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1   Introduction 

In software, hardware, and embedded system domains, debugging is the process of 
locating and correcting faults in a system. Depending on the context, the various 
characteristics of debugging induce different challenges and solutions. Post-silicon 
hardware debugging, for example, needs to address issues such as limited visibility 
and controllability, while debugging software entails other issues, such as the 
handling of distributed or non-deterministic computation. The challenges that 
accompany such issues are the focus of many current research efforts. Solutions for 
debugging range from interactive tools to highly analytic techniques. We have seen 
great advances in debugging technologies in recent years, but bugs continue to occur, 
and debugging still encompasses significant portions of the lifecycles of many 
systems. The session covered state-of-the-art approaches as well as promising new 
research directions in both the hardware and software domains.  

2   Challenges in Debugging 

The first talk, by Yoav Hollander of Cadence, centered around two points—(a) 
debugging is a hard problem that is getting harder, and (b) debug automation is a 
topic that is worth investing in now. 

The talk focused on hardware and embedded software debugging, though 
debugging activity is similar in domains such as diagnostics, accident investigations, 
police detective work, and psychotherapy. The common goal, in all of these examples 
and more, is to understand why something bad happens in a complex system. 

The debugging problem seems to demand a bigger slice of the verification pie now 
more than ever. In hardware debugging, the bug-finding techniques (constrained 
random testing, formal, etc.) have reached a good level so debugging has become the 
bottleneck. In the software domain, the verification requirements (such as coverage 
filling) have traditionally been lower, so most of what is called verification in this 
case is actually debugging.  



System debugging is particularly difficult, for three main reasons. First, most 
systems, almost by definition, are big and heterogeneous. Their components, some of 
which are only lightly verified, come from many groups. Furthermore, the 
components come from many different disciplines, including digital, analog, kernel 
software, and middleware software. None of these disciplines seem to have the full 
picture of what is necessary for debugging. These challenges are all compounded by 
the parallelism within the system. 

The second reason for the difficulty is that the running environments (emulation, 
simulation, post-silicon, etc.) each have their own set of problems—including being 
slow, having limited visibility, and being non-repeatable. 

Finally, there is lots of incidental complexity. Your compile script breaks, you get 
the wrong version, you do not understand the bug well and have to re-fix, and all of 
this takes time. 

System bugs come in several variants: system bring-up bugs, where nothing works; 
interaction bugs, where simple scenarios work but fail when they interact; and 
performance/power bugs, where some scenarios take more time and/or power than 
expected. Performance/power bugs are probably the hardest to detect and repair. 

How can we address these challenges? One solution is automatic debugging. Much 
academic work has been dedicated to this field, including the work of Andreas Zeller 
[1] and others, some of which is described in the next two sections. Some of the work 
suggests finding the correlations to failing runs, simplifying failing runs, dynamic 
slicing, formal debugging, reverse debugging, and more. The time has come to bring 
such tools into the broader user domain. Cadence is already active in this area. 

3   BackSpace: Formal Methods for Post-Silicon Debugging 

Alan Hu, of the University of British Columbia, gave the second talk of the session.  
Like the preceding talk, this one also highlighted the critical importance of 
debugging, but also – coming from an academic perspective – emphasized that this is 
an exciting, new, wide-open research area.  In contrast to the comprehensive overview 
provided by the preceding talk, this one drilled deep and narrow, focusing on a 
specific part of the post-silicon debug problem and presenting novel research results 
on using formal verification to address it. 

In particular, post-silicon debugging is the task of determining what went wrong 
when a fabricated chip misbehaves.  In contrast to ordinary, pre-silicon verification, 
what is being debugged is the actual silicon chip rather than a simulation model; but, 
in contrast to manufacturing test, the goal is to look for design errors in a newly 
designed chip, rather than random manufacturing defects in high-volume production.  
For example, imagine a new processor or SoC design.  During pre-silicon verification, 
extensive simulation, formal verification, and possibly emulation were done to 
eliminate as many bugs as possible, but with the complexity of modern designs, some 
bugs will escape to the silicon.  Also, the physical silicon is the first opportunity to 
validate the approximate models used for assessing electrical behavior and timing.  
So, it is imperative to thoroughly validate the first silicon, before ramping into high-
volume production. 



There are many facets to the post-silicon debugging problem, but the talk focused 
on a specific one:  how to derive a trace of what actually happened on chip, leading 
up to an observed buggy behavior.  Continuing the example, imagine that we discover 
a bug – perhaps the chip runs fine during simple bring-up tests, but crashes roughly 
10% of the time after one minute of running a key software application.  How do we 
debug this?  The critical task is to uncover what is happening on the chip leading up 
to the crash, but unlike simulation, we cannot see the signals on-chip.  Furthermore, 
since the silicon chip runs roughly a billion times faster than a full-chip RTL 
simulation, we cannot replay the failing test case ab initio on the simulator:  the one 
minute of on-chip run time would be on the order of 60 billion seconds (almost 2000 
years) of simulation time!  Almost all chips have some on-chip test and debug 
support, e.g., scan chains and maybe trace buffers, so we can see (at least some of) the 
signals on-chip, but only after the chip crashes (or we otherwise stop the chip).  
Guessing exactly when to trigger the trace buffer or try to get a scan dump before the 
bug manifests, so that we can start to understand what went wrong, is a painstaking 
and inexact artform. 

BackSpace is a revolutionary solution to this problem, providing the effect of 
allowing the silicon to run full-speed, yet stop at any point and go backwards, 
computing the execution the led to the bug, much like in a software debugger [2].   
Underlying the basic BackSpace approach are some simplifying assumptions:  that we 
are debugging a functional design error, so that the silicon corresponds to the RTL (or 
some other formally analyzable model); that there is a programmable breakpoint 
mechanism; that once the chip is stopped (breakpoint or bug), it is possible to dump 
out the state of the chip, e.g., via scan chains; that we can add some additional 
signature/history bits to the chip state; and that the test causing the bug can be run 
repeatedly, with the bug occurring reasonably often, e.g., at least once every few 
minutes.  With these assumptions, the basic BackSpace algorithm proceeds as 
follows.  From a crash state or breakpoint, we scan out the state of the chip, including 
the signature bits.  From this scanned-out state, we use formal analysis to compute the 
pre-image of that state – this is the set of states that could possibly occurred in the 
preceding cycle, and the challenge is to determine which one actually happened.  The 
signature bits are to keep this set small.  Then, the BackSpace algorithm automatically 
tries each of these states as a possible breakpoint and re-runs the failing test on the 
silicon, repeatedly.  When the correct predecessor state is chosen, the chip will 
(possibly after multiple tries) hit the breakpoint, thus giving us a predecessor state of 
the crash that is actually reached by the chip while executing the failing test.  From 
that state, we can repeat this procedure indefinitely, computing an arbitrarily long 
trace of states that actually lead to the crash on-chip. 

The original BackSpace paper demonstrated the theory, and subsequent work 
demonstrated the method on actual hardware, proving that the method works, even in 
the presence of non-determinism.  However, the on-chip overhead was ridiculously 
high.  The remainder of the talk was a whirlwind tour of recent, mostly as-yet-
unpublished work on making BackSpace practical:  reducing on-chip overhead by 
using partial-match breakpoint, accelerating the computation by prioritizing the pre-
image states [3], handling the skids resulting pipelining the breakpoint logic, and 
doing BackSpace in the presence of electrical faults (thus breaking the assumption 
that the RTL matches the silicon).  In most of these works, the key idea is the same as 



the basic BackSpace computation, except that additional re-runs of the failing test are 
needed to compensate for the relaxed assumptions about the problem.  In general, the 
BackSpace approach is a synergy between on-chip debug hardware, formal analysis, 
and the extremely high speed of the actual silicon in running test cases.  Stepping 
back to a broader perspective, the second talk addressed the audience on multiple 
levels:  the specifics of the BackSpace algorithms, of course, but more generally, the 
key idea that formal verification can aid post-silicon debug by automating complex 
reasoning about what is or is not possible and thereby extract maximum information 
from on-chip debug hardware.  Another key insight is that the fast re-execution of 
tests on silicon means that repetition can be used to compensate for lack of 
observability.  And most broadly, this talk was drilling deeply in a single direction, 
and found many promising research results, suggesting that there is a vast reservoir of 
interesting research to be tapped in post-silicon debug. 

4   Debugging of Parallel and Distributed Programs 

The final talk was given by João Lourenço, of the New University of Lisbon, and 
addressed software debugging. Debugging a program is a process of recognizing, 
identifying, locating, diagnosing and correcting deviations from a given specification. 
These deviations may be considered as program errors. Besides exhibiting sequential 
errors, concurrent programs do also exhibit concurrent errors. These errors are much 
harder to debug, making this activity orders of magnitude more complex than in 
sequential debugging.  

One of the key issues in debugging parallel and distributed programs is the 
program observation, also orders of magnitude more complex than in sequential 
programs. While debugging, the following dimensions are main contributors to the 
higher complexity of observing concurrent programs [4]. 

The high number of interacting entities — leads to an exponential growth in the 
number of possible program states. To address this dimension, debuggers must be 
able to observe both local process/thread states and global consistent states. If the 
number of threads/processes scales up to hundreds or thousands, it may be necessary 
for the debugger to abstract sets of related threads/processes in groups, making these 
groups first-order entities in the debugging activity. 

The intrinsic non-determinism — makes the program behavior dependent on local 
processor speeds, node workload and unpredictable communication delays. This 
dimension requires the debugger to provide support for detecting timing-based race 
conditions and to evaluate program correctness predicates (e.g., local and global 
assertions). Non-determinism is related to the probe effect, where the observation of 
the system interferes with the system itself and its behavior, making it possible for the 
debugger to both mask existing errors and trigger new ones. This requires the 
debugger to support reproducible program behavior, allowing repeatable coherent 
observation of the computations, including the erroneous ones. 

The absence of a global state — as one can only make inferences on a concurrent 
program behavior and state based on consistent observations, and the absence of a 
global state makes it very hard do determine which observations are consistent and 



which are not. To address this dimension, the debugger must make use of lightweight 
algorithms and non-intrusive techniques to identify consistent program states and 
observations.  

A debugger needs not to fully support all the above dimensions to be useful in 
debugging concurrent programs (see Fig. 1). The most basic approach in distributed 
debugging relates to the 
interactive control of 
remote processes, achieving 
the observation of 
individual 
(threads/processes) and 
global program states. 
Bringing off support for 
reproducible program 
behavior, one can support 
repeatable observations, by 
way of trace and replay for 
deterministic re-execution 
of programs. Program 
steering can be used to 
analyze alternative, less 
probable paths, carrying out alternative observations and achieving systematic state 
space coverage. Some debugging infrastructures may also support observing 
consistent computations and detecting program properties by evaluating local and 
global predicates in consistent global states. 

Due to the new context of computing nodes having multi-core processors, and to 
the clustering of such nodes, it is vital that the support for debugging parallel and 
distributed programs evolve to the same maturity level as others current software 
development tools, such as IDEs. This evolution must take place along three main 
axes: debugging methodologies, e.g., state- and time-based debugging; debugging 
functionalities, e.g., observation and control; and abstraction levels, e.g., recognition 
of higher-level programming languages concepts, such as synchronization structures. 
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Fig. 1 Increasing functionality of concurrent debuggers. 


