
Special Session on Debugging

Yoav Hollander1, Alan Hu2, João Lourenço3 and Ronny Morad4

1 Cadence, Israel

yoavh@cadence.com
2 University of British Columbia, Canada

ajh@cs.ubc.ca
3 New University of Lisbon, Portugal

Joao.Lourenco@di.fct.unl.pt
4 IBM Research – Haifa, Israel

morad@il.ibm.com

1 Introduction

In software, hardware, and embedded system domains, debugging is the process of
locating and correcting faults in a system. Depending on the context, the various
characteristics of debugging induce different challenges and solutions. Post-silicon
hardware debugging, for example, needs to address issues such as limited visibility
and controllability, while debugging software entails other issues, such as the
handling of distributed or non-deterministic computation. The challenges that
accompany such issues are the focus of many current research efforts. Solutions for
debugging range from interactive tools to highly analytic techniques. We have seen
great advances in debugging technologies in recent years, but bugs continue to occur,
and debugging still encompasses significant portions of the lifecycles of many
systems. The session covered state-of-the-art approaches as well as promising new
research directions in both the hardware and software domains.

2 Challenges in Debugging

The first talk, by Yoav Hollander of Cadence, centered around two points—(a)
debugging is a hard problem that is getting harder, and (b) debug automation is a
topic that is worth investing in now.

The talk focused on hardware and embedded software debugging, though
debugging activity is similar in domains such as diagnostics, accident investigations,
police detective work, and psychotherapy. The common goal, in all of these examples
and more, is to understand why something bad happens in a complex system.

The debugging problem seems to demand a bigger slice of the verification pie now
more than ever. In hardware debugging, the bug-finding techniques (constrained
random testing, formal, etc.) have reached a good level so debugging has become the
bottleneck. In the software domain, the verification requirements (such as coverage
filling) have traditionally been lower, so most of what is called verification in this
case is actually debugging.

System debugging is particularly difficult, for three main reasons. First, most
systems, almost by definition, are big and heterogeneous. Their components, some of
which are only lightly verified, come from many groups. Furthermore, the
components come from many different disciplines, including digital, analog, kernel
software, and middleware software. None of these disciplines seem to have the full
picture of what is necessary for debugging. These challenges are all compounded by
the parallelism within the system.

The second reason for the difficulty is that the running environments (emulation,
simulation, post-silicon, etc.) each have their own set of problems—including being
slow, having limited visibility, and being non-repeatable.

Finally, there is lots of incidental complexity. Your compile script breaks, you get
the wrong version, you do not understand the bug well and have to re-fix, and all of
this takes time.

System bugs come in several variants: system bring-up bugs, where nothing works;
interaction bugs, where simple scenarios work but fail when they interact; and
performance/power bugs, where some scenarios take more time and/or power than
expected. Performance/power bugs are probably the hardest to detect and repair.

How can we address these challenges? One solution is automatic debugging. Much
academic work has been dedicated to this field, including the work of Andreas Zeller
[1] and others, some of which is described in the next two sections. Some of the work
suggests finding the correlations to failing runs, simplifying failing runs, dynamic
slicing, formal debugging, reverse debugging, and more. The time has come to bring
such tools into the broader user domain. Cadence is already active in this area.

3 BackSpace: Formal Methods for Post-Silicon Debugging

Alan Hu, of the University of British Columbia, gave the second talk of the session.
Like the preceding talk, this one also highlighted the critical importance of
debugging, but also – coming from an academic perspective – emphasized that this is
an exciting, new, wide-open research area. In contrast to the comprehensive overview
provided by the preceding talk, this one drilled deep and narrow, focusing on a
specific part of the post-silicon debug problem and presenting novel research results
on using formal verification to address it.

In particular, post-silicon debugging is the task of determining what went wrong
when a fabricated chip misbehaves. In contrast to ordinary, pre-silicon verification,
what is being debugged is the actual silicon chip rather than a simulation model; but,
in contrast to manufacturing test, the goal is to look for design errors in a newly
designed chip, rather than random manufacturing defects in high-volume production.
For example, imagine a new processor or SoC design. During pre-silicon verification,
extensive simulation, formal verification, and possibly emulation were done to
eliminate as many bugs as possible, but with the complexity of modern designs, some
bugs will escape to the silicon. Also, the physical silicon is the first opportunity to
validate the approximate models used for assessing electrical behavior and timing.
So, it is imperative to thoroughly validate the first silicon, before ramping into high-
volume production.

There are many facets to the post-silicon debugging problem, but the talk focused
on a specific one: how to derive a trace of what actually happened on chip, leading
up to an observed buggy behavior. Continuing the example, imagine that we discover
a bug – perhaps the chip runs fine during simple bring-up tests, but crashes roughly
10% of the time after one minute of running a key software application. How do we
debug this? The critical task is to uncover what is happening on the chip leading up
to the crash, but unlike simulation, we cannot see the signals on-chip. Furthermore,
since the silicon chip runs roughly a billion times faster than a full-chip RTL
simulation, we cannot replay the failing test case ab initio on the simulator: the one
minute of on-chip run time would be on the order of 60 billion seconds (almost 2000
years) of simulation time! Almost all chips have some on-chip test and debug
support, e.g., scan chains and maybe trace buffers, so we can see (at least some of) the
signals on-chip, but only after the chip crashes (or we otherwise stop the chip).
Guessing exactly when to trigger the trace buffer or try to get a scan dump before the
bug manifests, so that we can start to understand what went wrong, is a painstaking
and inexact artform.

BackSpace is a revolutionary solution to this problem, providing the effect of
allowing the silicon to run full-speed, yet stop at any point and go backwards,
computing the execution the led to the bug, much like in a software debugger [2].
Underlying the basic BackSpace approach are some simplifying assumptions: that we
are debugging a functional design error, so that the silicon corresponds to the RTL (or
some other formally analyzable model); that there is a programmable breakpoint
mechanism; that once the chip is stopped (breakpoint or bug), it is possible to dump
out the state of the chip, e.g., via scan chains; that we can add some additional
signature/history bits to the chip state; and that the test causing the bug can be run
repeatedly, with the bug occurring reasonably often, e.g., at least once every few
minutes. With these assumptions, the basic BackSpace algorithm proceeds as
follows. From a crash state or breakpoint, we scan out the state of the chip, including
the signature bits. From this scanned-out state, we use formal analysis to compute the
pre-image of that state – this is the set of states that could possibly occurred in the
preceding cycle, and the challenge is to determine which one actually happened. The
signature bits are to keep this set small. Then, the BackSpace algorithm automatically
tries each of these states as a possible breakpoint and re-runs the failing test on the
silicon, repeatedly. When the correct predecessor state is chosen, the chip will
(possibly after multiple tries) hit the breakpoint, thus giving us a predecessor state of
the crash that is actually reached by the chip while executing the failing test. From
that state, we can repeat this procedure indefinitely, computing an arbitrarily long
trace of states that actually lead to the crash on-chip.

The original BackSpace paper demonstrated the theory, and subsequent work
demonstrated the method on actual hardware, proving that the method works, even in
the presence of non-determinism. However, the on-chip overhead was ridiculously
high. The remainder of the talk was a whirlwind tour of recent, mostly as-yet-
unpublished work on making BackSpace practical: reducing on-chip overhead by
using partial-match breakpoint, accelerating the computation by prioritizing the pre-
image states [3], handling the skids resulting pipelining the breakpoint logic, and
doing BackSpace in the presence of electrical faults (thus breaking the assumption
that the RTL matches the silicon). In most of these works, the key idea is the same as

the basic BackSpace computation, except that additional re-runs of the failing test are
needed to compensate for the relaxed assumptions about the problem. In general, the
BackSpace approach is a synergy between on-chip debug hardware, formal analysis,
and the extremely high speed of the actual silicon in running test cases. Stepping
back to a broader perspective, the second talk addressed the audience on multiple
levels: the specifics of the BackSpace algorithms, of course, but more generally, the
key idea that formal verification can aid post-silicon debug by automating complex
reasoning about what is or is not possible and thereby extract maximum information
from on-chip debug hardware. Another key insight is that the fast re-execution of
tests on silicon means that repetition can be used to compensate for lack of
observability. And most broadly, this talk was drilling deeply in a single direction,
and found many promising research results, suggesting that there is a vast reservoir of
interesting research to be tapped in post-silicon debug.

4 Debugging of Parallel and Distributed Programs

The final talk was given by João Lourenço, of the New University of Lisbon, and
addressed software debugging. Debugging a program is a process of recognizing,
identifying, locating, diagnosing and correcting deviations from a given specification.
These deviations may be considered as program errors. Besides exhibiting sequential
errors, concurrent programs do also exhibit concurrent errors. These errors are much
harder to debug, making this activity orders of magnitude more complex than in
sequential debugging.

One of the key issues in debugging parallel and distributed programs is the
program observation, also orders of magnitude more complex than in sequential
programs. While debugging, the following dimensions are main contributors to the
higher complexity of observing concurrent programs [4].

The high number of interacting entities — leads to an exponential growth in the
number of possible program states. To address this dimension, debuggers must be
able to observe both local process/thread states and global consistent states. If the
number of threads/processes scales up to hundreds or thousands, it may be necessary
for the debugger to abstract sets of related threads/processes in groups, making these
groups first-order entities in the debugging activity.

The intrinsic non-determinism — makes the program behavior dependent on local
processor speeds, node workload and unpredictable communication delays. This
dimension requires the debugger to provide support for detecting timing-based race
conditions and to evaluate program correctness predicates (e.g., local and global
assertions). Non-determinism is related to the probe effect, where the observation of
the system interferes with the system itself and its behavior, making it possible for the
debugger to both mask existing errors and trigger new ones. This requires the
debugger to support reproducible program behavior, allowing repeatable coherent
observation of the computations, including the erroneous ones.

The absence of a global state — as one can only make inferences on a concurrent
program behavior and state based on consistent observations, and the absence of a
global state makes it very hard do determine which observations are consistent and

which are not. To address this dimension, the debugger must make use of lightweight
algorithms and non-intrusive techniques to identify consistent program states and
observations.

A debugger needs not to fully support all the above dimensions to be useful in
debugging concurrent programs (see Fig. 1). The most basic approach in distributed
debugging relates to the
interactive control of
remote processes, achieving
the observation of
individual
(threads/processes) and
global program states.
Bringing off support for
reproducible program
behavior, one can support
repeatable observations, by
way of trace and replay for
deterministic re-execution
of programs. Program
steering can be used to
analyze alternative, less
probable paths, carrying out alternative observations and achieving systematic state
space coverage. Some debugging infrastructures may also support observing
consistent computations and detecting program properties by evaluating local and
global predicates in consistent global states.

Due to the new context of computing nodes having multi-core processors, and to
the clustering of such nodes, it is vital that the support for debugging parallel and
distributed programs evolve to the same maturity level as others current software
development tools, such as IDEs. This evolution must take place along three main
axes: debugging methodologies, e.g., state- and time-based debugging; debugging
functionalities, e.g., observation and control; and abstraction levels, e.g., recognition
of higher-level programming languages concepts, such as synchronization structures.

References

1. Burger, M., Lehmann K., Zeller A.: Automated debugging in eclipse. OOPSLA Companion
2005: 184-185

2. De Paula, F.M., Gort, M., Hu, A.J., Wilton, S.J.E, Yang, J.: "BackSpace: Formal Analysis
for Post-Silicon Debug,'' Formal Methods in Computer-Aided Design (FMCAD), IEEE
eXpress Publishing, 2008, pp. 35-44.

3. Kuan, J., Wilton, S.J.E, Aamodt, T.M.: Accelerating Trace Computation in Post-Silicon
Debug, 11th IEEE International Symposium on Quality Electronic Design (ISQED 2010),
pp. 244-249.

4. Cunha, J. C., Lourenço, J., Duarte, V.: Debugging of parallel and distributed programs. In
Parallel program development for cluster computing. Advances In Computation: Theory
And Practice, Vol. Volume 5. Nova Science Publishers, Inc., Commack, NY, USA 97-129
(2001)

����������

�	
�������	��	�������

���������	�

���	������	�
�����

���	������	��

���	��	����
��
	���	��

�����������	
�����	
��	������	���������	

����������������		
�	�

���	����������

�
�����������	��

������	������	
��
	
�����	

�����
�
��
�����������
���

�	
	�����	

����	���������

�������
	�������	
�������	��
	
�����	

�������
����������������
���

���	������	

����	���������

�����	���
�����	

��������	

	���������	����������
���

���	����������

�������	���

Fig. 1 Increasing functionality of concurrent debuggers.

