
Snapshot Isolation Anomalies Detection
in Software Transactional Memory

Ricardo J. Dias, João Costa Seco, and João M. Lourenço?

CITI — Departamento de Informática,
Universidade Nova de Lisboa, Portugal

{rjfd,joao.seco,joao.lourenco}@di.fct.unl.pt

Abstract. Some performance issues of transactional memory are caused
by unnecessary abort situations where non serializable and yet non con-
flicting transactions are scheduled to execute concurrently.
Smartly relaxing the isolation properties of transactions may overcome
these issues and attain considerable performance improvements. How-
ever, it is known that relaxing isolation restrictions may lead to runtime
anomalies. In some situations, like database management systems, devel-
opers may choose that compromise, hence avoiding anomalies explicitly.
Memory transactions protect the state of the program, therefore execu-
tion anomalies may have more severe consequences in the semantics of
programs. So, the compromise between a relaxed isolation strategy and
enforcing the necessary program correctness is harder to setup.
The solution we devise is to statically analyse programs to detect the kind
of anomalies that emerge under snapshot isolation. Our approach allows
a compiler to either warn the developer about the possible snapshot
isolation anomalies in a given program, or possibly inform automatic
correctness strategies to ensure Serializability.

Keywords: Snapshot Isolation, Serializable Anomalies, Software Trans-
actional Memory, Static Analysis

1 Introduction

Concurrent programming is becoming mainstream due to the widespread use of
multicore processors. Locks are an effective but low-level mechanism to control
concurrent threads of execution in such systems, and there is a clear demand for
more abstract programming mechanisms.

Concurrency control in Database Systems is achieved by using transactions,
that usually comply with the standard properties of atomicity, consistency, iso-
lation and durability (ACID). To achieve increased performance, transactional
? This work was partially supported by Sun Microsystems and Sun Microsystems
Portugal under the “Sun Worldwide Marketing Loaner Agreement #11497”, by the
Centro de Informática e Tecnologias da Informação (CITI), and by the Fundação
para a Ciência e Tecnologia (FCT/MCTES) in the Byzantium research project PT-
DC/EIA/74325/2006, research grant SFRH/BD/41765/2007, and the Streamline
research project PTDC/EIA-CCO/104583/2008.

frameworks sometimes relax those properties and allow transactions to execute
under more relaxed isolation levels [17,1]. In particular, databases frequently
provide the developer the ability to choose among different isolation levels.

More relaxed isolation levels naturally lead to increased overall performance
of the transactional system, but also to the triggering of transactional anoma-
lies, such as dirty and unrepeatable reads. Serializability is the strongest isolation
level. Snapshot Isolation (SI) is a relaxed isolation level that also avoids anoma-
lies such as unrepeatable and dirt reads. However, SI still allows some other
transactional anomalies such as write skew and SI read-only [7]. Many database
applications are known to execute correctly under SI, thus making it a good
compromise between correction—which concurrency anomalies are admitted and
how do they affect the applications—and performance.

Transactional Memory (TM) was proposed as an alternative programming
abstraction for concurrency control in multithreaded programs [16,11]. TM frame-
works typically operate in full serializable mode and do not allow one to relax
the isolation level. Thus, the potential of Snapshot Isolation for performance
improvement, a de facto standard for the database world, has been neglected in
TM programming until now. Figure 1 illustrates the potential of such improve-
ment by means of a small experiment with a transactional memory benchmark
executed in a Sun Fire x4600 with 16 cores. The benchmark operates over a
linked list, executing insert, delete and lookup operations. In this example, one
can observe that while the Serializable version does not scale under the increas-
ing number of processors/threads, while the Snapshot Isolation version scales
almost linearly with the number of processors/threads (note that the scale in
the X-axis is logarithmic).

0

5000

10000

15000

20000

25000

30000

 1 2 4 8 16

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Number of threads

Ordered Linked List / 10000 keys / 50% updates

Serializable

Snapshot Isolation

Fig. 1. Snapshot Isolation vs. Serializability in Transactional Memory

The above example is a strong motivation to further study how to use relaxed
isolation levels, and in particular Snapshot Isolation, in the transactional memory
setting. Unlike the database approaches where a domain specific language (SQL)

is used to model database accesses, TM programs are usually defined in a general
purpose programming language, and there is no evidence that there exists a large
set of applications that will also execute correctly under weaker TM isolation
levels without serious rewriting.

This work aims at asserting that a multithreaded transactional memory pro-
gram will not trigger the well known SI anomalies when executing under Snap-
shot Isolation, thus leading to non-serializable executions. In this case, the ap-
plication will execute as if under Serializable isolation level. Our work grounds
in previous work in static detection of SI anomalies in databases [7], but our
approach targets the very different domain of Transactional Memory.

As a testbed for our work, we defined a simple imperative language, with no
support for pointers. Each transaction is an instance of a program written in
this language. We perform a data-flow analysis over each program, extracting
the information necessary to detect if the concurrent execution of a set of trans-
actions will generate a serializable anomaly. If the analysis detects no serializable
anomalies, than the application will execute correctly. In the opposite, if seri-
alization anomalies are found, they should be considered as possible anomalies
and confirmed by other means, as our analysis allow for false positives.

The main contributions of this work include:

– A new data-flow analysis to extract information from transactional pro-
grams. This analysis will extract compact read- and write-sets in order to
define static dependencies between programs.

– The definition of static dependency between transactional programs using
the information retrieved from the static analysis.

– A version of the algorithm proposed in [7] to detect SI anomalies, adapted
and optimized for the TM setting. The algorithm will operate over a graph
of static dependencies between programs, and will determine if the execution
of such programs under SI will be serializable.

The rest of the paper is organized as follows: Section 2 describes the Snapshot
Isolation model and the definition of serializable anomalies using static depen-
dencies between programs. Section 3 describes the data-flow static method to
gather information about read and write accesses in transactional programs,
the procedure to generate the static dependencies using this information, and
the algorithm to detect serializable anomalies in the static dependency graph.
Section 4 discusses the relations among our work and the related ones. Finally,
Section 5 presents some concluding remarks and discusses our plans of evolution
of this work.

2 Snapshot Isolation

Snapshot Isolation [1] is a weaker isolation level than Serializable where each
transaction performs its read operations in a private snapshot of the state, taken
in the beginning of the transaction. All write operations performed by the trans-
action are stored in a local buffer. All read operations on data items previously
written by the transaction are performed from its local buffer.

Considering that the lifetime of a successful transaction is the time span
that goes from the moment it starts start(Ti) until the moment it commits
commit(Ti). Two successful transactions T1 and T2 are said to be concurrent if:

[start(T1), commit(T1)] ∩ [start(T2), commit(T2)] 6= ∅ (1)

The write operations of a transaction Ti are not visible to the remaining
concurrent transactions. When a transaction Ti is ready to commit, it obeys the
First-Commiter-Wins rule, which states that it can successfully commit only
if there is not a concurrent transaction Tk (i 6= k) which has committed write
operations to some item that Ti is also changing. This means that if there are
two concurrent transactions updating the same data item, only the first one to
commit will succeed.

Snapshot Isolation has some advantages over the Serializable isolation level.
By always reading from a snapshot, read-only transactions will never abort.
A read-only transaction Ti only sees committed results before start(Ti). Also,
read-only transactions will never make read-write transactions to abort.

Snapshot Isolation sounds very appealing, however its application may lead
to non serializable executions. These executions result in consistency anomalies
that may happen when using Snapshot Isolation [7], namely the write-skew and
SI read-only anomalies.

2.1 Static Isolation Anomalies

Other works have defined serializable anomalies under Snapshot Isolation in
terms of database program dependencies [7]. In this work we use the same static
dependency definition and adapt it for software transactional memory programs.

The SI anomalies can be described formally using static dependencies be-
tween transactional programs. Two transactional programs have a static depen-
dency between them if both programs access the same data item and at least one
of them performs a write access. Four types of static dependencies are defined
in [7]:

– Pi
x−ww−−−−→ Pj : The transaction resulting from the execution of program Pi

writes data item x and commits, and the transaction resulting from the
execution of program Pj also writes data item x and commits.

– Pi
x−wr−−−−→ Pj : The transaction resulting from the execution of program Pi

writes data item x and commits, and the transaction resulting from the
execution of program Pj reads data item x, written by Pi, and commits.

– Pi
x−rw−−−−→ Pj : The transaction resulting from the execution of program Pi

reads data item x and commits, and the transaction resulting from the ex-
ecution of program Pj writes data item x, read by Pi, and commits, and
programs Pi and Pj are not concurrent.

– Pi
x−rw⇒ Pj : The transaction resulting from the execution of program Pi reads

data item x and commits, and the transaction resulting from the execution
of program Pj writes data item x, read by Pi, and commits, and programs
Pi and Pj are concurrent.

The first three dependencies are said to be non-vulnerable dependencies and the
last one is said to be a vulnerable dependency. Using these dependencies we can
build a Static Dependency Graph [7] (SDG) where programs correspond to nodes
and static dependencies correspond to edges.

The relation between the unsatisfiability of the Serializable property and
static dependencies between programs can be signalled by the existence of certain
kinds of dangerous structures in the SDG of an application.

Fekete et al. [7] defines the concept of dangerous structure in a static de-
pendency graph. He shows that if some SDG(A) has a dangerous structure
then there are executions of application A which may be not serializable, and
that if a SDG(A) does not have any dangerous structure then all executions of
application A are serializable.

Definition 1 (Dangerous structures) We say that a SDG(A) has a dan-
gerous structure if it contains nodes P , Q and R (not necessarily distinct) such
that:

– There is a vulnerable edge from R to P .
– There is a vulnerable edge from P to Q.
– Either Q = R or there is a path in the graph from Q to R; that is, (Q,R) is

in the reflexive transitive closure of the edge relationship.

The detection of dangerous structures in a SDG can be performed algorith-
mically.

We next show how to build an SDG by analyzing the source code of an appli-
cation and how to detect dangerous structures that point to possible anomalies.

3 Static Analysis

In this section we define a new static analysis procedure for a small impera-
tive language and describe how to build a Static Dependency Graph [7] with
the information given by the analysis. We next define how to detect execution
anomalies.

The following grammar defines the abstract syntax of an imperative lan-
guage:

〈E〉 ::= x | n | 〈E〉 op 〈E〉 | true | false | not 〈E〉
〈S〉 ::= x := 〈E〉 | skip | 〈S〉 ; 〈S〉

| if 〈E〉 then 〈S〉 else 〈S〉 | while 〈E〉 do 〈S〉
〈P 〉 ::= 〈S〉

This language has integer (n), boolean literals (true and false), and variables
(x). It contains the usual binary arithmetic, logic, and relational operations
(E1 op E2). The statements of the language include the conditional and loop
statement as well as the variable assignment. We consider that an application
is a set of programs defined over a set of shared variables, and each program
corresponds to a single memory transaction. We apply the analysis separately
to each program.

3.1 Read-Write Analysis

In order to define static dependencies between programs we need to know which
data items are read or written by each program that comprises an application.
Thus, we use a standard data-flow static analysis to obtain the set of variables
read or written by a program. For that purpose we have defined a custom lattice
and the appropriate transfer functions.

We establish a state for each shared variables for each node in the control-
flow graph of a program. The state of a shared variable is a pair of values of
the set Γ = {?,M,m,>}. The first component of the pair indicates if a variable
was read—its read state—and the second component of the pair indicates its
write state. A “?” value in the read/write state for a variable x means that x
is not read/written by the program. A “M ” value in the read/write state for a
variable x means that x is indeed read/written by the program. A “m” value in
the read/write state for a variable x means that x may be read/written by the
program (it is read/written in at least one possible execution path, but not in
all). In Figure 2 is depicted the relation order of the lattice Γ .

6 Ricardo J. Dias, João Costa Seco, and João M. Lourenço

(E1 op E2). The statements of the language include the conditional and loop
statement as well as the variable assignment. We consider that an application
is a set of programs defined over a set of shared variables, and each program
corresponds to a single memory transaction. We apply the analysis separately
to each program.

3.1 Read-Write Analysis

In order to define static dependencies between programs we need to know which
data items are read or written by each program that comprises an application.
Thus, we use a standard data-flow static analysis to obtain the set of shared
variables read or written by a program. For that purpose we have defined a
custom lattice and the appropriate transfer functions.

We establish a state for each shared variables for each node in the control-
flow graph of a program. The state of a shared variable is a pair of values of
the set Γ = {?, M, m,�}. The first component of the pair indicates if a variable
was read—its read state—and the second component of the pair indicates its
write state. A “?” value in the read/write state for a variable x means that x
is not read/written by the program. A “M ” value in the read/write state for a
variable x means that x is indeed read/written by the program. A “m” value in
the read/write state for a variable x means that x may be read/written by the
program (it is read/written in at least one possible execution path, but not in
all). In Figure ?? is depicted the relation order of the lattice Γ .

�

? M

m

Fig. 2. Lattice Γ order relation diagram.

We now define the data-flow transfer functions over a lattice defined over the
set Υ = Γ ×Γ ×V ar. The elements of the tuples denote the read state the write
state and a shared variable (V ar). An element of set Υ of the form (M,m)x

means that variable x is read in every possible execution of the program and is
written at least in one possible execution of the program (but not all).
The transfer functions Zen and Zex map the labels of a control flow to Υ :
Zen, Zex : Label −→ Υ .

Labels are identifiers of the program nodes in the control flow graph (CFG).
Each node in the CFG as an entry and an exit point, and functions Zen and Zex

correspond to the entry and exit points respectively.

Fig. 2. Lattice Γ order relation diagram.

We now define the data-flow transfer functions over a lattice defined over the
set Υ = Γ ×Γ ×V ar. The elements of the tuples denote the read state the write
state and a shared variable (V ar). An element of set Υ of the form (M,m)x

means that variable x is read in every possible execution of the program and is
written at least in one possible execution of the program (but not all).
The transfer functions Zen and Zex map the labels of a control flow to Υ :
Zen, Zex : Label −→ Υ .

Labels are identifiers of the program nodes in the control flow graph (CFG).
Each node in the CFG as an entry and an exit point, and functions Zen and Zex

correspond to the entry and exit points respectively.
We define the analysis as a backward procedure by the following functions

Zen and Zex:

Definition 2 (Exit function)

Zex(l) =

{{
(?, ?)x |x ∈ FV (P)

}
if l = final(P)

u
{
Zen(l′) | (l′, l) ∈ flowR(P)

}
otherwise

(2)

where P represents the program we are analyzing, and final(P) denotes the
final label that program. flowR(P) denotes the set of reversed edges of the
CFG. The operator u denotes the greatest lower bound of the sets given by
Zen. In the beginning of the analysis, the subset of Υ is initialized with all
variables belonging to the set of Free Variables and their state is set to (?, ?)
(not read nor written). The second entry of this function uses the greatest lower
bound operator u to join the information from more than one node, e.g., the
then and else branches. Because we are using backward analysis, the beginning
corresponds to the final label of the program.

Before we present the definition of the Zen function we need to define a
binary operator ⊕ which is used to modify the read/write state of a variable in
a subset of Υ , (⊕ : Υ × Υ −→ Υ): For all sets U, V ⊆ Υ , U ⊕ V = U \

{
(t, s)x :

(t, s)x ∈ U ∧x ∈ V ars(V)
}
∪V . Where V ars(V) denotes the set of the variables

present in V . The intuition of the operator ⊕ is: given U ⊆ Υ , which corresponds
to the original set, and V ⊆ Υ which corresponds to the set with the modified
elements, the U ⊕ V operation will remove the elements of U which are also in
V that have the same variable, and will return the set of the unmodified values
of U with the values of V . This operator is used to override the read/write state
of a variable by removing the previous information (in U) and adding the new
information (in V). Now we will define the Zen function:

Definition 3 (Entry Function)

Zen(l) =

Zex(l)⊕
{(
M, σ̂y(Zex(l))

)
y

: ∀y ∈ FV (E)
}

⊕
{(
σ̄x(Zex(l)),M

)
x

} if Bl = [x := E], where
Bl ∈ blocks(P)

Zex(l)⊕
{(
M, σ̂y(Zex(l))

)
y

: ∀y ∈ FV (E)
} if Bl = [E], where

Bl is an elementary
block with label l

Zex(l) otherwise
(3)

Functions σ̄/σ̂ denote the value of the read/write state of a single variable
(σ̄, σ̂ : V ar× Υ −→ Γ). The FV (P) function represents the set of free variables
in program P .

The first case of Definition 3 introduces the modifications to the read/write
state caused by an assignment block, where we change the write state of the
assigned variable to M . We also change the read state of all free variables on
the right side of the assignment to value M . The second case of the definition
treats the evaluation of an expression where we change the read state of all the
expression’s free variables to valueM . The last case in the definition corresponds
to the unmodified propagation of the read/write state.

3.2 Generating Static Dependencies

If we consider an application as a set of programs that maybe launched in paral-
lel, and given the read/write set analysis for all those programs, as described in
Sect. 3.1, we can compare the set of read and write states of each program with
all the other programs and create a Static Dependency Graph (SDG). Since
we do not know a priori what programs will execute in parallel we pessimisti-
cally assume that all programs are concurrent even with several instances of
themselves. Building a SGD graph requires

(
n
2

)
+ n comparisons. If we consider

a large number of programs running in parallel, this may become unbearable.
Other techniques can be used, such as the May-Happen-in-Parallel Analysis by
Duesterwald and Soffa [5], to determine which programs will execute in parallel
and hence help reducing the complexity of the graph construction procedure.

For all pair of programs (Pi, Pj) we compare the two corresponding read-
/write states (subsets of Υ resulting from the R/W analysis) and produce a
static dependency in the graph. The kind of dependency created depends on the
read/write state and also varies if the two programs are concurrent or not. We
say that two programs Pi and Pj are not concurrent if they have a write state
M for the same variable. By the First-Commiter-Wins rule the execution of
these two programs is always synchronized and if they run in parallel, one will
necessarily abort.

There is a dependency relation between two programs if both access at least
one shared data item that is modified by at least one of those programs. Static
dependencies are defined from the analysis as follows:

Definition 4 [Static Dependencies]
For all programs Pi, Pj in an application, and with the read/write states

Ui, Uj ⊆ Υ where Ui is the read/write state of Pi and Uj is the read/write state
of Pj. If there is a variable x such that (_, w)x ∈ Ui and (r,_)x ∈ Uj where
w 6= ? and r 6= ? then:

1. if (_, α)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ? then Pi
ww−−→ Pj

2. if (_, α)x ∈ Ui and (β,_)x ∈ Uj where α 6= ? and β 6= ? then Pi
wr−−→ Pj

3. if (α,_)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ?, and Pi and Pj

are not concurrent then Pi
rw−−→ Pj

4. if (α,_)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ?, and Pi and Pj

are concurrent then Pi
rw⇒ Pj

It is important to note that comparing two programs P1 and P2 implies
comparing them in both directions. Most of the times this comparison generates
dependencies in both ways. For instance, if we consider programs P1 and P2 such
that U1 = {(M,m)x} and U2 = {(m,M)x}, if we compare U1 with U2 there is
a dependency P1

wr−−→ P2 because P1 may write variable x that is later read by
P2, and there is also a dependency P2

wr−−→ P1 because P2 may write variable x
which may be read by P1.

P1 P2x-rw
x-rw

Fig. 3. An SDG with a cycle of read-write dependencies for the same variable.

Note that we generate non-vulnerable dependencies if we know that programs
Pi and Pj are not concurrent. Otherwise we generate vulnerable dependencies
between them.

As an example, consider the program P with state U = {(M,m)x, (?,m)y}
resulting from its data flow analysis. If we compare program P with itself the
dependencies generated according to Definition 4 are:

– P
ww−−→ P : several instances of P write variable x or y.

– P
wr−−→ P : P may write variable x, which is read by another instance of P .

– P
rw⇒ P : P reads variable x which may be written by another instance of P .

Filtering False Positives When traversing the edges in a SDG, consider
the situation presented in Figure 3 where there are two vulnerable read-write
dependencies for the same variable x forming a cycle between P1 and P2. In
this case, the application of Definition 1 would identify this as a dangerous
structure. Note that P1 has an incoming vulnerable edge from P2 and has an
outgoing vulnerable edge to P2, and there is (null length) path cyclic from P2

to itself.
Now, consider an execution H with two transactions T1 and T2, result of

the execution of P1 and P2 respectively. We argue that is not possible to define
an execution H under Snapshot Isolation if there is a transactional dependency
T1

x−rw−−−−→ T2 and a transactional dependency T2
x−rw−−−−→ T1. Consider that T1 is

executing concurrently with T2 and there is a dependency T1
x−rw−−−−→ T2 which

states that T1 reads variable x and T2 writes variable x, and there is also a
dependency T2

x−rw−−−−→ T1 which states that T2 reads variable x and T1 writes
variable x. This means that T1 and T2 are concurrent, that both write to variable
x, and that both commit. However, by the First-Committer-Wins rule, one of
the two transactions should have aborted, hence it is not possible to define such
an execution. This incompatibility between edges also applies to the other kind
of dependencies.

Given these observations, if we apply the definition of dangerous structures
(Definition 1) to the SDG of Figure 3 and follow the edge P1

rw⇒ P2 then we can
ignore the edge of the same kind for the same variable in the opposite direction,
the edge P2

rw⇒ P1.
An extension to Definition 1 was made to enable the check for incompatible

edges. Algorithm 1 presents the pseudo-code to detect dangerous structures. The
compatible function will test if an edge e is compatible with the history of edges
already visited.

Algorithm 1: Dangerous Structure detection algorithm with incompati-
bility check.

Data: nodes[], edges[], visited[]
Result: true or false
initialization;
foreach Node n : nodes do

foreach Edge in : incoming(n, edges) do
if vulnerable(in) then

add(visited, in);
foreach Edge out : outgoing(n, edges) do

if vulnerable(out) and compatible(out, visited) then
add(visited, out);
if existsPath(target(out), source(in), visited) then

return true;
end

end
end

end
end
clear(visited);

end
return false;

4 Related Work

Software Transactional Memory (STM) [16,11] (TM) is a new approach to con-
current programming, promising both, an efficient usage of parallelism and a
powerful semantics for concurrency constraint. STM applies the concept of trans-
actions, widely known from the Databases community, into the management of
data in main memory. STM promises to ease the development of scalable parallel
applications with performance close to finer grain locking but with the simplicity
of coarse grain locking.

Memory transactions must only ensure two of the ACID properties: Atomic-
ity and Isolation. The Consistency property is more relaxed as volatile memory
does not have a fixed logical structure, like a database system does, over which
one can make referential consistency assertions. And the Durability property
may be dropped, as memory transactions operate in volatile memory (RAM), a
non-persistent data storage.

In the past few years, several STM frameworks have been developed. Most
of the STM frameworks take the form of software libraries, providing an API
to export the transactional interface to the application [4,2,11,13]. This library-
based approach allows the rapid prototyping of algorithms and their performance
evaluation. Some other STM frameworks extend existing programming languages
with transactional constructs supported directly by the compiler [10,8,14]. Most
of these frameworks focus in managed languages such as Java, C#, and Haskell,
while some other target unmanaged languages like C and C++.

All the above referenced works implement Serializable isolation to guarantee
the correct execution of transactional memory programs. Only [15] implements
a STM using Snapshot Isolation called SI-STM. In this work, the authors also
proposed a SI safe version where SI anomalies were automatically avoided by
the algorithm. Our approach is different since we do not require modifications
to existing SI algorithms and we perform a static analysis to assert if a program
will execute correctly under SI. To our best knowledge there is no other work
in software transactional memory that follows this static approach to detect
Serializable anomalies.

The use of Snapshot Isolation in databases is a common place, and there
are some works related to the detection do SI anomalies. Our work is clearly
inspired in [7]. This work proposes a static analysis methodology for database
applications aiming at detecting SI anomalies. Their static analysis was described
informally and was applied ad-hoc to the database benchmark TPC-C. The
work presented in [12] describe a prototype which was already able to analyze
database applications automatically, and also presented some solutions to reduce
the number of false positives, but shared the theoretical base with [7]. There is
another work described in [3] that detect and prevent SI anomalies dynamically
with runtime information in database applications.

5 Concluding Remarks

Although static verification of Snapshot Isolation anomalies is not a new topic
in database applications, in software transactional memory the use of Snapshot
Isolation is much unexplored. The transactional anomalies triggered by the use
of SI in transactional memory programs have strong impact in the execution
correctness of such programs and is a major drawback to its widespread.

With this preliminary work we show that it may be possible to give stronger
guarantees of correct execution under SI which allows to further explore SI al-
gorithms in the context of STMs. We presented a simple data-flow analysis to
extract the information of read and write accesses to variables in transactional
programs. It gives good results as it does not allow any false negatives but allows
some false positives which requires the programmer to verify by hand. Future
work will target more complex language with pointers, and also towards tech-
niques to correct programs that are detected to have Serializable anomalies,
without changing its semantics and with low impact in their performance.

References

1. Hal Berenson, Phil Bernstein, Jim N. Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ansi sql isolation levels. In SIGMOD ’95: Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, pages
1–10, New York, NY, USA, 1995. ACM.

2. João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(2):172–185, 2006.

3. Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable isolation for snap-
shot databases. ACM Trans. Database Syst., 34(4):1–42, 2009.

4. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Distributed
Computing, volume 4167, pages 194–208. Springer Berlin / Heidelberg, October
2006.

5. Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of
procedures using a data-flow framework. In TAV4: Proceedings of the symposium
on Testing, analysis, and verification, pages 36–48, New York, NY, USA, 1991.
ACM.

6. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Commun. ACM, 19(11):624–633, 1976.

7. Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Den-
nis Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst.,
30(2):492–528, 2005.

8. Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin Süßkraut, and
Heiko Sturzrehm. Transactifying applications using an open compiler framework.
In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing,
August 2007.

9. Tim Harris and Keir Fraser. Language support for lightweight transactions. In
OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications, pages 388–402,
New York, NY, USA, 2003. ACM.

10. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-
able memory transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 48–60, New
York, NY, USA, 2005. ACM.

11. Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Pro-
ceedings of the twenty-second annual symposium on Principles of distributed com-
puting, pages 92–101, New York, NY, USA, 2003. ACM.

12. Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. Automat-
ing the detection of snapshot isolation anomalies. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, pages 1263–1274. VLDB
Endowment, 2007.

13. Dalessandro Luke, Virendra J. Marathe, Michael F. Spear, and Michael L. Scott.
Capabilities and limitations of library-based software transactional memory in
c++. In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Com-
puting, Portland, OR, August 2007.

14. Yang Ni, AdamWelc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James
Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier,
Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and implementation
of transactional constructs for c/c++. SIGPLAN Not., 43(10):195–212, 2008.

15. Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for software
transactional memory. In TRANSACT06, Jun 2006.

16. Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95:
Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, pages 204–213, New York, NY, USA, 1995. ACM.

17. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts. McGraw-Hill, fifth edition, 2006.

