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ABSTRACT
Transactional Memory allows programmers to reduce the
number of synchronization errors introduced in concurrent
programs, but does not ensures its complete elimination.
This paper proposes a pattern matching based approach to
the static detection of atomicity violation, based on a path-
sensitive symbolic execution method to model four anoma-
lies that may affect Transactional Memory programs. The
proposed technique may be used to to bring to programmer’s
attention pairs of transactions that the programmer has mis-
specified, and should have been combined into a single trans-
action. The algorithm first traverses the AST tree, removing
all the non-transactional blocks and generating a trace tree
in the path sensitive manner for each thread. The trace tree
is a Trie like data structure, where each path from root to
a leaf is a list of transactions. For each pair of threads, er-
roneous patterns involving two consecutive transactions are
then checked in the trace tree. Results allow to conclude
that the proposed technique, although triggering a moder-
ate number of false positives, can be successfully applied to
Java programs, correctly identifying the vast majority of the
relevant erroneous patterns.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging—Diagnostics; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

General Terms
Algorithms, Experimentation, Languages, Reliability, Veri-
fication
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1. INTRODUCTION
Transactional Memory [9, 13] (TM) is a new approach to

concurrent programming, promising both, a more efficient
usage of parallelism and a more powerful semantics for con-
straining concurrency. Transactional Memory applies the
concept of transactions, widely known from the Databases
community, into the management of data in main memory.
TM promises to ease the development of scalable parallel
applications with performance close to finer grain threading
but with the simplicity of coarse grain threading.

While TM may reduce the amount of observed concur-
rency errors, its usage does not by itself imply the correct-
ness of the program. In lock-based programming, failure
to use the appropriate synchronization mechanism to pro-
tect a critical region will allow an invalid access from a
thread to shared data, thus triggering a synchronization er-
ror (datarace). In the case of TM, a critical region which is
not encapsulated in a transaction may also trigger a synchro-
nization error in TM frameworks providing a weak isolation
memory model [5]. This anomaly is analogous to the clas-
sical datarace anomaly, and will be addressed in this paper
as low-level datarace.

A program that is free of low-level dataraces is guaran-
teed not to have corrupted data. The values of all vari-
ables should correspond to those of a specific serial execu-
tion of all synchronized (with locks or transactions) code
blocks. However, experience shows that in many programs
this guarantee does not suffice to ensure a correct execution,
and although not corrupted, no assumptions can be made
about data consistency. The programer may intent to have
two transactional blocks, and the non-transactional code be-
tween them, to run atomically, but mistakenly believe it was
sufficient to ensure the atomicity of the two individual trans-
actional blocks, leading to a high-level datarace.

Unlike low-level dataraces, high-level dataraces do not re-
sult from unsynchronized accesses to a variable, but rather
from multiple synchronized accesses that may lead to an
incorrect behavior if ran in a specific ordering. A simple
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example is a set of related variables that should be handled
together in order to preserve some invariant, but are incor-
rectly handled in separate transactions, such as illustrated
in Figure 1.

private synchronized boolean hasSpaceLeft () {
return (this.list.size() < MAX_SIZE );

}

private synchronized void store(Object obj) {
this.list.add(obj);

}

public void attemptToStore(Object obj) {
if (this.hasSpaceLeft ()) {

// list may be full!
this.store(obj);

}
}

Figure 1: Example of an atomicity violation

In this Figure, a bounded data structure is implemented
by wrapping a java.lang.List object, whose size should
not go beyond MAX_SIZE in order to maintain a consistent
state. Before the client code asks for an item to be stored in
the data structure, it politely checks if there is room avail-
able in the list. All accesses to the list field are safely en-
closed inside transactions, and therefore no low-level datarace
may exist. Due to the interleaving of two threads A and
B, both running the same code, when thread A is between
checking the size of the list and storing the new node in the
list, thread B can fully store a new node in the list, mak-
ing it full, and thus making the list unable to receive the
node from thread A. The problem with this code resides in
the fact that both calls to hasSpaceLeft() and store() are
executed as separate transactions when they should have ex-
ecuted as a single one. However, in the comfort of knowing
that the methods from this library are atomic and safe, a
programmer could easily fail to notice this issue. This is a
classic example of an atomicity violation [15], a kind of con-
currency error that is subsumed by the more broader class
of high-level anomalies [2].

Similarly to low-level dataraces, this anomaly was also
caused by incorrect assumptions of concurrency. The code
in this example wrongly assumes that the state observed in
a transaction is still true when the following transaction is
executed.

For another example, consider the code in Figure 2, adapted
from [2]. A cartesian coordinate pair is encapsulated in an
object. This object allows access to each of the coordinates
separately (to be used when only one of the coordinates
is needed) and also to both coordinates at the same time,
atomically. In this example, a thread reads each value one
at a time, and tries to assert a relation among them.

We see that the reading of an object state is broken into
two individually atomic operations. If other threads are al-
lowed to change the same object meanwhile, the result is
that this reading will reflect parts of different global states.
Again, the previous example shows a problem resulting from
wrongly assuming the preservation of a value during the full
length of an operation.

Lets see a final example that shows a different situation.
The example of Figure 3 shows the reverse problem, where a

class Coord {
double x, y;
public Coord(double px , double py)

{ x = px; y = py; }
synchronized double getX()

{ return x; }
synchronized double getY()

{ return y; }
synchronized Coord getXY()

{ return new Coord(x, y); }
}

// ...

void examine (Coord c) {
double x = c.getX (); // atomic
double y = c.getY (); // atomic
check(x == y); // values are from

// different states!
}

Figure 2: Global reading at different stages

thread makes a global update to a shared object, but breaks
this operation into individually atomic sub-operations.

Consider again the example of a coordinate pair. This
time, a new operation reset() sets both coordinates to
their initial state. However, because this operation is not
atomic as a whole but rather composed by two individual
transactions, other threads could observe the intermediate
state. For example, if method swap() is executed in paral-
lel, and its effects take place between the two transactions
of reset(), then the resulting state could likely to be unin-
tended. The pair would finish with just one of its coordinates
reset.

void swap() {
atomic {

int oldX = coord.x;
coord.x = coord.y; // swap X
coord.y = oldX; // swap Y

}
}

void reset() {
atomic {

coord.x = 0;
}
// inconsistent state (0, y)
atomic {

coord.y = 0;
}

}

Figure 3: Example of an atomicity failure

We have seen a few scenarios where a program that is
free of low-level dataraces might still present an anomalous
behavior. In the following sections we will discuss a possible
categorizations of these high-level anomalies, and propose a
methodology to detect them in Java programs.

The rest of the paper is organized as follows. Section 2 de-
scribes some relevant work and motivates out own approach;
Section 3 introduces the transactional memory anomalies we
are envisaging; Section 4 describes our approach; Section 5
gives some details on the status of the current prototype;
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Section 6 describes the evaluation of our approach against
well known test cases; and Section 7 synthesizes the overall
work and discusses some open issues and future work.

2. RELATED WORK
Two different trends addressing anomalies that are visible

even if there are no low-level dataraces will now be discussed.
They will be used to provide context and starting point for
our own definition of high-level anomalies in TM, presented
in Section 3. First, we examine atomicity violations based
on the work by Wang and Stoller [15], which try to verify
very strict criteria about the parallel execution of a pro-
gram. Then, we analyze the notion of high-level dataraces
by Artho et. al [2], which provides a less restrictive and ar-
guably more precise approach, though it leaves out many
important anomalies and reports anomalies in data accesses
that are not at all problematic, exhibiting both false nega-
tives and false positives. Finally, in Section 2.3, we make a
comparison between them, see how each classifies according
to each other, take conclusions and provide hints to help us
create our definition in Section 3.

2.1 Atomicity Violations
Wang and Stoller [15] define an event as a single data ac-

cess, and a transaction as a sequence of events performed
in order by a single thread, starting and finishing at ar-
bitrary points in the program. The analysis by Wang and
Stoller intends to assess the atomicity of a set of transactions
(thread atomicity). In this context, a set of transactions is
atomic if all of their traces are serializable, i.e., if all possi-
ble orderings of events are equivalent to some sequential and
serial execution of all transactions. If a set of transactions
is not serializable, then it contains an atomicity violation,
a concurrency defect comparable to low-level dataraces or
deadlocks.

Thread atomicity may be a too restrictive requirement
for concurrent programs, inhibiting some valid concurrent
computations. However, it also encompasses all high-level
anomalies we are detecting in TM programs. If all the ex-
ecutions of a concurrent program, where each thread runs
until the end without interference from the others, are equiv-
alent to one of its sequential executions, then one may con-
sider the program as being free from concurrency anomalies.
Thus, it seems safe to declare that a thread atomic program
is free from concurrency anomalies.

On the other hand, if thread atomicity may not be inferred
for the program, then there is the risk of existing atomic-
ity violations. In [15], two algorithms are presented that
dynamically detect these anomalies. Their work serves as
basis for a number of other authors, from which we provide
two relevant examples. First, Flanagan and Freund [8] per-
form a dynamic check for method atomicity. Their approach
is based on the reduction-based algorithm in [15]. This al-
gorithm makes use of left and right movers algorithm [11],
which attempt to determine the equivalence of two specific
orderings of execution. The second example is the one from
Beckman et. al [4], who implemented a type system for atom-
icity. Although this is a static approach, it requires the an-
notation of code with type information before a program
may be subject to static analysis.

2.2 High-Level Dataraces

The program correctness requirement of thread atomic-
ity, as seen in the previous Section, can sometimes be to
strict. Even by checking the more flexible method atomicity,
as most attempts do, a lot of false positive anomalies may
be triggered and reported. Many correct programs are then
regarded as suffering from non-existing anomalies.

Artho et. al [2] address this issue by employing the concept
of high-level dataraces. A high-level datarace is an anomaly
that occurs when a set of shared variables is meant to be
accessed atomically, but at least one thread it fails to do so.

As an example, consider again the previous example with
a bounded buffer. This time we added an access counter,
as illustrated in Figure 4. Each time an item is stored to
(or retrieved from) the list, the counter should be incre-
mented. A new operation clean() deactivates the list and
frees its resources. The counter should be reset each time
the list is cleaned. As can be depicted from the example, the
clean() method first empties the list in one atomic block,
and then handles the counter in another atomic operation.
Other threads could observe the inconsistency of a counter
indicating a positive number of accesses when the list is al-
ready deactivated.

// ...

public void clean() throws IOException {
synchronized {

this.list.clear ();
this.list = null;

}
this.updateCounter.reset (); // atomic op

}

public void store(Object obj)
throws IOException {

synchronized {
this.list.add(obj);
this.updateCounter.increment ();

}
}

// ...

Figure 4: Example of a high-level datarace

The detection of high-level dataraces is supported by the
concept of View Consistency [2]. This property is based on
chains between access sets from different threads. The View
from a synchronized block is the set of shared variables that
are accessed (read or written) in the scope of that block.
The Maximal Views of a thread are those views which are
not totally enclosed in another view from the same thread.
These maximal views are an inference of what variable sets
are meant to be used atomically. If a thread makes sev-
eral separate accesses to variables in this set then there is a
violation of the view consistency. A program that violates
the view consistency is stated as containing a High-Level
Datarace.

To provide a practical example of these concepts, con-
sider the set of threads shown in Figure 5, taken from [2].
Thread 1 performs a safe access to both fields x and y of
a shared object inside the same critical region. Thread 4
makes an access solely to x, but it does also access both
fields inside another transaction. Therefore, the first syn-
chronized block in Thread 4 is likely an access that does not
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need y, and this thread is regarded as safe. The views and
maximal views for Thread 1 and Thread 4 are, respectively,
V1 = M1 = {{x, y}}; V4 = {{x}, {x, y}} and M4 = {{x, y}}.

Thread t1
synchronized(c){

access(x);
access(y);

}

Thread t2
synchronized(c){

access(x);
}

Thread t3
synchronized(c){

access(x);
}
synchronized(c){

access(y);
}

Thread t4
synchronized(c){

access(x);
}
synchronized(c){

access(x);
access(y);

}

Figure 5: Four threads that access shared fields.
Thread 3 may cause an anomaly.

Thread 2 only accesses x, so V2 = M2 = {{x}}, which is
compatible with the remaining threads. However, Thread 3
accesses both x and y in separate transactions, so V3 =
M3 = {{x}, {y}}. One can note that {x, y} ∈ M1 intersects
with the elements in V3 as I = {{x}, {y}}, and the elements
in I do not form a chain, i.e. {x} does not contain {y} and
vice-versa. Therefore, Thread 3 is reported as containing an
anomaly, since it may violate the inferred assumption that
those fields are related and should be handled together.

This approach may contain both false positives and false
negatives. The differences between the two criteria have
been well addressed in [2,15]. Authors in [2] claim that view
consistency provides more precise results. In fact, many
false anomalies reported with atomicity are no longer re-
ported with view consistency. However, false negatives ap-
pear with view consistency. Praun and Gross [14] follow the
work from [2] and define the concept of method consistency,
which is much similar to that of view consistency, aiming at
finding atomicity violations.

Artho et. al developed a new approach that addresses the
problem of stale-value errors [3], a specific class of anomalies
that are not detected with view consistency. Stale-value
errors result from data privatization, which occurs when a
private copy is made of a shared variable, and this copy is
later used to update that same shared variable.

2.3 Comparison with Atomicity Violations and
High-Level Dataraces

Informally, the notions of atomicity and view consistency
are related and appear similar. However, they have differ-
ent definitions and target different issues. Atomicity and
view consistency offer different guarantees, and neither im-
plies the other. We present two examples [15] that illustrate
this difference. In Figure 6, two threads concurrently read
shared values. Because no thread updates the shared state,
the outcome is invariably the same, regardless of the exe-
cution scheduling of the operations. Hence, these threads
are atomic, but view inconsistent. Figure 7 illustrates the
opposite scenario. If the Thread 1 runs between the two
code blocks of Thread 2, it will produce an execution which
is not serializable, and therefore not atomic. However, be-
cause only one single variable is accessed in all code blocks,
this set is necessarily view consistent.

Thread t1
synchronized {

read(x);
read(y);

}

Thread t2
synchronized {

read(x);
}
synchronized {

read(y);
}

Figure 6: A set of transactions that are atomic, but
view inconsistent

Thread t1
synchronized {

write(x);
}

Thread t2
synchronized {

read(x);
}
synchronized {

write(x);
}

Figure 7: A set of transactions that are not atomic,
but view consistent

The notion of atomicity is expressed taking into consid-
eration possible execution orderings and schedulings. View
consistency, on the contrary, analyzes only data sets, inde-
pendently of executions.

It is also worth noticing that the approach of view con-
sistency works by inference. The sets of variables which
are meant to be used together is inferred from the analysis.
The maximal view of each thread states which variables are
accessed together, not which ones should be related. There-
fore, at least one correct usage is required in order to detect
any inconsistencies at all, e.g., if x and y should always be
accessed together and by mistake are always accessed sepa-
rately, the anomaly will never be detected.

Atomicity checkers [4,14] tend to present a very high rate
of false positives. The work on high-level dataraces aim
at providing an alternative correctness criteria, with fewer
false warnings. High-level datarace detection and atomicity
checking address problem sets there are incomparable, even
if some scenarios are correctly considered anomalies accord-
ing to both criteria. High-level datarace detection creates
a new class of false positives which describe scenarios that
would not at all be expected to be considered anomalous
computations. Furthermore, this approach based in the de-
tection of high-level dataraces may also allows trigger false
negatives.

In this paper we propose a different compromise. We de-
part from the notion of atomicity and attempt to detect only
some specific cases of atomicity violations, which present real
and serious anomalies. The cases we consider were heuris-
tically defined by analyzing the anomalies present in a set
of well known examples of buggy concurrent programs. Our
approach is therefore comparable to the detection of high-
level dataraces, because it attempts to detect a specific class
of problems,by refining an approach that is already known
as effective in the detection of concurrency anomalies.

3. HIGH-LEVEL ANOMALIES IN TRANS-
ACTIONAL MEMORY

Thread atomicity, which ensures that the execution of a
concurrent program is necessarily equivalent to some sequen-
tial execution of all its threads, is a strong guarantee that
facilitates the understanding of programs by reducing its

29



analysis to the analysis of a serial equivalent. Atomicity
checking encompass all possible concurrency anomalies, but
may also inhibit many concurrent computations that would
be valid otherwise.

Instead of pursuing thread serializability, we intend that
serializability is established only among consecutive trans-
actions in a thread. This is justified by the intuition that
most errors will come from two consecutive atomic segments
in the same thread, which should be merged into a single one.
This option represents a compromise between allowing some
non-probable false negatives while reducing significantly the
number of false positives.

More specifically, the anomalies that are to be detected
happen when a thread T1 executes transactions A and B,
without running any other transactions between these two,
and another thread T2 concurrently executes another trans-
action C between the runs of A and B, such that the result-
ing scheduling of the three transactions is not serializable.
This is the basis for our heuristic and all examples we have
seen so far in the literature fit this scenario.

In order to facilitate reasoning about these conditions, we
shall first list the possible scenarios fitting to our heuristic
assumptions, in a similar way to the listing of single-variable
unserializable patterns presented in [15]. We will then com-
pare this criteria to full thread-atomicity, and then review
the patterns most likely associated with anomalies.

3.1 Anomaly Patterns in Transactional
Memory

Figure 8 illustrates the possible unserializable schedulings
involving two threads and two transactions.

Read—Read A thread performs a transaction that writes a
and a subsequent transaction that reads b, while an-
other thread changed both of those values between the
readings. An example is presented in Figure 8(a).

Read—Write A thread performs a transaction that reads a
and a subsequent transaction that writes b. Between
these two transactions, another thread writes a, and
also reads or writes b. An example is presented in Fig-
ure 8(b).

Write—Read A thread performs a transaction that writes a
and a subsequent transaction that reads b. Between
these two transactions, another thread reads or writes a,
and also writes b. An example is presented in Fig-
ure 8(c).

Write—Write A thread performs a transaction that writes a
and a subsequent transaction that writes b. Between
these two transactions, another thread reads or writes a,
and also reads or writes b. An example is presented in
Figure 8(d). Note that if a and b are the same, then
a reading of a by another thread is both sufficient and
required to trigger an anomaly. A writing of a by the
second thread does not change the atomicity of the set.

3.2 Difference to Thread-Atomicity
Because we are only considering pairs of two consecutive

transactions at a time, there can be the case that non-atomic
schedulings involving at least three or more transactions in
one of the threads are not detected as anomalies by our
technique. The example in Figure 9 shows a scenario in-
volving two threads, each executing three transactions, in
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All examples we have seen so far fit this scenario.

In order to facilitate reasoning about these conditions, we shall first list all possible scenarios
that fit the previous description, in a similar way to the listing of single-variable unserializable
patterns presented in [WS03]. We will then compare this criteria to full thread-atomicity, and
then review the patterns most likely associated with anomalies.

4.3.1 All High-Level Anomaly Patterns

Read—Read Two consecutive transactions of one thread read shared values a and b, while
other threads could have changed both values between the readings. An example is presented
in Figure 4.2

Read—Write A thread performs a transaction that reads a. The same thread subsequently
executes a transaction which writes b. Between these two, other threads could have written a,
and written or read b. An example is presented in Figure 4.3
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Write—Read A thread performs a transaction that writes a, and a subsequent transaction
which reads b. Between these two, other threads could have written or read a, and written b.
An example is presented in Figure 4.4

Write—Write A thread performs a transaction that writes a, and a subsequent transaction
which writes b. Between these two, other threads could have written or read a, and written
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(a) Read—Read anomaly.
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or read b. An example is presented in Figure 4.5. Notice that if a and b are the same, then a
reading of a by another thread is both sufficient and required to trigger an anomaly. A writting
of a by the second thread does not change the atomicity of the threads.
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4.3.2 Difference to Thread-Atomicity

Consider the example in Figure 4.6, which states an important scenario in which thread atom-
icity and our definition originate different results.
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Figure 4.6: Example of a set of threads that are not atomic, but do not present anomalies on any
pair of consecutive transactions.

This execution is not globally serializable (not atomic), because the writings of a and c by
Thread 2 could cause Thread 1 to observe two different global states. The set of transactions
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(d) Write—Write anomaly.

Figure 8: Examples of anomalies.

which thread atomicity and our new definition originate dif-
ferent results.
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reading of a by another thread is both sufficient and required to trigger an anomaly. A writting
of a by the second thread does not change the atomicity of the threads.
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Figure 4.4: Example of a Write–Read
anomaly
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Figure 4.5: Example of a Write–Write
anomaly

4.3.2 Difference to Thread-Atomicity

Consider the example in Figure 4.6, which states an important scenario in which thread atom-
icity and our definition originate different results.
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Figure 4.6: Example of a set of threads that are not atomic, but do not present anomalies on any
pair of consecutive transactions.

This execution is not globally serializable (not atomic), because the writings of a and c by
Thread 2 could cause Thread 1 to observe two different global states. The set of transactions
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Figure 9: A set of non atomic threads, with no
anomalies between each pair of consecutive trans-
actions.

According to our systems, an anomaly would be trig-
gered only if i) between transactions I and K of Thread 1,
Thread 2 updates b (which it does not); or ii) between trans-
actions X and Z of Thread 2, Thread 1 updates b (which also
it does not). Since none of the previous conditions apply,
this execution is free of anomalies according to our patterns.
On the other hand, this execution is not atomic not glob-
ally serializable, because the execution of the three transac-
tions of Thread 2 between transactions I and K could cause
Thread 1 to observe two different global states.

3.3 Anomaly Patterns
We assume the run-time of the TM framework will deal

with the mutual exclusion when and where necessary, freeing
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the analysis procedure of the burden of keeping information
on which data is protected by which locks in each critical
code block. However, the essence of anomaly patterns de-
scribed in this Section is not limited to Transactional Mem-
ory and this approach could be adapted to the more classical
locks-based model.

We can estimate that the full detection of all the patterns
listed in Section 3.1 will still yield many false positives, much
like thread serializability would. Furthermore, it is intuitive
that many of these patterns will seldom or never be involved
in an anomaly. Thus, some of these patterns will be dis-
carded when performing an analysis, in order to produce
a more manageable result. For some patterns, it may not
be totally clear whether or not they should be flagged as
anomalous. Therefore, we propose to address only the most
intuitively anomalous patterns, and developed a validation
tool that allows to interactively enable or disable the re-
porting of each pattern. By analyzing many examples from
the literature, all the frequent high-level concurrency errors
seem to fit into only three patterns, as described below.

Non-atomic Global Read (Read–write–Read/RwR)
A thread reads a global state in two or more separate
transactions. Therefore, it can make wrong assump-
tions based on a state that is composed of parts of
different global states, since another thread may have
modified any of the values read. The perceived global
state may even be inconsistent. An example is pre-
sented in Figure 10.

Thread 1
atomic {

read (x);
}
atomic {

read (y);
}
if (x == y) {

...
}

Thread 2
atomic {

write (x);
write (y);

}

Figure 10: Example of an RwR anomaly

Non-atomic Global Write (Write–read–Write/WrW)
A thread changes the global shared state, but it breaks
the update into two or more transactions. Another
thread may read the global state meanwhile and ob-
serve several partial states, resulting in an inconsis-
tency. An example is presented in Figure 11.

Thread 1
atomic {

write (x=x+1);
}
atomic {

write (y=y+1);
}

Thread 2
atomic {

read (x);
read (y);
assert (x==y);

}

Figure 11: Example of a WrW anomaly

Non-atomic Compare-and-Swap (Read–write–Write/
RwW) A thread reads a value in a transaction and
updates that same value in the following transaction.
If there is a dependency between the read and stored

values and meanwhile another thread also updates that
same value, the initial update possibly does not make
sense anymore. An example is presented in Figure 12.

Thread 1
int a;
atomic {

a = read (x);
}
a = a + 1;
atomic {

write (x = a);
}

Thread 2
atomic {

write (x = 42);
}

Figure 12: Example of an RwW anomaly

These patterns are taken as hypothesis for our detection
framework. Our real target is the occurrence of two consec-
utive transactions that are logically related and should be
executed as a single transaction. To this end, all possible
scenarios described previously are considered. Throughout
Sections 4 and 5 we describe a static approach that checks
for the above patterns, aiming at detecting high-level trans-
actional memory anomalies, and a tool that implements this
approach. The tool may be configured on a per-case basis,
to have each pattern occurrence being considered as benign
or triggering an anomaly.

4. DETECTION APPROACH
In order to evaluate the atomicity of a program, it is nec-

essary to know the set of transactions that are executed, as
well as the set of variables that are read and written by each
transaction. However, it is not possible to have this informa-
tion before running the program, since control flow changes
as transactions are executed, also changing how many times
each transaction is executed and what data is accessed inside
each one.

Our approach will perform a sort of symbolic execution,
starting from the bootstrap point of each thread, and as-
sume that every transactional block is executed at its point.
Similarly, we will assume that inside each transaction ev-
ery read and write operation that is stated in the source
code will be performed. This approach allow to obtain a set
of conservative execution traces, that represents all possible
executions of this thread. Each trace will be composed by a
sequence of atomic blocks executed within that trace. From
this trace, one can extract all pairs of consecutive transac-
tions that may be carried out, as well as the point in code
where they will be performed.

Since we are only concerned with detecting high-level con-
currency anomalies in Transactional Memory, we may only
trace transactional accesses to shared data. All other state-
ments may be discarded from the trace, including statements
in transactions that access only local data, as well as non-
transactional accesses to shared variables.

Having set the guidelines of our method, in the remain-
ing of this section we will discuss in further detail the rel-
evant aspects that must be considered when defining this
approach.

4.1 Transaction Nesting
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In the case of atomic blocks containing sub-transactions
in their code, both the top-level transaction and its sub-
transactions will be handled as a single one. It should be
taken into consideration that some TM systems actually pro-
vide different semantics for nested blocks. For now, however,
we will take this more simplistic approach by assuming flat
nesting. Therefore, the lower level atomic blocks can be
discarded. More precisely, if we trace an atomic block while
already in a transactional context, this block will be replaced
by its sub-statements.

4.2 Method Calls
When tracing the execution method of a thread, whenever

a call statement is reached, it is replaced with the statements
inside the target method, in a process which will be called
inlining. Inlining enables the viewing of all sequences of
transactions performed by a thread, as though the execution
was composed of one single method. If in turn this method
calls other methods, then the process is repeated.

Care must be taken in order to avoid infinite inlining calls,
such as in cases when two methods simultaneously call each
other. In this case, the inlining should stop before the third
time that a method is in the call stack. If it stops at the
second time, then some execution scenarios might not be
covered. Considering again the example on Figure 13, if
method B() had not been expanded a second time, then the
tracer would not foresee the possible anomaly resulting from
Transaction2() being followed by Transaction1().

void A() {
Transaction1 ();
B();

}

void B() {
Transaction2 ();
if(...)

A();
}

void Main() {
A();

}

void Main_Expanded () {
Transaction1 (); // A()
Transaction2 (); // B()
if(...) {

Transaction1 (); // A’
Transaction2 (); // B’
if(...) {
// do not expand A again
}

// return B’
// return A’

}
// return A

}

Figure 13: Method inlining. Care must be taken in
aborting recursive inlining calls.

4.3 Alternative Execution Statements
Lets now consider disjunction points in a program. Dis-

junctions are control structures such as an if or case state-
ment. They provide two or more alternative paths of ex-
ecution, from which only one should be taken. After exe-
cuting any of the branches in the disjunction, the execution
path should again a single one, independently of the previ-
ous choice. This looks much like a fork and join. Disjunction
nodes bring the problem of not knowing in advance which
branch will be executed. However, we know that one and
only one of the branches in a disjunction will be executed,
and where, relatively to the previous and following points in
the trace, it will take place. Therefore, we can have a spe-
cial node in the trace that is not a transaction, but rather a
disjunction. This will be represented by a set of sequences
of transactions, from which exactly one will be taken. This

allows to expose anomalies with nodes preceding and fol-
lowing the disjunction, while not raising anomalies between
different branches.

4.4 Loop Statements
Loops are also typically available in most languages and

in many variants. They always hold a code block that is
executed a certain a number of times, frequently not known
at compile time. We take into consideration the interactions
that two consecutive executions of the loop code block may
have with itself.

If we consider zero (when possible), one and two iterations
of each loop, we can detect any anomaly resulting from the
interaction of the code blocks preceding and succeeding the
loop among themselves and with the loop code block, as well
as of the the loop code block with itself.

4.5 Other Control Structures
Other control structures should be evaluated on a per-case

basis, but most times they may be reduced to one of the
previous cases. If we take chained if’s, or else-if statements,
they can be replaced with a proper disjunction node. Excep-
tion throwing and handling, try-catch, may be replaced by a
sequence of disjunctions, like a code block whose execution
could stop between each pair of statements. The same may
go for loops that end prematurely, such as by the use of a
break statement or similar.

4.6 Discussion of the Approach
The correctness of this analysis is subject to the correct-

ness of the criteria determined for anomalies, i.e., such as
the three common anomalies seen at the end Section 3.3.
Because this approach is based in static analysis, it will not
trigger false negatives with respect to those conditions. Any
anomaly that is not detected is due to not matching any of
the three patterns under consideration, and could be elimi-
nated by refining those patterns or adding new ones.

In order to obtain a useful perception of the running of
the program, two other analysis must be considered. These
are not strictly necessary to analyze the program, but highly
boost the usefulness of the process if available. Each of them
may default to a conservative evaluation if not available.
In both cases, their unavailability will impact the precision
of the analysis, raising the chance of more false positives,
although never spawning false negatives.

4.6.1 Happens-in-Parallel Analysis
Besides knowing the number and type of threads, it is

important to know the time at which each of them will be
performing which operation. Start and Join, as well as Wait
and Notify, may alter execution flow in such a way that
makes it impossible for certain interleavings to happen. The
May-Happen-in-Parallel (MHP) analysis [7] can be used to
achieve this purpose. To determine that an operation from a
thread may interfere between two transactions from another
thread, it is imperative to guarantee that this interleaving
is actually possible at runtime. If a thread is guaranteed
to start only after another one has finished, then there is
no way there can be an anomaly between them. If this
analysis is not available, then we may assume that there
are no guarantees on when transactions may run, i.e., each
transaction from a thread may occur between any other two
consecutive transactions from another thread.
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4.6.2 Points-to Analysis
In order to determine an anomaly, it is necessary to know

that transactions are accessing the same object, and for this,
the Points-to Analysis [1] can be used to identify which
pointer is pointing to which variable in the program. If
all transactions involved in a possible anomaly access com-
pletely disjoint sets of data, then there is no possible anomaly
between them. Knowing that only fields of shared objects,
and cells of shared arrays may be subject of an anomaly, we
may discard accesses to local variables. Knowing whether
two thread objects are the same would also help refining the
static threaded control-flow and happens-in-parallel analy-
sis. If this analysis is not available, we may assume that
all accesses to a field of objects of the same class are made
to the same object, i.e., that there is only one instance of
each type/class, and that is is shared between all threads.
Similarly, it may be assumed that all references to a thread
type mean the same thread object.

5. IMPLEMENTATION
In order to implement the approach described in Section 4,

we need a static analysis framework. Our choice went to the
Polyglot framework [12] for extensions to the Java language.
We also use an available Java language extension [6], which
already recognizes atomic blocks and makes them available
for further processing.

Having a program representation in the form of an AST,
including nodes for atomic blocks, we extract the trace in-
formation from this. Remember that these traces are them-
selves trees, rather then a simple sequence of transactions,
because of disjunction nodes. Because the AST produced by
Polyglot is not an appropriate representation for our anal-
ysis, we designed our own tree class, with our own nodes.
There are six main kinds of nodes in the new trace tree:

Access nodes represent an access to a field of a shared ob-
ject. There are subtypes of nodes for read access, write
access, and multiple accesses in the same statement.

Atom nodes represent an atomic block, a transaction.

Call nodes represent a call to a method, which shall be
replaced by the statements of that method with the
inlining process.

If nodes for binary disjunctions. A fork in the code with
two possible branches of execution. The alternative
branch may be empty. More disjunctive paths may be
added by chaining several If nodes.

Loop nodes represent loops, which usually shall be replaced
by three branches, one with an empty loop body, an-
other with one iteration of the loop, and another with
two iterations.

Sequence nodes represent a compound statement. Gen-
erally, the body of an if or of a method is a compound
statement, unless it consists of a single statement.

A visitor pass, implemented is in accordance with the
polyglot framework, transforms the original AST generated
by Polyglot into our own specific format. A new set of vis-
itors, matching our own specification of the AST, were also
defined as described below.

The first pass will traverse the (modified) AST and gen-
erate an equivalent trace tree for each method. This process
will also gather information on all the possibly available
methods. The next pass is inlining. Each thread starting
method is traversed, and every method call inside it is re-
placed by the tree of that method, in an iterative fashion.
A sort of call stack and a counter keep track of the methods
that are being expanded at a time, in order to avoid infi-
nite inlining for recursive calls. The next iteration on the
trace trees flattens a set nested atomic blocks into a single
one, and generates the list of accesses of each single atomic
block. This list will be used to compare data accesses. For
example, many atoms contain multiple accesses to the same
fields. This list will have the list of fields read, written, ac-
cessed in general, available and iterable in a number of ways.
At this point, the data is gathered in a form that is suitable
for analysis. An analyzer receives pairs of traces that run
in parallel, and iteratively checks each pair of subsequent
transactions against interference of each transaction of the
second trace. If an anomalous pattern matches the analyzed
transactions, then an alert is added to the report.

In the current prototype, neither static-thread, nor may-
happens-in-parallel, nor points-to analysis are performed at
the moment. For now, this approach conservatively assumes
that there are exactly two instances of each thread type
being executed in parallel, and that all transactions may be
performed at an unknown time. Finally, only the object
types and field names are compared in order to determine a
simultaneous access; the analyzer assumes that all accesses
are performed on the same object. This raises the maximum
possible amount of conflicts, although we expect this number
to drop significantly when those analysis steps are included
in the prototype.

6. EXPERIMENTS AND RESULTS
We evaluated our static-analysis approach by using our

tool in a set of examples of high-level anomalies, all but
one well known from the literature. The exception was
developed specifically for this thesis. None of those well
known examples used Transactional Memory, but rather
some lock-based concurrency control constructs, so these ex-
amples were adapted and manually rewritten to make use
of TM constructs and still keep the original semantics and
anomalies. Because the set of examples analyzed was quite
large, we will focus in three of those examples and discuss
the obtained results in detail. We will also provide some
statistics on the usage of the tool on the full set of testing
examples.

6.1 Testing Examples
From the set of test cases used with our application, we

will now discuss in detail three of them which are repre-
sentative of the set. The NASA remote agent is an in-
stance of a critical real-world scenario in which a runtime
anomaly was detected before deployment. The Coordinates
test case shows an common error which is easy to make in a
daily development environment. The Counter example was
chosen because it contains an anomaly that some high-level
anomaly checkers fail to detect, but ours does.

6.1.1 NASA Remote Agent
This example was adapted from [2]. The system state of

a spacecraft is a table of variables (each pertaining a spe-
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cific sensor), and their current values. An executing task
may require that certain properties of the system state hold
for the duration of the task. Once the property has been
achieved, the task marks its achieved flag to true. A dae-
mon thread monitors the execution, waking up at regular
intervals to verify system invariants. A code snippet con-
taining the problematic points of the program is shown in
Figure 14.

// Task
atomic {

table[N].value = v;
}
/* achieve property */
atomic {

table[N]. achieved = true;
}

// Daemon
while (true) {

atomic {
if (table[N]. achieved &&

system_state[N] != table[N].value)
issueWarning ();

}
}

Figure 14: Code snippet for NASA test

The anomaly is as follows. A task has just achieved the
property, and is about to set the flag achieved. In the mean
time, the property is destroyed by some unexpected exterior
event. The daemon that periodically wakes up and performs
a consistency check, verifies that the property does not hold,
and the achieved flag is false, adequately assuming the sys-
tem is consistent at this time. If the task now resumes and
sets the flag to true, a property will be marked as achieved
when it is not, and the daemon has missed a possibly critical
anomaly.

When analyzing this program, our tool correctly reports
the anomaly. As we can see, the Task code issues two trans-
actions, altering different fields of the same cell in the array.
These modifications are actually dependent on each other.
Our tool correctly detects these two consecutive transac-
tions, as well as a possible parallel execution of the Daemon
thread, which reads these two values. Therefore, a WrW
anomaly is reported.

6.1.2 Coordinates
This simple test was adapted from [3]. The pair of coor-

dinates this time has two additional operations: swap() to
exchange the values of both fields, and reset() which resets
both coordinates to the default value. The implementation
of these two operations is shown in Figure 15.

As the code shows, the reset() operation is not atomic,
and writes the coordinates in separate transactions. If a
thread is scheduled to run swap() while another thread is
in between both transactions of reset(), it would be swap-
ping inconsistent values, therefore resulting in an inconsis-
tent state even after reset() has resumed.

The anomaly has been correctly reported as a WrW . For
the implementation of this test, the main() method spawns
two threads. As each thread performs a swap operation, fol-
lowed by a reset operation, additional anomalies have been
reported, since the two consecutive operations access the

public void swap() {
int oldX;
atomic {

oldX = coord.x;
coord.x = coord.y; // swap X
coord.y = oldX; // swap Y

}
}

public void reset() {
atomic {

coord.x = 0;
} // inconsistent state (0, y)
atomic {

coord.y = 0;
}

}

Figure 15: Code snippet for Coordinates test

same fields. These are false positives, and three were re-
ported: one WrW , because swap() writes y, reset() writes
x, and y could have been read in between by another in-
stance of swap; and two RwW , because swap reads x, reset
writes x, and in between another instance of swap or reset
could have changed x.

6.1.3 Counter
Praun and Gross [14] present this program as an example

of an anomaly that their approach is unable to detect. A
counter is implemented as a wrapper for an integer variable,
with one single operation that increments the counter with
the provided argument, and returns the new value of the
counter. An idiom is developed which uses this functionality
to duplicate the present value. The counter is incremented
by zero, returning the current unaltered value. This value
is then provided as an increment argument, in order to du-
plicate it. However, because the value could have changed
between these two operations, there is the chance that an
increment will not double the value, and result in an incon-
sistent state. The code is presented in Figure 16.

public class Counter {
int i;
int inc(int a) {

atomic {
i = i + a;
return i;

}
}

}

// Thread code
public void run() {

int i = c.inc (0);
// value could have changed

c.inc(i);
}

Figure 16: Code snippet for the Counter test

For the implementation, we made a program that spawns
a number of threads, with each thread running the code
illustrated in the Figure. We can see that each thread issues
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two transactions. Our approach has correctly flagged the
anomaly.

6.2 Testing Summary
Beside the three test cases already presented, we ran some

additional similar tests, all adapted from examples in the
literature [2, 3, 10, 14]. A total of 12 test cases were used
until now to evaluate the behavior of our approach.

From a total of 11 anomalies known in these programs,
9 anomalies were correctly pointed out: 3 RwR anomalies,
3 WrW , and 3 RwW . The remaining 2 anomalies have not
been detected. These failures were not due to imprecision of
the anomaly patterns, but rather to data accesses which are
not available. Many anomalies involve standard methods
from the JRE which may possibly read or update internal
data. In each of these missed anomalies, one of the conflict-
ing operations was performed by a standard Java method.
Since this code is not available, these methods are ignored,
thus resulting in imprecision. As a possible way to resolve
this issue, methods for which the source code is unavailable
could be assumed to both read and modify the object to
which the call is made.

In addition to these correct results, there were also 18
false positives (67% of total results). Out of these 18 false
warnings, 5 were due to redundant reading operations. For
example, in a read operation object.field, two readings are
actually being performed, one to the object itself (object)
and another to its field. Because we assume that there
are always two instances of each thread running, a simple
analysis may detect here a RwR anomaly. However, it makes
no sense for two instances of this statement to be involved in
such a conflict, so further analysis is needed to avoid these
false positives. It would be possible to eliminate these false
positives if one considers that both readings as a single one,
thus accessing the same data.

Of the remaining false positives, 8 of them could be elim-
inated by refining the definition of the “common patterns”,
with alterations that are actually intuitive. For example, an
RwR could be ignored if the second transaction would write
both values involved. However, these alterations should be
made with care, as they could harm the overall behavior in
other tests, possibly triggering false negatives.

Finally, the remaining 5 false positives are related to in-
terleavings which are not atomic, even though they are cor-
rect. Additional semantic information would have to be pro-
vided or inferred in order to correctly evaluate these cases.
Most of these would need another level of analysis, such as a
model checker, and a single one would be solved by providing
points-to analysis.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described and evaluated a new approach

to detect high-level anomalies in transactional memory pro-
grams. From the obtained results we can conclude that
the static analysis of programs, although limited in many
aspects, is still a valid and effective approach to identify
potential concurrency anomalies in programs. Because the
complexity of a program grows exponentially with the num-
ber of concurrent control flows (threads), one must find a
compact and efficient in-memory representation for the pro-
gram, for further processing by the anomaly detection mod-
ule tool. Our approach, with a conservative representation
for program traces meets these requirements. An anomaly

detection procedure based in evaluating pairs of transactions
instead of pairs of (whole) threads has a fair precision, lead-
ing to results at least as good as the others reported in the
literature.

For future work, we plan to proceed in two areas: improve
the patterns and algorithms, and improve the transactional
memory anomalies detection tool. In simple terms, we may
say we want to keep testing and evaluating the anomaly
patterns and the tool, refining both as necessary to increase
anomaly detection accuracy. We plan to implement and
evaluate the effect of the strategies suggested in Section 6.2
in the accuracy of the tool. We also want to test the pro-
posed anomaly patterns in a set of larger tests, aiming at
obtaining more meaningful statistical data and have some
insight on the adequacy of the defined high-level transac-
tional memory anomaly patterns. Concerning the tool itself,
we strongly believe its accuracy would dramatically increase
with the support for happens-in-parallel and points-to analy-
sis, as referred in Sections 4.6.1 and 4.6.2. Currently, meth-
ods with no source-code available are assumed to neither
write or read data, which is not true in most cases. For ex-
ample, the methods for sending data in java.lang.Socket,
such as the socket.write(bytes) method should be as-
sumed to change the Socket object, and this scenario is
currently not being considered. Likewise, references passed
as arguments to methods with no source-code available may
also change the referenced object. In both cases, assuming
that the objects are modified by such methods will solve this
problem, although it may lead to a considerable increase of
false positives. The tools could also be improved with sup-
port for user-defined patterns and the option to enable and
disable them as required.

Acknowledgments
This work was partially supported by Sun Microsystems and
Sun Microsystems Portugal under the “Sun Worldwide Mar-
keting Loaner Agreement #11497”, by the Centro de Infor-
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