt* cons(int elem, ListInt *tail);

Figure 6: Interface do módulo ListInt em C

inductive definitions.

3.1 Inductive data types

An inductive data type definition, as a list of elements of type T , can be
defined by a set of construction rules, like the following:

Definition 3.1 (List). A list of elements of type T , is inductively defined by:

1. nil is a list of elements of type T (the empty list)

2. if x is a value of type T and L is a list of elements of type T , then
cons(x, L) is a list of elements of type T .

3. there are no lists of elements of type T , except the ones defined by rules
1 and 2.

This type definition has some components that deserve to be highlighted: a
name for the type (List), and a set of value constructors (nil and cons).
The values of a list of integers, ListInt , can be built using the following
constructors:

1. nil : ()→ ListInt

2. cons : Integer × ListInt → ListInt

That corresponds, for instance, to a C module with the interface described
in Figure 6, to an OCaml module as in Figure 7, or to a Java interfaces as
the one in Figure 8.

5

module type List = Sig
type intList
val nil:intList
val cons: int -> intList -> intList

end

Figure 7: Interface of module ListInt in OCaml.

interface ListInt {...};

interface ListFactory {
static ListInt nil();
static ListInt cons(int elem, ListInt tail);

};

Figure 8: Interface of module ListInt in Java.

4 Abstract Syntax Trees
An abstract syntax tree is a value of a inductive data type, that represents
programs in a given programming language. The derivation tree of a gram-
mar defining a language, corresponds roughly to the structure of an abstract
syntax tree.

It is the role of the syntactical analyser (parser) to transform a sequence
of tokens into a value of the data type that represents the programming
language. A fragment of language VAL with arithmetic expressions on inte-
ger numbers can be represented by the abstract data type CALC , and the
following type constructors:

1. num : Integer → CALC

2. add : CALC × CALC → CALC

3. sub : CALC × CALC → CALC

4. mul : CALC × CALC → CALC

5. div : CALC × CALC → CALC

This abstract data type definition corresponds to the OCaml sum type defined
in Figure 9, and to the set of Java interface and classes of 10.

The abstract representation allows the direct definition of inductive al-
gorithms, to express meanings (interpreters), properties (type systems), or
code translations (compilers).

6

type calc =
Num of int

| Add of calc * calc
| Sub of calc * calc
| Mul of calc * calc
| Div of calc * calc

Figure 9: OCaml data-type, of programs of language CALC

Exercise 1. Consider the concrete syntax of the language constructions pre-
sented next. Identify and present the necessary abstract syntax constructors
and corresponding abstract syntax tree.

1. x

2. 0::[1;2;3]

3. f(0)

4. x = x + 1;

5. for(var i = 0; i < N; i++) { a += a * i; }

6. for(Integer i : sizes) { s += s + i; }

7. function (x) { return x*3; }

8. class A {
int a;

A() { a = 0 }
}

5 Structural Operational Semantics
A structural operational semantics is a possible way of defining the precise
meaning of programs of a programming language. It consists in a function,
defined by case analysis, that describes how the denotation of a program can
be obtained from the denotations of its components. One can define several
different semantic functions for a given programming language, hence obtain-
ing different kinds of denotations for programs. Interpreters, compilers, and
type systems are instances of semantic functions, of different natures, related
to a programming language.

7

interface ASTNode {...}

class ASTAdd {
ASTNode left, right;
...

}

class ASTSub {
ASTNode left, right;
...

}

class ASTMul {
ASTNode left, right;
...

}

class ASTDiv {
ASTNode left, right;
...

}

Figure 10: Java data-type ASTNode, of programs of language CALC

Since we know how to represent a program as a value, using a data type to
define the set of all possible programs, we may build and manipulate values
of such types. We will use functions on programs to compute their meaning
(denotation). The semantics of a language can be characterised by a function
whose domain is the set of programs (e.g. PROG), and target set is the set of
possible denotations (e.g. the set of all integer values). The function assigns
a (single) denotation to each (syntactically correct) program, or program
fragment.

Different kinds of interpreting functions will necessarily have different tar-
get sets (denotation sets). For instance, a type system is an interpretation
function that assigns a denotation of the set of possible value types to pro-
grams (expressions). A compiler is a function whose target set are programs
in an intermediate/machine language. We call operational semantics to a,
syntax-directed structural definition of the semantic function that assigns
value denotations to programs. The basic principle in this kind of defini-
tion, is that the semantic denotation of a construct is based on the semantic
denotation of its components.

8

let rec eval e =
match e with

Number n -> n
| Add(l,r) -> (eval l)+(eval r)
| Sub(l,r) -> (eval l)-(eval r)
| Mul(l,r) -> (eval l)*(eval r)
| Div(l,r) -> (eval l)/(eval r)

Figure 11: Evaluation function for CALC in OCaml

interface ASTNode {
int eval();

}

class ASTAdd {
ASTNode left, right;

int eval() {
return left.eval() + right.eval();

};
}

Figure 12: Evaluation function for CALC in Java.

The structural operational semantics of programming language CALC is
here defined by a semantic function, called eval , that assigns an expression
its value. The domain of such function is the set of arithmetic CALC and
its target set is the set of integer values:

eval : CALC → Integer

The function is inductively defined in the cases of the data type CALC, as
it is the case of the OCaml code in Figure 11. The type of function eval
is calc->int. This definition is compositional, which means that we can
extend the language with new language constructions, by only defining their
semantics alone.

The same interpretation function can be defined, using an object-oriented
style, by method eval of the classes implementing the ASTNode interface
(Figure 10), as depicted in Figure 12. Check the starter code given to learn
yet another strategy to implement the eval function using the Visitor pat-
tern.

9

Notice that the function in Figure 11 yields a result for all syntactically
correct expression, except in the case of a division by zero. This is an unex-
pected error in our implementation, i.e. the interpreter does not detect the
error and crashes. Also, the target set of the eval function is directly mapped
to the int data type.

We will have to extend our definition to consider language VAL (Figure 4)
where the set of valid results is Integer ∪ {true, false}. There is an infinite
number of expressions for which the result is not defined.

Exercises
Exercise 2 (?). Consider the language of regular expressions, whose concrete
syntax contains the terminal symbols *, +, ?, |, (, and), and is defined by
the following grammar:

E ::= E 〈*〉
| E 〈+〉
| E 〈?〉
| E 〈|〉 E
| E E
| 〈(〉 E 〈)〉
| 〈char〉

Represent the abstract syntax of the language above using:

1. an hierarchy of Java classes.

2. an inductive data type in Ocaml

Exercise 3 (? ? ?). Implement an inductive algorithm to translate a regular
expression into an automaton.

Note: For the purpose of this exercise, an automaton can be character-
ized by a Java object or an OCaml function that recursively analyses a string
given as input.

Note: Consider that each operation produces an automaton with a pair
of starting and final states.

Note: An automaton for each non-terminal is obtained by combining the
automatons generated from the sub-expressions (λ transitions are crucial to
connect (sub)automatons).

Exercise 4 (?). Write 10 different regular expressions that test the construc-
tions of the language.

10

References
[AP02] A.W. Appel and J. Palsberg. Modern Compiler Implementation in

Java. Cambridge University Press, 2002.

A Haskell code
module Calc where

{- Definition of the Abstract Syntax of the language CALC -}

data CALC =
Num Int

| Add CALC CALC
| Sub CALC CALC
| Mul CALC CALC
| Div CALC CALC
deriving Show

{- Examples -}

a = (Num 1)

b = (Add (Num 1) (Sub (Num 3) (Num 2)))

--
{- Semantics -}
--

eval :: CALC -> Int
eval (Num n) = n
eval (Add e e’) = (eval e) + (eval e’)
eval (Sub e e’) = (eval e) - (eval e’)
eval (Mul e e’) = (eval e) * (eval e’)
eval (Div e e’) = div (eval e) (eval e’)
-- division by zero causes an exception to occur

11

	Syntax and Semantics
	Concrete Syntax
	Abstract syntax
	Inductive data types

	Abstract Syntax Trees
	Structural Operational Semantics
	Exercises
	Haskell code

